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Abstract

Although the univariate Charlier series distribution (Biom. J. 30(8):1003–1009, 1988) and
bivariate Charlier series distribution (Biom. J. 37(1):105–117, 1995; J. Appl. Stat.
30(1):63–77, 2003) can be easily generalized to the multivariate version via the method
of stochastic representation (SR), the multivariate zero-truncated Charlier series (ZTCS)
distribution is not available to date. The first aim of this paper is to propose the
multivariate ZTCS distribution by developing its important distributional properties,
and providing efficient likelihood-based inference methods via a novel data
augmentation in the framework of the expectation–maximization (EM) algorithm. Since
the joint marginal distribution of any r-dimensional sub-vector of the multivariate ZTCS
random vector of dimensionm is an r-dimensional zero-deflated Charlier series (ZDCS)
distribution (1 ≤ r < m), it is the second objective of the paper to introduce a new
family of multivariate zero-adjusted Charlier series (ZACS) distributions (including the
multivariate ZDCS distribution as a special member) with a more flexible correlation
structure by accounting for both inflation and deflation at zero. The corresponding
distributional properties are explored and the associated maximum likelihood
estimation method via EM algorithm is provided for analyzing correlated count data.
Some simulation studies are performed and two real data sets are used to illustrate the
proposed methods.
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1 Introduction
The univariate Charlier series (CS) distribution was first introduced by Ong (1988) in
the consideration of the conditional distribution of a bivariate Poisson distribution. The
CS distribution is a convolution of a binomial variate and a Poisson variate. Let X0 ∼
Binomial(K ,π), X1 ∼ Poisson(λ), and (X0,X1) be mutually independent (denoted by
X0⊥⊥X1). Then a discrete non-negative random variable X is said to follow the CS dis-
tribution with parameters K ∈ N =̂ {1, 2, . . . ,∞}, π ∈ [0, 1) and λ ∈ R+, denoted by
X ∼ CS(K ,π ; λ), if it can be stochastically represented by X = X0 + X1. Its probability
mass function (pmf) is given by

Pr(X = x) =
min(K ,x)∑

k=0

(
K
k

)
πk(1 − π)K−k · λx−ke−λ

(x − k)!
, x = 0, 1, . . . ,∞. (1.1)
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The mean and variance of X are given by

E(X) = Kπ + λ and Var(X) = Kπ(1 − π) + λ. (1.2)

Let X1, . . . ,Xn
iid∼ CS(K ,π ; λ) and the observed data be Yobs = {x1, . . . , xn}, where

x1, . . . , xn are the realizations of X1, . . . ,Xn. Let x̄ and s2 be the sample mean and vari-
ance, respectively. Assuming K is known, Ong (1988) derived the moment estimates of
the parameters in the univariate CS distribution as follows:

π̂ =
(
x̄ − s2

K

)1/2
and λ̂ = x̄ − K π̂ . (1.3)

Next, Papageorgiou and Loukas (1995) proposed a bivariate CS distribution which
arises as the conditional distribution from a trivariate Poisson distribution studied by
Loukas and Papageorgiou (1991) and Loukas (1993). Let X0 ∼ Binomial(K ,π) and
Xi0

ind∼ Poisson(λi), i = 1, 2 and define Xi = X0 + Xi0, i = 1, 2. Then a discrete non-
negative random vector x = (X1,X2)� is said to follow a bivariate CS distribution with
parameters K ∈ N, π ∈ [0, 1) and λi ∈ R+, i = 1, 2. We denote it by x ∼ CS(K ,π ; λ1, λ2).
Its probability generating function, marginal means and the covariance are given by

Gx (z) = E
(
zX1
1 zX2

2

)
= exp{λ1(z1 − 1) + λ2(z2 − 1)} [(1 − π) + πz1z2]K , (1.4)

E(Xi) = Kπ + λi and Cov(X1,X2) = Kπ(1 − π), i = 1, 2. (1.5)

Let x1, . . . , xn
ind∼ CS(K ,π ; λ1, λ2), where xj = (X1j,X2j)� for j = 1, . . . , n and the observed

data be Yobs = {x1, . . . , xn}, where x1, . . . , xn are the realizations of x1, . . . , xn. Let x̄1, x̄2 be
the sample mean for X1 and X2 andm11 be the sample covariance, respectively. Assuming
K is known, Papageorgiou and Loukas (1995) obtained the moment estimates of the three
parameters as follows:

π̂ = 1
2

±
(
1 − 4m11

K

)1/2
, λ̂1 = x̄1 − K π̂ and λ̂2 = x̄2 − K π̂ . (1.6)

In addition, Papageorgiou and Loukas (1995) also discussed the method of ratio of
frequencies and the maximum likelihood estimate method.
Although the univariate Charlier series distribution (Ong 1988) and bivariate Charlier

series distribution (Karlis 2003, Papageorgiou and Loukas 1995) can be easily general-
ized to the multivariate version via the method of stochastic representation (SR), the
multivariate zero-truncated Charlier series (ZTCS) distribution is not available to date.
The first aim of this paper is to propose the multivariate ZTCS distribution by devel-
oping its important distributional properties, and providing efficient likelihood-based
inference methods via a novel data augmentation in the framework of the expectation–
maximization (EM) algorithm. Since the joint marginal distribution of any r-dimensional
sub-vector of the multivariate ZTCS random vector of dimension m is an r-dimensional
zero-deflated Charlier series (ZDCS) distribution (1 ≤ r < m), it is the second objec-
tive of the paper to introduce a new family of multivariate zero-adjusted Charlier series
(ZACS) distributions (including the multivariate ZDCS distribution as a special member)
with a more flexible correlation structure by accounting for both inflation and deflation at
zero. The corresponding distributional properties are explored and the associated maxi-
mum likelihood estimationmethod via EM algorithm is provided for analyzing correlated
count data.
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The rest of the paper is organized as follows. In Section 2, the multivariate ZTCS
distribution is proposed and some important distributional properties are explored. In
Section 3, the likelihood-based methods are developed for the multivariate ZTCS distri-
bution. In Sections 4 and 5, we introduce the multivariate ZACS distribution, explore its
distributional properties and provide associated likelihood-based methods for the case of
without covariates. In Section 6, some simulation studies are performed to evaluate the
proposed methods. In Section 7, two real data sets are used to illustrate the proposed
methods. Section 8 provides some concluding remarks.

2 Multivariate zero-truncated Charlier series distribution
Let X00 ∼ Binomial(K ,π), {Xi0}mi=1

ind∼ Poisson (λi), X00⊥⊥{X10, . . . ,Xm0} and define

Xi = X00 + Xi0, i = 1, . . . ,m.

A discrete non-negative random vector x = (X1, . . . ,Xm)� is said to follow an
m-dimensional CS distribution with parameters K ∈ N = {1, 2, . . . ,∞}, π ∈ [0, 1) and
λ = (λ1, . . . , λm)� ∈ Rm+ , denoted by x ∼ CS (K ,π ; λ1, . . . , λm) or x ∼ CSm(K ,π ;λ),
accordingly. The joint pmf of x is

Pr(x = x) =
min(K ,x)∑

k=0

(
K
k

)
πk(1 − π)K−k

m∏
i=1

λ
xi−k
i e−λi

(xi − k)!
=̂ Qx(K ,π ,λ), (2.1)

where x = (x1, . . . , xm)�, {xi}mi=1 are the corresponding realizations of {Xi}mi=1, and
min(K , x) =̂ min(K , x1, . . . , xm).
In particular, as K → ∞ and Kπ remains finitely large (say, λ0), the distribution of

Binomial(K ,π) tends to the distribution of Poisson(λ0), so the above m-dimensional CS
distribution approaches to the m-dimensional Poisson distribution MP(λ0, λ1, . . . , λm).
Furthermore, if π = 0, then Pr(X00 = 0) = 1 (i.e., X00 follows the degenerate distribution
with all mass at zero, denoted by X00 ∼ Degenerate(0)) and λ0 = 0, so them-dimensional
CS distribution becomes the product ofm independent Poisson(λi) distributions.
Motivated by the Type II multivariate zero-truncated Poisson (ZTP) distribution

developed recently by Tian et al. (2014), we in this paper propose a newmultivariate zero-
truncated Charlier series (ZTCS) distribution, whose limiting form reduces to the Type II
multivariate ZTP distribution.

