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Abstract
Various methods have been derived that are designed to test the hypothesis that two
dependent variables have a common variance. Extant results indicate that all of these
methods perform poorly in simulations. The paper provides a new perspective on why
the Morgan-Pitman test does not control the probability of a Type I error when the
marginal distributions have heavy tails. This new perspective suggests an alternative
method for testing the hypothesis of equal variances and simulations indicate that it
continues to perform well in situations where the Morgan-Pitman test performs poorly.
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1 Introduction
A classic problem that arises in various situations is testing the hypothesis that two depen-
dent variables have equal variances. For example, when measuring systolic and diastolic
blood pressure, the quality of two different blood pressure gauges depends in part on
whether one type of gauge has more variability than some other type. Rothstein et al.
(1981) cite two examples in psychology in which a test of equality of variances is of inter-
est. Other examples from psychology are described in Lord and Novick (1968); Games
et al. (1972) and Levy (1976). Snedecor and Cochran (1967) also cite two examples, one
of which deals with testing for differences in reliability between two laboratories.
Let σ 2

1 and σ 2
2 be the population variances associated with the random variables X and

Y, respectively, where X and Y have some unknown bivariate distribution. Seemingly the
best-known technique for testing

H0 : σ 2
1 = σ 2

2 (1)

is a method derived by Morgan (1939) and Pitman (1939). Letting

U = X + Y

and

V = X − Y ,

if the null hypothesis is true, then ρuv, Pearson’s correlation between U and V, is zero. So
testing (1) can be accomplished by testing

H0 : ρuv = 0. (2)
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Student’s T test is the best-known method for testing (2). That is, use the test statistic

Tuv = ruv

√
n − 2
1 − r2uv

,

where ruv is the usual estimate of ρuv and Tuv is assumed to have a Student’s T distri-
bution with n − 2 degrees of freedom, where n is the sample size. However, McCulloch
(1987) as well as Mudholkar et al. (2003) establish that when sampling from heavy-tailed
distributions, the actual Type I error probability exceeds the nominal level, sometimes
substantially so. Roughly, they show that Tuv does not converge to a standard normal dis-
tribution as the sample size increases. More precisely, under normality, the variance of
Tuv converges to one as the sample size increases. But for heavier-tailed distributions, this
is no longer the case. The variance of Tuv converges to a value that is greater than one,
which in turn results in Type I error probabilities greater than the nominal level when
testing (2).
McCulloch (1987) suggests replacing Pearson’s correlation with Spearman’s correlation.

But simulations in Wilcox (1990) indicate that again the actual level can be substantially
higher than the nominal level when sampling from a heavy-tailed distribution. Wilcox
(1990) reported simulation results on several other methods and found that all of them
performed poorly under non-normality. They included methods derived by Tiku and
Balakrishnan (1986) as well as a Box-Scheffé type test that has close connections to a
method suggested by Levy (1976).
This paper provides a different perspective than the results reported by McCulloch

(1987) and Mudholker et al. (2003) regarding why the Morgan-Pitman performs poorly
when sampling from a heavy-tailed distribution. Details are given in Section 2. This
alternative perspective suggests a general strategy for getting improved control over the
Type I error probability. A particular variation of this strategy is described in Section 3.
Simulation results based on the method in Section 3 are reported in Section 4.

2 TheMorgan-Pitman test and heavy-tailed distributions
Consider the random variables X and Y, let r denote the usual estimate of Pearson’s
correlation, ρ, and consider the usual test statistic

T = r
√

n − 2
1 − r2

(3)

for testing H0 : ρ = 0 . From basic principles, T has a Student’s T distribution if either
X or Y has a normal distribution and simultaneously, X and Y are independent. Note
that independence implies homoscedasticity. That is, the conditional variance of Y, given
X, does not depend on the value of X, which plays a fundamental role in the derivation
of T (e.g., Hogg and Craig 1970). In the context of least squares regression, it is known
that if there is heteroscedasticity, the usual test of the hypothesis of a zero slope uses the
wrong standard error (e.g., Long and Ervin 2000). It follows that when testing H0 : ρ = 0
using the test statistic T given by (3), again the wrong standard error is being used. As the
sample size increases, the probability of rejecting can increase even when ρ = 0 but there
is heteroscedasticity (e.g., Wilcox 2012).
Now consider the situation where X and Y have a bivariate normal distribution. For

Tuv to provide reasonably good control over the Type I error probability when testing (1),
it must be the case that there is homoscedasticity in terms of the association between
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U and V. To provide a visual sense of the extent there is homoscedasticity, 5000 pairs of
observations were generated from a bivariate normal distribution with ρ = 0 resulting
in 5000 U and V values. Figure 1 shows a plot of the .2, .5 and .8 quantile regression
lines using the running interval smoother (e.g. Wilcox 2012) where U is taken to be the
independent variable. As can be seen the regression lines for the .2 and .8 quantiles suggest
that there is very little if any heteroscedasticity.
Now look at Fig. 2 where again a sample size of n = 5000 was used, only now the

