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Abstract
We study a class of probability distributions on the positive real line, which arise by
folding the classical Laplace distribution around the origin. This is a two-parameter,
flexible family with a sharp peak at the mode, very much in the spirit of the classical
Laplace distribution. We derive basic properties of the distribution, which include the
probability density function, distribution function, quantile function, hazard rate,
moments, and several related parameters. Further properties related to mixture
representation, Lorenz curve, mean residual life, and entropy are included as well. We
also discuss parameter estimation for this new stochastic model and illustrate its
potential applications with real data.
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1 Introduction
We present a theory of a class of distributions on R+ = [ 0,∞), obtained by folding the
classical Laplace distribution given by the probability density function (PDF)

f (x) = 1
2σ

e−
∣∣∣ x−μ

σ

∣∣∣, x ∈ R, (1)

over to the interval [0,∞). The folding is accomplished via the transformation

Y = |X|, (2)

where X is a Laplace random variable with PDF (1), so that the PDF of Y becomes

g(y) = f (y) + f (−y), y ∈ R+. (3)

A substitution of (1) into (3) results in the following PDF of the folded version of Laplace
distributed X (Cooray 2008):

g(y) = 1
σ

{
e−

μ
σ cosh

( y
σ

)
for 0 ≤ y < μ,

e−
y
σ cosh

(
μ
σ

)
for μ ≤ y.

(4)

Note that when μ = 0, this reduces to

g(y) = 1
σ
e−

y
σ , y ∈ R+, (5)

which is the PDF of an exponential distribution with mean σ . This is to be expected, as
in this case the Laplace distribution is centered about the origin. Thus, the folded Laplace
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distribution can be thought of as a generalization of exponential distribution, and in fact
it shares the form of the density with the latter when the values are larger than μ. Figure 1
provides an illustration of the folded Laplace PDF. As we shall see in the sequel, this is a
rather flexible family with a sharp peak at the mode, resembling the Laplace distribution.
The latter has gained popularity in recent years in numerous areas of applications see,
e.g., Kotz et al. (2001). We hope that this positive version of the Laplace distribution will
prove to be another useful stochastic model as well.
Folded distributions are important and popular models that have found many interest-

ing applications. As noted by several authors [see, e.g., Leone et al. (1961), Psarakis and
Panaretos (1990), Cooray et al. (2006), Cooray (2008)], they frequently arise when the data
are recorded with disregard to their sign. Perhaps the best known suchmodel is the folded

Fig. 1 PDFs of the folded Laplace distributions with σ = 1 and varying values of μ (panel a) and with μ = 1
and varying values of σ (panel b)
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normal distribution, developed in the 1960s and 1970s [see, e.g., Elandt (1961), Leone
et al. (1961), Johnson (1962, 1963), Rizvi (1971), and Sundberg (1974)]. Since then, this
distribution, along with its various extensions, has been re-visited and applied in diverse
fields [see, e.g., Nelson (1980), Sinha (1983), Yadavalli and Singh (1995), Naulin (2003),
Bohannon et al. (2004), Lin (2004), Lin (2005), Asai and McAleer (2006), Kim (2006),
Liao (2010), Jung et al. (2011), Chakraborty and Chatterjee (2013), Tsagris et al. (2014)].
Other families of folded distributions recently studied include folded t and generalized
t distributions [see Psarakis and Panaretos (1990, 2001), Brazauskas and Kleefeld (2011,
2014), Scollnik (2014), and Nadarajah and Bakar (2015)], folded Cauchy distribution [see
Johnson et al. (1994, 1995), Cooray (2008), Nadarajah and Bakar (2015)], folded Gumbel
distribution [see Nadarajah and Bakar (2015)], folded normal slash distribution [see Gui
et al. (2013)], folded beta distribution see [Berenhaut and Bergen (2011)], folded bino-
mial distribution [see Porzio and Ragozini (2009)], folded logistic distribution [see Cooray
et al. (2006), Nadarajah and Kotz (2007), Cooray (2008)], folded exponential transforma-
tion [see Piepho (2003)], and doubly-folded bivariate normal distribution [see Stracener
(1973)]. Let us note that the folded Laplace (FL) distribution, and a more general folded
exponential power family, were recently briefly treated in Cooray (2008) and Nadarajah
and Bakar (2015), respectively. Our works offers a more comprehensive theory focused
on FL distributions, including numerous new results, estimation, and data examples.
We begin our journey in Section 2, where we define the folded Laplace (FL) model and

derive its properties. Section 3 is devoted to statistical inference related to the FL model.
In particular, we establish the existence and uniqueness of moment estimators of the FL
parameters, and derive their asymptotic behavior. This is followed by Section 4, which
contains a data example illustrating modeling potential of the FL distribution. Proofs and
technical results are collected in the Appendix.

2 Definition and properties
We start with a formal definition of the folded Laplace (FL) model.

Definition 2.1. A random variable on R+ given by the density function (4), where μ ≥ 0
and σ > 0, is said to have a folded Laplace distribution, denoted by FL(μ, σ).