Definition 1. Let x ∼ CS (K ,π ; λ1, . . . , λm). A discrete non-zero random vector
w = (W1, . . ., Wm)� is said to have the multivariate ZTCS distribution with the
parameters (K ,π) and λ = (λ1, . . . , λm)�, denoted by w ∼ ZTCSm(K ,π ;λ) or w ∼
ZTCS(K ,π ; λ1, . . . , λm), if

x d= U w =
{
0, with probability ψ ,

w, with probability 1 − ψ ,
(2.2)

where U ∼ Bernoulli (1 − ψ) with ψ = (1 − π)Ke−λ+ , λ+ = ∑m
i=1 λi =̂ ‖λ‖1 , and U⊥⊥w.

Let w ∼ ZTCSm(K ,π ;λ), then we have Pr(w = 0) = 0 and

w d= x|(x 
= 0), (2.3)
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where x is specified in Definition 1. The SR (2.3) can be used to generate the
ZTCS random vector w via the generation of the random vector x from the mul-
tivariate CS distribution, while the SR (2.2) is useful in deriving important distribu-
tional properties in the following subsections and in developing an EM algorithm in
Section 3.1. Moreover, besides coming from the missing zero vector, the correlation
between any two components of w may come from the common random variable
X00 ∼ Binomial(K ,π).

2.1 Joint probability mass function andmixedmoments

From the SR (2.2), the joint pmf of w ∼ ZTCSm(K ,π ;λ) is

f (w;K ,π ,λ) = Pr(w = w)
(2.2)= Pr(x = w)

Pr(U = 1)

= 1
1 − (1 − π)Ke−λ+

min(K ,w)∑
k=0

(
K
k

)
πk(1 − π)K−k

m∏
i=1

λ
wi−k
i e−λi

(wi − k)!
, (2.4)

where ‖w‖1 
= 0. From (2.2), it is easy to show that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(w) = λ+Kπ ·11
1−ψ

,

E(ww�) = diag(λ)+λλ�+Kπ(λ11�+11λ�)+Kπ(1−π+Kπ)·1111�
1−ψ

,

Var(w) = 1
1−ψ

{
diag(λ) + Kπ(1 − π) · 1111�

− ψ
1−ψ

[
λλ�+ Kπ

(
λ11�+ 11λ�)+ K2π21111�

] }
,

(2.5)

where 11 = 11m = (1, . . . , 1)�. Thus we have

Corr(Wi,Wj) =
Kπ(1 − π) − ψ

1−ψ
(λi + Kπ)(λj + Kπ)√[

λi + Kπ(1 − π) − ψ
1−ψ

(λi + Kπ)2
] [

λj + Kπ(1 − π) − ψ
1−ψ

(λj + Kπ)2
] , (2.6)

for i 
= j. In particular, when π = 0, (2.6) becomes

Corr(Wi,Wj) = −
√

λiλj

(eλ+ − 1 − λi)(eλ+ − 1 − λj)
, i 
= j.

In (2.6), let λi = λj = λ, we obtain

Corr(Wi,Wj) = Kπ(1 − π) − ψ
1−ψ

(λ + Kπ)2

λ + Kπ(1 − π) − ψ
1−ψ

(λ + Kπ)2
, i 
= j.

For any r1, . . . , rm ≥ 0, the mixed moments of w are given by

E
( m∏
i=1

Wri
i

)
= (1 − ψ)−1E

( m∏
i=1

Xri
i

)
= (1 − ψ)−1E

[ m∏
i=1

(X00 + Xi0)
ri

]
. (2.7)
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2.2 Moment generating function

Using the identity of E(ξ) = E[E(ξ |U)], themoment generating function (mgf) of x is

Mx(t) = E[exp(t�x)]= E[exp(U · t�w)]= E
{
E[exp(Ut�w)|U]

}
= E [Mw(Ut)] = ψMw(0) + (1 − ψ)Mw(t) = ψ + (1 − ψ)Mw(t).

Thus the mgf of w ∼ ZTCS(K ,π ; λ1, . . . , λm) is given by

Mw(t) = Mx(t) − ψ

1 − ψ

= MX00(t+)
∏m

i=1MXi0(ti) − ψ

1 − ψ

=
(
πet+ + 1 − π

)K exp
(∑m

i=1 λieti − λ+
)− (1 − π)Ke−λ+

1 − (1 − π)Ke−λ+ ,

where t+ = ∑m
i=1 ti.

2.3 Marginal distributions

2.3.1 Marginal distribution for each random component

Let w = (W1, . . . ,Wm)� ∼ ZTCS(K ,π ; λ1, . . . , λm). We first derive the marginal
distribution ofWi with realization wi for i = 1, . . . ,m. If wi > 0, then

Pr(Wi = wi) =
∞∑

w1=0
· · ·

∞∑
wi−1=0

∞∑
wi+1=0

· · ·
∞∑

wm=0
Pr(w = w)

= 1
1 − (1 − π)Ke−λ+

∞∑
w1=0

· · ·
∞∑

wi−1=0

∞∑
wi+1=0

· · ·
∞∑

wm=0

×
min{K ,wi}∑

k=0

(
K
k

)
πk(1 − π)K−k

m∏
j=1

λ
wj−k
j e−λj

(wj − k)!
· I(wj − k > 0)

= 1
1 − (1 − π)Ke−λ+

min{K ,wi}∑
k=0

(
K
k

)
πk(1 − π)K−k λ

wi−k
i e−λi

(wi − k)!

×
⎡⎣ ∞∑
w1=0

· · ·
∞∑

wi−1=0

∞∑
wi+1=0

· · ·
∞∑

wm=0

m∏
j=1,j 
=i

λ
wj−k
j e−λj

(wj − k)!
· I(wj − k > 0)

⎤⎦
= 1

1 − (1 − π)Ke−λ+

min{K ,wi}∑
k=0

(
K
k

)
πk(1 − π)K−k λ

wi−k
i e−λi

(wi − k)!
(2.8)

= 1 − ϕi
1 − (1 − π)Ke−λi

min{K ,wi}∑
k=0

(
K
k

)
πk(1 − π)K−k λ

wi−k
i e−λi

(wi − k)!
, (2.9)

where

1 − ϕi = 1 − (1 − π)Ke−λi

1 − (1 − π)Ke−λ+ . (2.10)
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Hence,

Pr(Wi = 0) = 1 −
∞∑

wi=1
Pr(Wi = wi)

(2.8)= 1 − 1
1 − (1 − π)Ke−λ+

∞∑
wi=1

min{K ,wi}∑
k=0

(
K
k

)
πk(1 − π)K−k λ

wi−k
i e−λi

(wi − k)!

= 1 − 1 − (1 − π)Ke−λi

1 − (1 − π)Ke−λ+
(2.10)= ϕi (2.11)

= (1 − π)K (e−λi − e−λ+)

1 − (1 − π)Ke−λ+ ∈
(
0, (1 − π)Ke−λi

)
⊂ (0, 1).

By combining (2.11) with (2.9) and noting that a ZDCS distribution is a special case of a
ZACS distribution (4.2), we obtain

Wi ∼ ZDCS(ϕi;K ,π , λi). (2.12)

2.3.2 Marginal distribution for an arbitrary random sub-vector

Second, the marginal distribution for an arbitrary random sub-vector will be considered.
Before that, a so-calledmultivariate zero-adjusted Charlier series distribution is needed to
be introduced. We will give the definition of this distribution in Definition 2 in Section 4.
We now consider the marginal distributions of w(1) and w(2), where

w(1) =

⎛⎜⎜⎝
W1
...
Wr

⎞⎟⎟⎠ , w(2) =

⎛⎜⎜⎝
Wr+1
...