marginal distributions for X and Y are g-and-h distributions with g = 0 and h = .2.
This is a symmetric distribution with heavy tails. (More details about this distribution are
given in Section 4.) Figure 2 shows the .2, .5 and .8 quantile regression lines for U and V.
As can be seen, there is a clear indication of heteroscedasticity implying that even with a
large sample size, the Morgan-Pitman test will perform poorly in terms of controlling the
Type I error probability.
Of course, Fig. 1 does not establish that there is exact homoscedasticity regarding the

association between U and V when dealing with normal distributions. The only point
is that as we move from normal distributions toward heavy-tailed distributions, het-
eroscedasticity becomesmore pronounced, so it is not surprising that theMorgan-Pitman
test performs poorly for such situations.
Figure 2 also indicates why replacing Pearson’s correlation with Spearman’s correlation

is unsatisfactory. Converting observations to ranks does not eliminate heteroscedasticity.
Converting the data used in Fig. 2 to ranks, a plot of the .2, .5 and .8 quantile regression
lines indicates that heteroscedasticity is less severe, which in turn suggests that using
Spearman’s correlation improves control over the Type I error probability compared to
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Fig. 1 Shown are the .2, .5 and .8 quantile regression lines for U and V based on a sample size of 5000 from a
bivariate normal distribution. There is little or no indication of heteroscedasticity
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Fig. 2 Shown are the .2, .5 and .8 quantile regression lines for U and V based on a sample size of 5000
when X and Y have a symmetric, heavy-tailed distribution. Now there is a clear indication that there is
heteroscedasticity

using Tuv, but that poor control over the Type I error probability will still be an issue.
Simulation results in Section 4 demonstrate the extent to which this is the case.

3 Modification of theMorgan-Pitman test
Let b0 and b1 be the usual least squares estimate of β0 and β1, the intercept and slope of
a regression line. In recent years, several heteroscedastic consistent (HC) methods have
been derived for estimating the standard error of b1 (e.g., Long and Ervin 2000, Godfrey
2006, Cribari-Neto et al. 2007). Cribari-Neto (2004) found that the so-called HC4 esti-
mator performs relatively well. More recently, Cribari-Neto et al. (2004) derived the HC5
estimator and argued that it is better than HC4, particularly at handling outliers in the
independent variable X. Ng and Wilcox (2009) compared several method for testing

H0 : β1 = 0

based on the HC4 and HC5 estimators. Included were several bootstrap methods. No sin-
gle method dominated, but a non-bootstrap method, based in part on the HC4 estimator,
performed relatively well. No advantage using the HC5 estimator was found.
For the random sample (Y1,X1), . . . , (Yn,Xn), let

X =

⎛
⎜⎜⎝

1 X1
...

...
1 Xn

⎞
⎟⎟⎠ .
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Let

C = (X′X)−1,

H = diag(XCX′)−1,
h̄ =

∑
hii/n,

eii = hii/h̄
and

dii = min(4, eii).

Let A be the n× n diagonal matrix with the ith entry given by r2i (1− hii)−dii , where ri is
the ith residual based on the ordinary least squares estimator. The HC4 estimator is

S = CX′AXC.

The diagonal elements of S are the estimated squared standard errors of b0 and b1. For
convenience, the HC4 estimates of the standard errors of b0 and b1 are denoted by S0 and
S1.
Results in Ng andWilcox (2009) indicate that a relatively good 1−α confidence interval

for the slope β1 is

b1 ± tS1, (4)

where t is the 1−α/2 quantile of Student’s t distributionwith ν = n−2 degrees of freedom.
This suggests testing (1) by computing a confidence interval based on (4) but with X and
Y replaced by U and V, respectively. This will be called method HC henceforth.

4 Simulation results
Simulations were used to assess the extent to which method HC controls the Type I error
probability. The sample size was taken to be n = 20 and 100. Estimated Type I error
probabilities, α̂, were based on 10000 replications.
Four types of distributions were used: normal, symmetric and heavy-tailed, asymmetric

and light-tailed, and asymmetric and heavy-tailed. More precisely, data were generated
from bivariate distributions where the marginal distributions have one of four g-and-h
distributions (Hoaglin 1985) that contain the standard normal distribution as a special
case. If Z has a standard normal distribution, then by definition

V =
{ exp(gZ)−1

g exp(hZ2/2), if g > 0
Zexp(hZ2/2), if g = 0

has a g-and-h distribution where g and h are parameters that determine the first four
moments.
The four distributions used here were the standard normal (g = h = 0), a symmetric

heavy-tailed distribution (h = .2, g = 0), an asymmetric distribution with relatively light
tails (h = 0, g = .2), and an asymmetric distribution with heavy tails (g = h = .2). Table 1
shows the skewness (κ1) and kurtosis (κ2) for each distribution. Additional properties of
the g-and-h distribution are summarized by Hoaglin (1985). The correlation between X
and Y was taken to be ρ = 0 and .5. To add perspective, results are also reported using the
Morgan-Pitman (MP) test as well as the modification of the Morgan-Pitman suggested
by McCulloch (1987) where Pearson’s correlation is replaced by Spearman’s correlation.
Using Spearman’s correlation is called method SP henceforth.
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Table 1 Some properties of the g-and-h distribution