Remark 2.1. Note that the PDF of a FL(μ, σ) distribution can be writtenmore compactly
as

g(y) = 1
σ

· exp
(−max{μ, y}

σ

)
· cosh

(
min{μ, y}

σ

)
, y ∈ R+.

Moreover, it is easy to see that folding Laplace distribution (1) with the mode μ > 0
or one with the mode −μ < 0 results in the same distribution, so that we can restrict
attention to non-negative values of μ. In fact, this is always the case when the folding
mechanism (2) is applied to a location family f (x) = h(x − μ), x,μ ∈ R.

Remark 2.2. It is straightforward to see that the FL PDF is unimodal with the mode at
μ, and becomes more symmetric as the mode μ increases, as can be seen in Fig. 1. On the
other hand, as μ gets towards the origin, the distribution becomes exponential with the
PDF given by (5). This figure also shows that the FL PDF becomes flatter as the parameter
σ increases. In the boundary case σ = 0, the distribution is understood as a point mass at
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μ, which can be seen by taking the limit of the FL cumulative distribution function (CDF)
given below as σ → 0.

Remark 2.3. It should be noted that the FL distribution is not a member of exponential
family (unless μ = 0).

Remark 2.4. A more general model, which was briefly treated in Nadarajah and Bakar
(2015) and deserves further study, arises by folding the exponential power distribution
(Subbotin 1923) and is given by the PDF

f (x) = 1
2σp1/p�(1 + 1/p)

{
e−

|x−μ|p
pσp + e−

|x+μ|p
pσp
}
, x ∈ R. (6)

Its special cases include the folded Laplace distribution (p = 1) as well as the folded
normal distribution (p = 2).

Remark 2.5. Another probability distribution that has a sharp peak at the mode and is
restricted to the positive half-line is the log-Laplace distribution (see, e.g., Kozubowski
and Podgórski 2003a,b). In analogy with the log-normal distribution, this model describes
the random variable Y = exp(X), where X is Laplace-distributed with the PDF (1), and is
given by the PDF

g(y) = α

2δ

{
(y/δ)α−1 for 0 ≤ y < δ,
(y/δ)−α−1 for y ≥ δ,

(7)

where α = 1/σ > 0 is a tail parameter and δ = exp(μ) is a scale parameter. However, in
contrast with the FL distribution, this distribution has a power-law tails.

The CDF and the quantile function (QF) of the FL model are straightforward to derive
[see Cooray (2008), Liu (2014)], and both admit close forms. The CDF is given by

G(y) =
{
e

−μ
σ sinh

( y
σ

)
for 0 ≤ y < μ,

1 − e
−y
σ cosh

(
μ
σ

)
for y ≥ μ,

(8)

while the QF is

Q(q) =

⎧⎪⎨
⎪⎩

σ · log
[
qe

μ
σ +
√
q2e

2μ
σ + 1

]
for 0 ≤ q ≤ 1

2

(
1 − e

−2μ
σ

)
,

σ · log [cosh (μ
σ

)
/(1 − q)

]
for 1 > q ≥ 1

2

(
1 − e

−2μ
σ

)
.

(9)

In particular, the median is [see Cooray (2008), Liu (2014)]

m = Q(1/2) = σ log
[
2 cosh

(μ

σ

)]
. (10)

Remark 2.6. The QF above can be used to simulate random variates Y from an FL dis-
tribution via Y = Q(U), where U is a standard uniform variate, available in standard
statistical packages. Alternatively, simulation can be accomplished by first generating a
Laplace variate T = σX + μ, where X is a standard Laplace, followed by Y = |T |. The
standard Laplace variate can be generated viaX = E1−E2, where the {Ei} are independent
standard exponential variates [see, e.g., Kotz et al. (2001)].
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2.1 The hazard rate

The hazard rate (failure rate, mortality rate) of the FL model, defined as the ratio of the
PDF to the survival function, is provided in the result below. Its routine derivation, which
can be found in Liu (2014), will be omitted.

Proposition 2.1. If Y ∼ FL(μ, σ), then the hazard rate of Y is given by

h(y) =

⎧⎪⎨
⎪⎩

1
σ

· e
−μ
σ cosh( y

σ )

1−e
−μ
σ sinh( y

σ )
for 0 ≤ y ≤ μ

1
σ

for y ≥ μ.
(11)

Moreover, this function is concave up and monotonically increasing from h(0) =
exp(−μ/σ)/σ to h(μ) = 1/σ on the interval [ 0,μ].

2.2 The moment generating function andmoments

The following result, which was stated in Cooray (2008) and derived in Liu (2014),
provides an explicit formula for the moment generating function (MGF) of the FL model.

Proposition 2.2. If Y ∼ FL(μ, σ), then the moment generating function of Y is given by

MY (t) = EetY = 1
2

(
eμt − e

−μ
σ

σ t + 1
− eμt + e

−μ
σ

σ t − 1

)
, t <

1
σ
. (12)

By taking the derivatives of the MGF at t = 0, we can recover the moments of the
FL distribution. The latter are given in the following result, whose lengthy albeit routine
derivation shall be omitted [details can be found in Liu (2014)].