Wm

⎞⎟⎟⎠ and w =
⎛⎝w(1)

w(2)

⎞⎠ .

Furthermore in Section 4, we will introduce multivariate zero-adjusted Charlier series
distribution and it can be shown that

w(1) ∼ ZDCS(ϕ(1);K ,π , λ1, . . . , λr) and w(2) ∼ ZDCS(ϕ(2);K ,π , λr+1, . . . , λm),

(2.13)

where

ϕ(i) =
(1 − π)K

(
e−λ

(i)
+ − e−λ+

)
1 − (1 − π)Ke−λ+ ∈

(
0, (1 − π)Ke−λ

(i)
+
)

⊂ (0, 1), i = 1, 2, (2.14)

λ
(1)
+ = ∑r

i=1 λi and λ
(2)
+ = ∑m

i=r+1 λi.
In fact, for any positive integers i1, . . . , ir satisfying 1 ≤ i1 < · · · < ir ≤ m, we have⎛⎜⎜⎝

Wi1
...
Wir

⎞⎟⎟⎠ ∼ ZDCS(ϕ∗;K ,π , λi1 , . . . , λir ), (2.15)

where

ϕ∗ =
(1 − π)K

[
e−(λi1+···+λir ) − e−λ+

]
1 − (1 − π)Ke−λ+ ∈

(
0, (1 − π)Ke−(λi1+···+λir )

)
⊂ (0, 1).

(2.16)
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2.4 Conditional distributions

2.4.1 Conditional distribution ofw(1)|w(2)

From (2.4), (2.13) and (4.4), the conditional distribution of w(1)|w(2) is given by

Pr(w(1) = w(1)|w(2) = w(2)) = f (w;K ,π ,λ)

Pr(w(2) = w(2))
(2.17)

=
1

1−(1−π)K e−λ+ · Qw(K ,π ,λ)

ϕ(2)I(w(2) = 0) +
[

1−ϕ(2)

1−(1−π)K e−λ
(2)
+

· Qw(2) (K ,π ,λ(2))

]
I(w(2) 
= 0)

,

where w(2) = (wr+1, . . . ,wm)�, λ(2) = (λr+1, . . . , λm)� and

Qw(K ,π ,λ) =
min{K ,w}∑

k=0

(
K
k

)
πk(1 − π)K−k

m∏
j=1

λ
wj−k
j e−λj

(wj − k)!
,

Qw(2)

(
K ,π ,λ(2)

)
=

min{K ,w(2)}∑
l=0

(
K
l

)
π l(1 − π)K−l

m∏
p=r+1

λ
wp−l
p e−λp

(wp − p)!
.

We first consider Case I:w(2) 
= 0. Under Case I, it is possible thatw(1) = 0 orw(1) 
= 0.
From (2.17), it is easy to obtain

Pr
(
w(1) = w(1)|w(2) = w(2)

)
=

e−λ
(1)
+

min{K ,w}∑
k=0

(K
k
)
πk(1 − π)K−k

m∏
j=1

λ
wj−k
j

(wj−k)!

min{K ,w(2)}∑
l=0

(K
l
)
π l(1 − π)K−l

m∏
p=r+1

λ
wp−l
p

(wp−l)!

. (2.18)

Case II: w(2) = 0. Under Case II, it is obviously that w(1) 
= 0 and the sharing binomial
variable equals to zero. Thus we have

Pr
(
w(1) = w(1)|w(2) = 0

)
= 1

1 − e−λ
(1)
+

r∏
i=1

λ
wi
i e−λi

wi!
.

This implies

w(1)|
(
w(2) = 0

)
∼ ZTP(I)(λ1, . . . , λr). (2.19)

2.4.2 Conditional distribution of X∗
0 |(w,U)

The stochastic representation (2.2) can be rewritten as

(X1, . . . ,Xm)� = (X∗
0 + X∗

1 , . . . ,X∗
0 + X∗

m)� d= Uw,

where X∗
0 ∼ Binomial(K ,π) and {X∗

i }mi=1
ind∼ Poisson(λi). To obtain the conditional dis-

tribution of X∗
0 |(w,U), we consider two cases: U = 1 and U = 0. When U = 1, the

conditional distribution of X∗
0 |(w,U) is given by

Pr(X∗
0 = l|w = w,U = 1) = Pr(X∗

0 = l,X∗
1 = w1 − l, . . . ,X∗

m = wm − l)
Pr(X1 = w1, . . . ,Xm = wm)

=
(K
l
)
π l(1 − π)K−l

m∏
i=1

λ
wi−l
i

(wi−l)!

min(K ,w)∑
k=0

(K
k
)
πk(1 − π)K−k

m∏
i=1

λ
wi−k
i

(wi−k)!

=̂ ql(w,K ,π ,λ), (2.20)
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for l = 0, 1, . . . , min(K ,w), which implying1

X∗
0 |(w = w,U = 1) ∼ Finite(l, ql(w,K ,π ,λ); l = 0, 1, . . . , min(w)). (2.21)

When U = 0, we obtain Pr(X∗
0 = 0|w = w,U = 0) = 1, i.e.,

X∗
0 |(w = w,U = 0) ∼ Degenerate(0). (2.22)

Hence, for any l, we have

Pr(X∗
0 = l|w = w,U = 0) = I(l = 0). (2.23)

Thus, we have the conditional distribution of X∗
0 |(w,U), which is given by the following:

X∗
0 |(w,U) ∼

⎧⎪⎨⎪⎩
Finite(l, ql(w,K ,π ,λ); l = 0, 1, . . . , min(w)), if U = 1,

Degenerate(0), if U = 0,
(2.24)

where ql(w,K ,π ,λ) is defined by (2.20).

2.4.3 Conditional distribution of X∗
0 |w

By using (2.24), the conditional distribution of X∗
0 |w is

Pr(X∗
0 = l|w = w) =

1∑
u=0

Pr(X∗
0 = l,U = u|w = w)

=
1∑

u=0
Pr(U = u|w = w) · Pr(X∗

0 = l|w = w,U = u)

= Pr(U = 0) · Pr(X∗
0 = l|w = w,U = 0)

+ Pr(U = 1) · Pr(X∗
0 = l|w = w,U = 1)

(2.24)= e−λ+(1 − π)K · I(l = 0)+[1 − e−λ+(1 − π)K ] · ql(w,K ,π ,λ)

=̂ pl(w,K ,π ,λ), (2.25)

for l = 0, 1, . . . , min(K ,w), where ql(w,K ,π ,λ) is defined by (2.20). Thus,

X∗
0 |(w = w) ∼ Finite(l, pl(w,K ,π ,λ); l = 0, 1, . . . , min(K ,w)). (2.26)

Especially, when min(K ,w) = 0, we have X∗
0 |(w = w) ∼ Degenerate(0). Thus, the

conditional expectation of X∗
0 |w is given by

E(X∗
0 |w = w) =

[
1 − e−λ+(1 − π)K

]

×

min(K ,w)∑
k=1

k
(K
k
)
πk(1 − π)K−k

m∏
i=1

λ
wi−k
i

(wi−k)!

min(K ,w)∑
k=0

(K
k
)
πk(1 − π)K−k

m∏
i=1

λ
wi−k
i

(wi−k)!

· I(min(w) ≥ 1). (2.27)

3 Likelihood-basedmethods for themultivariate ZTCS distribution
Suppose that wj

ind∼ ZTCS(K ,π ; λ1, . . . , λm), where wj = (W1j, . . . ,Wmj)� for j = 1, . . . , n.
Let wj = (w1j, . . . ,wmj)� denote the realization of the random vector wj, and Yobs =
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{wj}nj=1 be the observed data. We consider K as a known positive integer. Then, the
observed-data likelihood function for (π ,λ) is

L(π ,λ|Yobs) =
n∏

j=1

e−λ+

1 − (1 − π)Ke−λ+

min(K ,wj)∑
k=0

(
K
k

)
πk(1 − π)K−k

m∏
i=1

λ
wij−k
i

(wij − k)!
,

so that the log-likelihood function is

�(π ,λ|Yobs) = −n log
[
eλ+ − (1 − π)K

]

+
n∑

j=1
log

⎡⎣min(K ,wj)∑
k=0

(
K
k

)
πk(1 − π)K−k

m∏
i=1

λ
wij−k
i

(wij − k)!