g h κ1 κ2

0.0 0.0 0.00 3.0

0.0 0.2 0.00 21.46

0.2 0.0 0.61 3.68

0.2 0.2 2.81 155.98

Table 2 shows the estimated probability of a Type I error when testing at the .05 level for
sample sizes n = 20 and 100. As can be seen, method HC performs fairly well. Even for
n = 20, the estimates range between .047 and .066. The Morgan-Pitman test is extremely
unsatisfactory; the estimates exceed .20 when sampling from the heavy-tailed distribu-
tions considered here and n = 20. Increasing the sample size to 100, it deteriorates,
particularly for the heavy-tailed distributions where the estimates range between .355 and
.403. Spearman’s correlation performs better than theMorgan-Pitman test based on Pear-
son’s correlation, but for heavy-tailed distributions the estimates are greater than or equal
to .08 even for n = 100.
Power comparisons seem meaningless for situations where the Type I error probability

is not controlled reasonably well. Even for the skewed, light-tailed distribution consid-
ered here, where the kurtosis is only 3.68, the Morgan-Pitman test does not perform well,
particularly as the sample size increases. But to provide at least some perspective, simu-
lations were run again for the bivariate normal case where σ1 = 1 and σ2 = 1.5. With
ρ = 0 and n = 20, power for methods HC, MP and SP was estimated to be .329, .391 and
.346, respectively. Increasing σ2 = 2, the estimates were .739, .842 and .775. With ρ = .5,
σ2 = 1.5 and n = 20, power for methods HC, MP and SP was estimated to be .421, .498
and .442, respectively. Increasing σ2 = 1.5, the estimates were .828, .909 and .855. So
for symmetric and sufficiently light-tailed distributions, the Morgan-Pitman test offers a
power advantage that would seem to be of practical importance.

5 Illustrations
Rao (1948) reports data on the weight of cork borings from the north, east, west and
south side of 28 trees. Comparing the variances of the east and south sides with the
Morgan-Pitman test, the p-value is .043. Using the modification of the Morgan-Pitman

Table 2 Estimated probability of a Type I error

n = 20 n = 100

g h ρ HC MP SP HC MP SP

0.0 0.0 0.0 .047 .051 .052 .048 .050 .045

0.0 0.2 0.0 .065 .256 .088 .057 .355 .090

0.2 0.0 0.0 .053 .075 .052 .052 .090 .057

0.2 0.2 0.0 .066 .286 .087 .050 .403 .085

0.0 0.0 0.5 .052 .050 .050 .047 .051 .049

0.0 0.2 0.5 .059 .242 .080 .051 .354 .086

0.2 0.0 0.5 .052 .076 .056 .052 .087 .055

0.2 0.2 0.5 .061 .275 .086 .048 .398 .081

HC = Heteroscedastic Method
MP = Morgan-Pitman
SP = Spearman
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test (method HC), the p-value is .186, the only point being that in practice, the choice of
method can make a difference.
The next illustration is based on data from the Well Elderly 2 study Clark et al. (2011).

A general goal in this study was to assess the efficacy of an intervention strategy aimed
at improving the physical and emotional health of older adults. A portion of the study
was aimed at understanding the impact of intervention on a measure of depressive symp-
toms based on the Center for Epidemiologic Studies Depressive Scale (CESD). The CESD
(Radloff 1977) is sensitive to change in depressive status over time and has been success-
fully used to assess ethnically diverse older people (Lewinsohn et al. 1988). Higher scores
indicate a higher level of depressive symptoms. The sample size is 328.
Figure 3 shows a kernel density estimate of the distribution of CESD scores before and

after intervention. Note that for the central portion of the distributions, as well as the left
tails, there appears to be little or no difference. The median for both marginal distribu-
tions is 10. But Fig. 3 also suggests that more extreme measures of depressive symptoms
are less likely after intervention. One way of providing a partial check on this possibility,
but certainly not the only way, is to test the hypothesis that the marginal distributions
have equal variances. The Morgan-Pitman test was applied yielding a p-value equal to
.004. But boxplots suggest that sampling is from skewed, heavy-tailed distributions. So
there is some doubt about whether the Morgan-Pitman test provides an adequate test
of the hypothesis of equal variances. Using instead method HC, the p-value is .013,
which provides more convincing evidence that there is less variation after intervention.
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Fig. 3 Kernel density estimates of the distribution of CESD scores before intervention (solid line) and after
intervention
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In particular, this result suggests that after intervention, relatively high CESD scores are
less likely to occur.

6 Concluding remarks
Of course, simulations do not prove that a method provides adequate control over the
Type I error probability among all situations that might be encountered. The main result
is that method HC continues to performwell in situations where theMorgan-Pitman test,
and the variation based on Spearman’s correlation, perform poorly.
Heterosceasticity can be addressed using a variety of other methods as noted in the

introduction. Evidently, in terms of controlling the probability of a Type I error, alterna-
tive methods would provide at best a slight improvement over method HC among the
situations considered in the simulations simply because HC performs well. Perhaps situ-
ations can be found where some other method for dealing with heteroscedasticity offers
a practical advantage, but this remains to be determined.
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