⎤⎦ . (3.1)

3.1 MLEs via the EM algorithm

The SR (2.2) can motivate a novel EM algorithm, where some latent variables are inde-
pendent of the observed variables. For each wj = (w1j, . . . ,wmj)�, we introduce latent

variables Uj
iid∼ Bernoulli(1 − ψ) with ψ = (1 − π)Ke−λ+ , X∗

0j
iid∼ Binomial(K ,π),

X∗
ij

iid∼ Poisson(λi) for i = 1, . . . ,m, and X∗
0j⊥⊥X∗

ij , such that(
x∗
0j + x∗

1j, . . . , x∗
0j + x∗

mj

)� = ujwj,

where uj and x∗
ij denote the realizations of Uj and X∗

ij , respectively. We denote the

latent/missing data by Ymis =
{
uj, x∗

0j, x∗
1j, . . . , x∗

mj

}n
j=1

, so that the complete data are

Ycom = Yobs ∪ Ymis =
{
wj,uj, x∗

0j, x∗
1j, . . . , x∗

mj

}n
j=1

=
{
x∗
0j, x∗

1j, . . . , x∗
mj

}n
j=1

=
{
x∗
0j,uj,wj

}n
j=1

,

where x∗
ij = ujwij − x∗

0j for j = 1, . . . , n and i = 1, . . . ,m. Thus, the complete-data
likelihood function is given by

L(π ,λ|Ycom) =
n∏

j=1

⎡⎣(K
x∗
0j

)
π
x∗
0j(1 − π)

K−x∗
0j

m∏
i=1

λ
x∗
ij
i e−λi

x∗
ij!

⎤⎦

=
n∏

j=1

⎡⎣(K
x∗
0j

)
π
x∗
0j(1 − π)

K−x∗
0j

m∏
i=1

λ
ujwij−x∗

0j
i e−λi(
ujwij − x∗

0j

)
!

⎤⎦
∝ πnx̄∗

0 (1 − π)nK−nx̄∗
0

m∏
i=1

λ

∑n
j=1 ujwij−nx̄∗

0
i e−nλi , (3.2)

where x̄∗
0 = (1/n)

∑n
j=1 x∗

0j. The complete-data log-likelihood function is

�(π ,λ|Ycom) = nx̄∗
0 logπ+(nK − nx̄∗

0
)
log(1−π)+

m∑
i=1

⎡⎣⎛⎝ n∑
j=1

ujwij − nx̄∗
0

⎞⎠ log λi − nλi

⎤⎦ .

The M-step is to calculate the complete-datamaximum likelihood estimates (MLEs):

π̂ = x̄∗
0
K

and λ̂i =
∑n

j=1 ujwij

n
− K π̂ , i = 1, . . . ,m, (3.3)

and the E-step is to replace {uj}nj=1 and
{
x∗
0j

}n
j=1

in (3.3) by their conditional expectations:
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E(Uj|Yobs,π ,λ) = E(Uj) = 1 − (1 − π)Ke−λ+ , and (3.4)

E(X∗
0j|Yobs,π ,λ)

(2.27)=
[1 − (1 − π)Ke−λ+ ]

min(K ,wj)∑
kj=1

kj
(K
kj
)
πkj(1 − π)K−kj

m∏
i=1

λ
wij−kj
i

(wij−kj)!

min(K ,wj)∑
kj=0

(K
kj
)
πkj(1 − π)K−kj

m∏
i=1

λ
wij−kj
i

(wij−kj)!

× I(min(wj) ≥ 1), (3.5)

respectively. An important feature of this EM algorithm is that the latent variables {Uj}nj=1
are independent of the observed variables {wj}nj=1.
Also note that here we assume that K is a known positive integer. In practice, since

K ∈ {1, 2, . . . ,N}, say N = 100. For a given K, we first use the EM iteration (3.3)–(3.5) to
find the MLEs of π and λ, denoted by π̂ and λ̂. Then, we can calculate �(π̂ , λ̂|Yobs) and
choose the K that maximizes �(π̂ , λ̂|Yobs).

3.2 Bootstrap confidence intervals

When other approaches are not available, the bootstrap method is a useful tool to find
confidence intervals (CIs) for an arbitrary function of (π ,λ), say, ϑ = h(π ,λ). Let (π̂ , λ̂)

be the MLEs of (π ,λ) calculated by the EM algorithm (3.3)–(3.5), then ϑ̂ = h(π̂ , λ̂) is the
MLE of ϑ . Based on (π̂ , λ̂), we can generatew∗

j
iid∼ ZTCS(K , π̂ , λ̂1, . . . , λ̂m) via the SR (2.2)

for j = 1, . . . , n. Having obtained Y ∗
obs = {

w∗
1, . . . ,w∗

n
}
, we can calculate the bootstrap

replication (π̂∗, λ̂∗
) and get ϑ̂∗ = h(π̂∗, λ̂∗

). Independently repeating this processG times,

we obtain G bootstrap replications
{
ϑ̂∗
g

}G
g=1

. Consequently, the standard error, se(ϑ̂), of

ϑ̂ can be estimated by the sample standard deviation of the G replications, i.e.,

ŝe(ϑ̂) =
⎧⎨⎩ 1
G − 1

G∑
g=1

[
ϑ̂∗
g − (ϑ̂∗

1 + · · · + ϑ̂∗
G)/G

]2⎫⎬⎭
1/2

. (3.6)

If
{
ϑ̂∗
g

}G
g=1

is approximately normally distributed, the first (1 − α)100% bootstrap CI for
ϑ is [

ϑ̂ − zα/2 · ŝe(ϑ̂), ϑ̂ + zα/2 · ŝe(ϑ̂)
]
. (3.7)

Alternatively, if
{
ϑ̂∗
g

}G
g=1

is non-normally distributed, the second (1 − α)100% bootstrap
CI of ϑ can be obtained as

[ ϑ̂L , ϑ̂U] , (3.8)

where ϑ̂L and ϑ̂U are the 100(α/2) and 100(1 − α/2) percentiles of
{
ϑ̂∗
g

}G
g=1

, respectively.

4 Multivariate zero-adjusted Charlier series distribution
To introduce the multivariate zero-adjusted Charlier series (ZACS) distribution, we first
define the univariate ZACS distribution. A non-negative discrete random variable Y is
said to have a ZACS distribution with parameters ϕ ∈ [0, 1) and λ > 0, denoted by Y ∼
ZACS(ϕ,K ,π , λ), if

Y d= Z′W , (4.1)



Ding et al. Journal of Statistical Distributions and Applications  (2015) 2:5 Page 11 of 21

where Z′ ∼ Bernoulli(1 − ϕ),W ∼ ZTCS(K ,π , λ), and Z′⊥⊥W . It is clear that the pmf of
Y is given by

Pr(Y = y) = ϕI(y = 0) +
[

1 − ϕ

1 − (1 − π)Ke−λ
· Qy(K ,π , λ)

]
I(y 
= 0), (4.2)

where

Qy(K ,π , λ) =
min(K , y)∑

k=0

(
K
k

)
πk(1 − π)K−k λy−ke−λ

(y − k)!
.

Motivated by (4.1), naturally, we have the following multivariate generalization.

Definition 2. A discrete random vector y = (Y1, . . . ,Ym)� is said to have the
multivariate ZACS distribution with parameters ϕ ∈ [0, 1), K > 0, π ∈ [0, 1)
and λ = (λ1, . . . , λm)� ∈ Rm+ , denoted by y ∼ ZACSm(ϕ ;K ,π ,λ) or
y ∼ ZACS(ϕ ;K ,π , λ1, . . . , λm), if

y d= Z′w =
{
0, with probabilityϕ,
w, with probability 1 − ϕ,

(4.3)

where Z′ ∼ Bernoulli(1−ϕ),w ∼ ZTCS(K ,π ; λ1, . . . , λm), and Z′⊥⊥w. The random vector
w is called the base vector of the y.

It is easy to show that the joint pmf of y ∼ ZACS(ϕ ;K ,π , λ1, . . . , λm) is

Pr(y = y) = ϕI(y = 0) +
[

1 − ϕ

1 − (1 − π)Ke−λ+ · Qy(K ,π ,λ)

]
I(y 
= 0), (4.4)

where

Qy(K ,π ,λ) =
min(K ,y)∑

k=0

(
K
k

)
πk(1 − π)K−k

m∏
i=1

λ
yi−k
i e−λi

(yi − k)!
.

We consider several special cases of (4.3) or (4.4):

(i) If ϕ = 0, then y d= w ∼ ZTCS(K ,π ; λ1, . . . , λm), i.e., the multivariate ZTCS distribu-
tion is a special member of the family of the multivariate ZACS distributions. Thus,
we can see that studying the multivariate ZTCS distribution is a basis for studying the
multivariate ZACS distribution;

(ii) If ϕ ∈ (0, (1−π)Ke−λ+), then y follows the multivariate zero-deflated Charlier series
(ZDCS) distribution with parameters (ϕ,K ,π ,λ), denoted by y ∼ ZDCSm(ϕ;K ,π ,λ)

or y ∼ ZDCS(ϕ;K ,π , λ1, . . . , λm);
(iii) If ϕ = (1 − π)Ke−λ+ , then y ∼ CSm(K ,π ;λ);
(iv) If ϕ ∈ ((1− π)Ke−λ+ , 1), then y follows the multivariate zero-inflated Charlier series

(ZICS) distribution with parameters (ϕ,K ,π ,λ), denoted by y ∼ ZICSm(ϕ ;K ,π ,λ)

or y ∼ ZICS(ϕ ;K ,π , λ1, . . . , λm).
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4.1 Mixedmoments andmoment generating function

From (4.1) and (2.2), we immediately have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(y) = 1−ϕ
1−ψ

(λ + Kπ · 11),

E(yy�) = 1−ϕ
1−ψ

[
diag(λ) + λλ�+ Kπ(λ11�+ 11λ�) + Kπ(1 − π + Kπ) · 1111�] ,

Var(y) = 1−ϕ
1−ψ

{
diag(λ) + Kπ(1 − π) · 1111�

− ψ−ϕ
1−ψ

[
λλ�+ Kπ(λ11�+ 11λ�) + K2π21111�

] }
.

(4.5)

Thus, we have

Corr(Yi,Yj) = Kπ(1 − π) − (λi + Kπ)(λj + Kπ)(ψ − ϕ)/(1 − ψ)√[
λi + Kπ(1 − π) − ψ−ϕ

1−ψ
(λi + Kπ)2

] [
λj + Kπ(1 − π) − ψ−ϕ

1−ψ
(λj + Kπ)2

] ,
for i 
= j. In particular, if π = 0, we obtain

Corr(Yi,Yj) = λiλj(ϕ − ψ)/(1 − ψ)√[
λi − λ2i (ψ − ϕ)/(1 − ψ)

] [
λj − λ2j (ψ − ϕ)/(1 − ψ)

] .
Furthermore, if λi = λj = λ, then

Corr(Yi,Yj) = λ(ϕ − ψ)/(1 − ψ)

[1 − λ(ψ − ϕ)/(1 − ψ)]
.

Clearly, Corr(Yi,Yj) could be either positive or negative, which depend on the values of ϕ,
K, π and λ.
For any r1, . . . , rm ≥ 0, the mixed moments of y are given by

E
( m∏
i=1

Yri
i

)
= (1 − ϕ)E

( m∏
i=1

Wri
i

)
= 1 − ϕ

1 − ψ
E
( m∏
i=1

Xri
i

)
. (4.6)

By using the formula of E(ξ) = E[E(ξ |Z′)], the mgf of y is

My(t) = E[ exp(t�y)]= E[ exp(Z′ · t�w)]= E
{
E[ exp(Z′t�w)|Z′]

}
= E[Mw(Z′t)]= ϕMw(0) + (1 − ϕ)Mw(t) = ϕ + (1 − ϕ)Mw(t)

= ϕ + 1 − ϕ

1 − ψ

[
(πet+ + 1 − π)K exp

( m∑
i=1

λieti − λ+

)
− (1 − π)Ke−λ+

]
, (4.7)

where t+ = ∑m
i=1 ti.

4.2 Marginal distributions

Now we consider the marginal distributions of y(1) and y(2), where

y(1) =

⎛⎜⎜⎝
Y1
...
Yr

⎞⎟⎟⎠ , y(2) =

⎛⎜⎜⎝
Yr+1
...
Ym

⎞⎟⎟⎠ and y =
⎛⎝y(1)

y(2)

⎞⎠ .

Based on (4.1) and (2.13), we have

y(k) d= Z′w(k) d= Z′Z(k)ξ (k), k = 1, 2,
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where Z′ ∼ Bernoulli(1 − ϕ), Z(k) ∼ Bernoulli(1 − ϕ(k)), ϕ(k) is given by (2.14), ξ (1) ∼
ZTCS(K ,π ; λ1, . . . , λr) and ξ (2) ∼ ZTCS(K ,π ; λr+1, . . . , λm). Note that Z′Z(k)⊥⊥ξ (k) and
Z′Z(k) ∼ Bernoulli((1 − ϕ)(1 − ϕ(k))). According to the SR (4.3), we can obtain

y(1) ∼ ZACS(ν(1);K ,π , λ1, . . . , λr) and y(2) ∼ ZACS(ν(2);K ,π , λr+1, . . . , λm),

(4.8)

where

ν(k) = 1−(1−ϕ)(1−ϕ(k)) = 1−(1−ϕ)
1 − (1 − π)Ke−λ

(k)
+

1 − (1 − π)Ke−λ+ ∈ (0, 1), k = 1, 2, (4.9)

λ
(1)
+ = ∑r

i=1 λi and λ
(2)
+ = ∑m

i=r+1 λi.
In fact, for any positive integers i1, . . . , ir satisfying 1 ≤ i1 < · · · < ir ≤ m, we have⎛⎜⎜⎝

Yi1
...
Yir

⎞⎟⎟⎠ ∼ ZACS(ν∗;K ,π , λi1 , . . . , λir ), (4.10)

where ϕ∗ is given by (2.16) and

ν∗ = 1 − (1 − ϕ)(1 − ϕ∗) = 1 − (1 − ϕ)
1 − (1 − π)Ke−(λi1+···+λir )

1 − (1 − π)Ke−λ+ ∈ (0, 1). (4.11)

4.3 Conditional distributions

4.3.1 Conditional distribution of y(1)|y(2)

From (4.4) and (4.8), the conditional distribution of y(1)|y(2) is given by

Pr(y(1) = y(1)|y(2) = y(2)) = Pr(y = y)
Pr(y(2) = y(2))

= ϕI(y = 0) + R(y,K ,π ,λ,ϕ)I(y 
= 0)
ν(2)I(y(2) = 0) + S(y(2),K ,π , λ, ν(2))I(y(2) 
= 0)

. (4.12)

where

R(y,K ,π ,λ,ϕ) = 1 − ϕ

1 − (1 − π)Ke−λ+

min(K ,y)∑
k=0

(
K
k

)
πk(1 − π)K−k

m∏
i=1

λ
yi−k
i e−λi

(yi − k)!
and

S
(
y(2),K ,π ,λ, ν(2)

)
= 1 − ν(2)

1 − (1 − π)Ke−λ
(2)
+

min(K ,y(2))∑
k=0

(
K
k

)
πk(1 − π)K−k

m∏
i=r+1

λ
yi−k
i e−λi

(yi − k)!
.

We first consider Case I: y(2) 
= 0. Under Case I, it is clear that y 
= 0. From (4.12), it is
easy to obtain

Pr
(
y(1) = y(1)|y(2) = y(2)

)
=

e−λ
(1)
+

min{K ,y}∑
k=0

(K
k
)
πk(1 − π)K−k

m∏
j=1

λ
yj−k
j

(yj−k)!

min{K ,y(2)}∑
l=0

(K
l
)
π l(1 − π)K−l

m∏
p=r+1

λ
yp−l
p

(yp−l)!

.

Case II: y(2) = 0. Under Case II, it is possible that y(1) = 0 or y(1) 
= 0. When y(1) = 0,
from (4.12), we obtain

Pr(y(1) = 0|y(2) = 0) = ϕ

ν(2) .
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When y(1) 
= 0, from (4.12), we have

Pr(y(1) = y(1)|y(2) = 0) = (1 − ϕ)(1 − π)Ke−λ
(2)
+

ν(2)(1 − (1 − π)Ke−λ+)

r∏
i=1

λ
yi
i e−λi

yi!
.

4.3.2 Conditional distribution of Z′|y
Since Z′ ∼ Bernoulli(1 − ϕ), Z′ only takes the value 0 or 1. Note that y = 0 is equivalent
to Z′ = 0. Thus, Pr(Z′ = 0|y = 0) = Pr(Z′ = 0)/Pr(y = 0) = 1. And when y 
= 0, we
have Pr(Z′ = 1|y = y) = Pr(Z′ = 1,w = y)/Pr(y = y) = 1. Therefore,

Z′|(y = y) ∼

⎧⎪⎨⎪⎩
Degenerate(0), if y = 0,

Degenerate(1), if y 
= 0,
(4.13)

i.e., Z′|(y = y) ∼ Degenerate(I(y 
= 0)).

4.3.3 Conditional distribution ofw|(y = y �= 0)

If y 
= 0, we have

Pr(w = w|y = y) = Pr(w = w, y = y)
Pr(y = y)

= Pr(w = y,Z′ = 1)
Pr(y = y)

= I(w = y).

Thus, given y = y 
= 0, we have

w|(y = y 
= 0) ∼ Degenerate(y). (4.14)

5 Likelihood-basedmethods for multivariate ZACS distribution without
covariates

Suppose that yj
iid∼ ZACS(ϕ ;K ,π , λ1, . . . , λm), where yj = (Y1j, . . . ,Ymj)� for

j = 1, . . . , n. Let yj = (y1j, . . . , ymj)� denote the realization of the ran-
dom vector yj, and Yobs = {yj}nj=1 be the observed data. Furthermore, let
J = {j|yj = 0, j = 1, . . . , n} and m0 = ∑n

j=1 I(yj = 0) denote
the number of elements in J. We assume that K is a known positive integer. Therefore,
the observed-data likelihood function is proportional to

L(ϕ,π ,λ|Yobs)

∝ ϕm0(1 − ϕ)n−m0

⎧⎨⎩∏
j/∈J

e−λ+

1 − (1 − π)Ke−λ+

⎡⎣min(K ,yj)∑
kj=0

(
K
kj

)
πkj(1 − π)K−kj

m∏
i=1

λ
yij−kj
i

(yij − kj)!

⎤⎦⎫⎬⎭ .

Thus, we can write the log-likelihood function into two parts:

�(ϕ,π ,λ|Yobs) = �1(ϕ|Yobs) + �2(π ,λ|Yobs), (5.1)

where

�1(ϕ|Yobs) = m0 logϕ + (n − m0) log(1 − ϕ) and

�2(π ,λ|Yobs) = −(n − m0)
{
λ+ + log[ 1 − (1 − π)Ke−λ+ ]

}

+
∑
j/∈J

log

⎡⎣min(K ,yj)∑
kj=0

(
K
kj

)
πkj(1 − π)K−kj

m∏
i=1

λ
yij−kj
i

(yij − kj)!

⎤⎦ .
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In other words, the parameter ϕ and the parameter vector (π ,λ) can be estimated
separately. Obviously, the MLE of ϕ has an explicit solution

ϕ̂ = m0
n

, (5.2)

but the closed-formMLEs of (π ,λ) are not yet available.

5.1 MLEs via the EM algorithm and bootstrap CIs

The objective of this section is to find the MLEs of (π ,λ) based on (5.1). For the log-
likelihood function (3.1), the corresponding EM iteration for finding the MLEs of (π ,λ)

is defined by (3.3)–(3.5). By comparing (3.1) with (5.1), if we replace (
∑n

j=1 wij) in (3.1)
with (

∑
j/∈J yij), we promptly obtain the MLEs of (π ,λ) by using the EM algorithm. The

M-step is to calculate the complete-data MLEs:

π̂ =
∑

j/∈J x∗
0j

(n − m0)K
and λ̂i =

∑
j/∈J ujyij

(n − m0)
− K π̂ , i = 1, . . . ,m, (5.3)

and the E-step is to replace {uj}j/∈J and {x∗
0j}j/∈J in (5.3) by their conditional expectations:

E(Uj|Yobs,π ,λ) = E(Uj) = 1 − (1 − π)Ke−λ+ , and (5.4)

E(X∗
0j|Yobs,π ,λ) =

[ 1 − (1 − π)Ke−λ+ ]
min(K ,yj)∑

kj=1

(K
kj
)
πkj(1 − π)K−kj

m∏
i=1

λ
yij−kj
i

(yij−kj)!

min(K ,yj)∑
kj=0

(K
kj
)
πkj(1 − π)K−kj

m∏
i=1

λ
yij−kj
i

(yij−kj)!

× I(min(yj) ≥ 1), (5.5)

respectively.
The procedure of constructing bootstrap CIs for an arbitrary function of (ϕ,π ,λ), say

ϑ = h(ϕ,π ,λ), is very similar to that presented in Section 3.2.

6 Simulation studies
To evaluate the performance of the proposed methods in Section 3, we investigate the
accuracy ofMLEs and confidence interval estimators of the parameters in themultivariate
ZTCS distribution. We consider two cases for the dimension withm = 2 andm = 3.

6.1 Experiment 1:m = 2

When m = 2, the parameters (K ,π ; λ1, λ2) are set to be (5, 0.5; 3, 5). We generate
{wj}nj=1

iid∼ ZTCS(K ,π ; λ1, . . . , λm) with n = 200. Based on this simulated data set, for
different K values we first calculate the MLEs of π and (λ1, λ2) by using the EM algo-
rithm (3.3)–(3.5) and then calculate the estimated log-likelihood. We choose K = 5 that
maximizes the log-likelihood among all K values. These results are reported in Table 1.

Table 1 Finding the value of K by maximizing the log-likelihood function form = 2

K π̂ λ̂1 λ̂2 Log-likelihood

3 0.66742 3.4739056 5.4464959 −884.6629

4 0.58617 3.1314781 5.1040629 −883.4288

5 0.51145 2.9188539 4.8914319 −883.0151

6 0.44308 2.8176227 4.7901937 −883.1228
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For this fixed value of K = 5, we first calculate the MLEs of (π , λ1, λ2) by using the
EM algorithm (3.3)–(3.5), the bootstrap standard deviations (stds) of these MLEs, the
corresponding mean square errors (MSEs) and two 95% bootstrap confidence intervals
(CIs) of these parameters with G = 1000 by the bootstrap method presented in Section
3.2. Then, we independently repeat the above process 1000 times. The resulting average
MLE, std, MSE and two coverage probabilities (CPs) based on the normal-based and non-
normal-based bootstrap samples, respectively, are displayed in Table 2.
From Table 2, we can see that the average MSE of π̂ is very small while the average

MSEs of (λ̂1, λ̂2) are reasonably small. The two bootstrap coverage probabilities are close
to but less than 0.95.

6.2 Experiment 2:m = 3

When m = 3, the parameters (K ,π ; λ1, λ2, λ3) are set to be (4, 0.3; 2, 4, 6). We generate
{wj}nj=1

iid∼ ZTCS(K ,π ; λ1, . . . , λm) with n = 200. Based on this simulated data set, for
different K values we first calculate the MLEs of π and (λ1, λ2, λ3) by using the EM algo-
rithm (3.3)–(3.5) and then calculate the estimated log-likelihood. We choose K = 4 that
maximizes the log-likelihood among all K values. These results are reported in Table 3.
For this fixed value of K = 4, we first calculate the MLEs of (π , λ1, λ2, λ3) by using

the EM algorithm (3.3)–(3.5), the bootstrap stds of these MLEs, the corresponding MSEs
and two 95% bootstrap CIs of these parameters with G = 1000 by the bootstrap method
presented in Section 3.2. Then, we independently repeat the above process 1000 times.
The resulting average MLE, std, MSE and two CPs based on the normal-based and non-
normal-based bootstrap samples, respectively, are displayed in Table 4.
From Table 4, we can see that the average MSEs of π̂ and (λ̂1, λ̂2, λ̂3) are very small. The

two bootstrap coverage probabilities are close to 0.95.

7 Two real examples
7.1 Students’ absenteeism data

In this section, we use the data set on the number of absences of 113 students from
a lecture course in two successive semesters reported by Karlis (2003) to illustrate the
proposed statistical methods for the multivariate ZTCS distribution. Let W1 denote the
number of absences in the first semester and W2 denote the number of absences in the
second semester. The data are displayed in Table 5 below.
For the purpose of illustration, we artificially remove the (0, 0) cell counts from Table 5

and the updated data are shown in Table 6.
Let wj = (W1j,W2j)�

iid∼ ZTCS(K ,π ; λ1, λ2) for j = 1, . . . , n with n = 98. Let
wj = (w1j,w2j)� denote the realization of the random vector wj, and Yobs = {wj}nj=1 be
the observed data. The parameter K of the binomial distribution is considered unknown

Table 2 The average MLE, std, MSE and two CPs of (π , λ1, λ2) form = 2 and K = 5

Parameter True value Average MLE Average stdB Average MSE CP† CP‡

π 0.5 0.511457 0.06417 0.004209 0.930 0.932

λ1 3 2.918853 0.33051 0.114730 0.927 0.932

λ2 5 4.891431 0.35926 0.139568 0.921 0.928

stdB: The sample standard deviation for the bootstrap samples
CP† : Normal-based bootstrap CP
CP‡ : Non-normal-based bootstrap CP
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Table 3 Finding the value of K by maximizing the log-likelihood function form = 3

K π̂ λ̂1 λ̂2 λ̂3 Log-likelihood

3 0.4037377 1.9887834 4.2987810 5.9287793 −650.5100604

4 0.3203847 1.9184570 4.2284540 5.8584519 −649.8799727

5 0.2583191 1.9084000 4.2183967 5.8483944 −650.1021029

6 0.2137641 1.9174109 4.2274075 5.8574051 −650.1044541

Table 4 The average MLE, std, MSE and two CPs of (π , λ1, λ2) form = 3 and K = 4

Parameter True value Average MLE Average stdB Average MSE CP† CP‡

π 0.3 0.320384 0.0541052 0.00295 0.937 0.939

λ1 2 1.918457 0.222460 0.05689 0.925 0.932

λ2 4 4.228454 0.242082 0.06476 0.921 0.925

λ3 6 5.858451 0.255456 0.09402 0.954 0.948

stdB: The sample standard deviation for the bootstrap samples
CP† : Normal-based bootstrap CP
CP‡ : Non-normal-based bootstrap CP

Table 5 Cross-tabulation of the students’ absenteeism data (Karlis 2003)

W1\W2 0 1 2 3 4 5 6 7 8 Total

0 15 10 4 4 2 0 0 0 0 35

1 6 11 9 4 2 0 0 0 0 32

2 5 7 6 5 0 0 0 0 0 23

3 1 3 2 4 3 1 0 0 0 14

4 1 0 2 0 1 0 0 0 0 4

5 0 0 0 0 0 1 1 0 0 2

6 0 0 0 0 0 0 2 0 0 2

7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0

9 1 0 0 0 0 0 0 0 1 1

Total 29 31 23 17 8 2 3 0 0 113

Table 6 The number of absences of 113 students from a course in two successive semesters without
the (0, 0) cell counts (Karlis 2003)

W1\W2 0 1 2 3 4 5 6 7 8 Total

0 – 10 4 4 2 0 0 0 0 20

1 6 11 9 4 2 0 0 0 0 32

2 5 7 6 5 0 0 0 0 0 23

3 1 3 2 4 3 1 0 0 0 14

4 1 0 2 0 1 0 0 0 0 4

5 0 0 0 0 0 1 1 0 0 2

6 0 0 0 0 0 0 2 0 0 2

7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 1

9 1 0 0 0 0 0 0 0 1 1

Total 14 31 23 17 8 2 3 0 0 98
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and it is attempted to estimate this. Based on the data in Table 6, for different K values we
first calculate the MLEs of π and (λ1, λ2) by using the EM algorithm (3.3)–(3.5) and then
calculate the estimated values of the log-likelihood function. These results are reported
in Table 7.
We should choose the K that maximizes the log-likelihood among all K values. From

Table 7, we observed that the values of log-likelihood monotonically increase as K → ∞.
On the other hand,K must be larger than or equal tomax(W1,W2). FromTable 6, we have
max(W1,W2) = 9. To illustrate how to obtain the confidence intervals of the parameters,
it seems reasonable to choose K = 10. With G = 6000 bootstrap replications, we calcu-
late the bootstrap average MLEs, the bootstrap stds of (π̂ , λ̂1, λ̂2) and two 95% bootstrap
CIs of (π , λ1, λ2). These results are listed in Table 8.

7.2 Road accident data of Athens

The number of accidents in 24 roads of Athens for the period 1987–1991 were reported
and analyzed by Karlis (2003) with a multivariate Poisson distribution. Since only acci-
dents that caused injuries are included as shown in Table 9, we want to fit the data set by
the multivariate ZTCS model.
Let wj = (W1j, . . . ,W5j)�

iid∼ ZTCS(K ,π ; λ1, . . . , λ5), where W1j, . . . ,W5j denote the
average numbers of accidents reported in the j-th road per kilometer from 1987 to 1991,
respectively, for j = 1, . . . , n (n = 24). For example, when j = 1, we have tj = t1 = 1.2 and

(W11, . . . ,W51)
� = (11, 33, 25, 23, 6)�/1.2.

The unknown parameter K is assumed to be an positive integer. Based on the data in
Table 9, for different K values we first calculate the MLEs of π and λ = (λ1, . . . , λ5)� by
using the EM algorithm (3.3)–(3.5) and then calculate the estimated values of the log-
likelihood function. These results are reported in Table 10.

Table 7 Finding the value of K by maximizing the log-likelihood function for fitting the data of
Table 6 by the multivariate ZTCS distribution

K π̂ λ̂1 λ̂2 Log-likelihood

2 0.1220034 1.394314 1.600330 −328.8195

3 0.1024329 1.326026 1.531414 −328.1680

4 0.0869704 1.281892 1.486834 −327.7241

5 0.0748624 1.252965 1.457593 −327.4137

8 0.0517887 1.208834 1.412942 −326.8897

9 0.0468272 1.200906 1.404915 −326.7862

10 0.0427041 1.194675 1.398604 −326.7022

14 0.0314939 1.179167 1.382890 −326.4824

15 0.0295422 1.176680 1.380369 −326.4453

20 0.0225358 1.168154 1.371725 −326.3146

30 0.0152633 1.160049 1.363504 −326.1831

50 0.0092682 1.153806 1.357169 −326.0775

75 0.0062141 1.150805 1.354123 −326.0247

100 0.0046735 1.149330 1.352626 −325.9982

150 0.0031242 1.147871 1.351145 −325.9718

250 0.0018786 1.146717 1.349972 −325.9507

350 0.0013431 1.146225 1.349473 −325.9416
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Table 8MLEs and confidence intervals of parameters for the students’ absenteeism data

Parameter MLEB stdB 95% bootstrap CI† 95% bootstrap CI‡

π 0.043961 0.017672 [0.009325, 0.078598] [0.007857, 0.078343]

λ1 1.175550 0.210425 [0.763118, 1.587982] [0.785992, 1.606149]

λ2 1.377584 0.218819 [0.948699, 1.806468] [0.965662, 1.824147]

MLEB: The average MLE for the bootstrap samples
stdB: The sample standard deviation for the bootstrap samples
CI† : Normal-based bootstrap CI
CI‡ : Non-normal-based bootstrap CI

We should choose the K that maximizes the log-likelihood among all K values. From
Table 10, we observed that the values of log-likelihoodmonotonically increase asK → ∞.
On the other hand, K must be larger than or equal to max{Wij: 1 ≤ i ≤ 5, 1 ≤ j ≤ 24}.
FromTable 9, we havemax{Wij: 1 ≤ i ≤ 5, 1 ≤ j ≤ 24} = 52.7. To illustrate how to obtain
the confidence intervals of the parameters, it seems reasonable to choose K = 53. With
G = 6000 bootstrap replications, we calculate the bootstrap average MLEs, the bootstrap
stds of (π̂ , λ̂1, . . . , λ̂5) and two 95% bootstrap CIs of (π , λ1, . . . , λ5). These results are
reported in Table 11.
Based on the data in Table 9, we calculate the sample correlation coefficient matrix,

which is given by

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.8038 0.7643 0.8089 0.5746

0.8038 1.0000 0.8326 0.8297 0.4084

0.7643 0.8326 1.0000 0.9058 0.5768

0.8089 0.8297 0.9058 1.0000 0.6557

0.5746 0.4084 0.5768 0.6557 1.0000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Table 9 Accident data of 24 roads in Athens for the period 1987–1991 (Karlis 2003)

Road j
Year Length(km)

1987 1988 1989 1990 1991 tj

Akadimias 1 11 33 25 23 6 1.2
Alexandras 2 41 63 91 77 29 2.6
Amfitheas 3 5 35 44 21 13 2.4
Aharnon 4 44 79 91 88 33 5.5
Vas. Olgas 5 5 3 4 4 0 0.5
Vas. Konstantinou 6 8 15 26 13 7 1.3
Vas. Sofias 7 34 63 81 67 23 2.6
Vouliagmenis 8 17 16 24 24 4 2.1
G’ Septemvriou 9 16 24 30 30 13 1.7
Galatsioy 10 13 13 15 17 9 1.1
Iera Odos 11 7 15 20 19 8 2.7
Kalirois 12 15 24 39 32 7 2.6
Katehaki 13 2 3 27 24 7 1.4
Kifisias 14 22 23 38 22 11 1.4
Kifisou 15 38 48 60 53 24 7.9
Leof. Kavalas 16 4 6 12 9 3 2.0
Lenorman 17 19 30 37 48 22 2.0
Leof. Athinon 18 15 11 16 21 28 6.1
Mesogeion 19 20 30 33 28 9 1.5
P. Ralli 20 13 14 13 17 9 2.6
Panepistimiou 21 24 58 40 36 5 1.1
Patision 22 80 108 114 113 86 4.1
Peiraios 23 86 89 109 90 49 8.0
Sigrou 24 60 61 87 86 29 4.8
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Table 10 Finding the value of K by maximizing the log-likelihood function for fitting the data of
Table 9 by the multivariate ZTCS distribution

K π̂ λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 Log-likelihood

2 0.396 8.405 13.520 16.667 14.513 5.262 −498.992

3 0.383 8.046 13.161 16.308 14.154 4.903 −492.749

4 0.372 7.707 12.822 15.969 13.815 4.564 −487.185

5 0.349 7.452 12.567 15.714 13.559 4.309 −482.820

8 0.292 6.858 11.973 15.120 12.966 3.715 −473.529

9 0.276 6.710 11.825 14.972 12.818 3.567 −471.336

10 0.261 6.585 11.700 14.847 12.693 3.442 −469.490

14 0.209 6.271 11.387 14.533 12.379 3.128 −464.604

15 0.198 6.226 11.341 14.488 12.333 3.083 −463.810

20 0.155 6.092 11.207 14.354 12.200 2.949 −461.170

30 0.106 5.997 11.112 14.259 12.105 2.854 −458.806

50 0.065 5.944 11.059 14.206 12.051 2.800 −457.125

51 0.064 5.942 11.057 14.204 12.050 2.799 −457.078

52 0.062 5.941 11.056 14.203 12.049 2.798 −457.033

53 0.061 5.940 11.055 14.202 12.047 2.797 −456.990

54 0.060 5.939 11.054 14.201 12.046 2.795 −456.949

75 0.043 5.923 11.038 14.185 12.030 2.779 −456.350

100 0.032 5.913 11.028 14.175 12.021 2.770 −455.978

150 0.021 5.905 11.020 14.167 12.012 2.762 −455.617

250 0.013 5.898 11.014 14.160 12.006 2.755 −455.334

350 0.009 5.896 11.011 14.158 12.003 2.753 −455.215

while the population correlation coefficient matrix ρ, based on (2.6) is estimated to be

ρ̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.2703 0.2444 0.2612 0.4199

0.2703 1.0000 0.1951 0.2085 0.3352

0.2444 0.1951 1.0000 0.1886 0.3031

0.2612 0.2085 0.1886 1.0000 0.3240

0.4199 0.3352 0.3031 0.324 1.0000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

it can be easily seen that ρ̂ is very close to R.

Table 11MLEs and confidence intervals of parameters for the road accident data of Athens

Parameter MLEB stdB 95% bootstrap CI† 95% bootstrap CI‡

π 0.0663 0.017 [0.0327, 0.1000] [0.0356, 0.1027]

λ1 5.8610 1.217 [3.4750, 8.2470] [3.8330, 8.4930]

λ2 10.926 2.347 [6.3260, 15.526] [7.1450, 16.313]

λ3 14.118 1.824 [10.543, 17.694] [10.844, 18.022]

λ4 11.954 1.624 [8.7700, 15.138] [9.2400, 15.478]

λ5 2.7533 0.604 [1.5676, 3.9390] [1.7988, 4.0889]

MLEB: The average MLE for the bootstrap samples
stdB: The sample standard deviation for the bootstrap samples
CI† : Normal-based bootstrap CI
CI‡ : Non-normal-based bootstrap CI
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8 Concluding remarks
In this paper, we first proposed the multivariate ZTCS distribution and studied its distri-
butional properties. Since the joint marginal distribution of any r-dimensional sub-vector
of the multivariate ZTCS random vector of m-dimensional has certain probability mass
function, we then proposed the multivariate ZACS distribution. It is noted that the mul-
tivariate ZTCS distribution is a special case of the multivariate ZACS distribution. The
EM algorithm is used to obtain the MLEs of the parameters in the multivariate ZACS
distribution. The multivariate ZTCS distribution can be used when other distributions,
like multivariate zero-truncated Poisson distribution is not a good fit to some real data
sets. Meanwhile, the multivariate ZACS distribution, as a more general form, can be used
in a much wider range. It can be a good substitute for the Type II multivariate ZTP
distribution (Tian et al. 2014).

Endnote
1A discrete random variable X is said to have the general finite distribution, denoted

by X ∼ Finite(xl, pl; l = 1, . . . , n), if Pr(X = xl) = pl ∈ [0, 1] and
∑n

l=1 pl = 1.
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