Proposition 2.3. If Y ∼ FL(μ, σ), then the nth moment of Y is given by

E
[
Yn] = σ n

2
n! e

−μ
σ
[
1 − (−1)n

]+ 1
2σ

n∑
k=0

n!
(n − k)!

σ k+1μn−k
[
1 + (−1)k

]
. (13)

In particular, we have

EY = μ + σ e
−μ
σ and E[Y 2]= μ2 + 2σ 2, (14)

so that the variance is

Var(Y ) = 2σ 2 − σ 2e
−2μ
σ − 2μσ e

−μ
σ . (15)

The following result concerning the coefficient of variation connected with the FL
model plays an important role in investigating the existence and uniqueness of moment
estimators of μ and σ (see Section 3) and can be a useful aid in FL model validation. Its
proof is included in the Appendix.

Proposition 2.4. If Y ∼ FL(μ, σ) with both μ, σ > 0, then the coefficient of variation of
Y is

CY =
√
Var(Y )

E(Y )
=

√
2 − e−2δ − 2δe−δ

δ + e−δ
, (16)

where δ = μ/σ ∈[ 0,∞). Moreover, we have 0 < CY < 1.
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2.3 Skewness and kurtosis

Straightforward albeit lengthy calculations [see Liu (2014)] show that the coefficients of
skewness and kurtosis of Y ∼ FL(μ, σ) are given by

γY = E(Y − EY )3

[Var(Y )]3/2
= 3δ2 + 6δe−2δ + 2e−3δ(

2 − e−2δ − 2δe−δ
)3/2 (17)

and

κY = E(Y − EY )4

[Var(Y )]2
= 24 − 24δe−δ − 4δ3e−δ − 12e−2δ − 12δ2e−2δ − 12δe−3δ − 3e−4δ(

2 − e−2δ − 2δe−δ
)2 ,

(18)

respectively, where δ = μ/σ ∈ [ 0,∞). Since γY > 0, every FL distribution is skewed to
the right. When δ = 0 (which occurs when μ = 0), then γY = 2 and κY = 9, which are
the skewness and the kurtosis of an exponential random variable (to which the FL model
reduces in this case).

2.4 The mean/median/mode inequality

One common rule of thumb states that for unimodal distributions, the mean, the median,
and the mode often occur in either alphabetical or reverse-alphabetical order [see, e.g.,
Dharmadhikari and Joag-Dev (1988)]. As shown in the following result, which is proved
in the Appendix, the FL distribution is not an exception in this regard.

Proposition 2.5. If Y ∼ FL(μ, σ) then

M(Y ) < m(Y ) < E(Y ), (19)

where M(Y ), m(Y ), and E(Y ) are the mode, the median, and the mean of Y, respectively.

In the special case when μ = 0, the distribution reduces to the exponential one, and the
inequality in (19) turns into 0 < σ log 2 < σ , which is trivially true.

2.5 Truncated distributions and stochastic representation

Here we discuss folded Laplace distribution that is truncated above or below μ, and use
the resulting distributions to derive a stochastic representation of the FLmodel. Straight-
forward calculations show that the PDF of a folded Laplace variable truncated above at μ,
X = Y |Y ≤ μ, is given by

h1(y) =
{

1
σ

cosh(y/σ)
sinh(μ/σ)

for 0 ≤ y ≤ μ

0 otherwise.
(20)

On the other hand, a folded Laplace variable truncated below at μ,W = Y |Y ≥ μ, has
an exponential distribution with mean σ , shifted by μ units to the right, so its PDF is

h2(y) =
{

1
σ
e−

y−μ
σ for y ≥ μ

0 for y < μ.
(21)

We shall skip a routine derivation of the following result, which provides a stochastic
representation of an FL random variable in terms of the above two truncated variables.
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Proposition 2.6. If Y ∼ FL(μ, σ), then

Y d= IX + (1 − I)W , (22)

where X has the PDF (20), W has the PDF (21), I is an indicator variable given by

I =
⎧⎨
⎩
1 with probability p = 1

2

(
1 − e

−2μ
σ

)
,

0 with probability q = 1
2

(
1 + e

−2μ
σ

)
,

(23)

and all three variables on the right-hand-side of (22) are mutually independent.

2.6 The mean residual life

Themean residual life function,

m(t) = E(Y − t|Y > t), (24)

is an important concept in a variety of fields, including reliability and insurance, to name
just a few [see, e.g., Jeong (2014) and references therein]. To compute (24) for an FL dis-
tributed Y, we start with the conditional distribution of Y − t given Y > t, called the
excess random variable. In view of Proposition 2.6, it is easy to see that, for t > μ, the
excess random variable is simply exponential with mean σ . On the other hand, routine
algebra shows that when 0 ≤ t ≤ μ, the CDF and the PDF of the excess random variable,
Y − t|Y > t, are given by

FY−t|Y>t(y) =
⎧⎨
⎩ α + β sinh

(
y+t
σ

)
for 0 ≤ y < μ − t

1 − γ e
−y
σ for y ≥ μ − t

(25)

and

fY−t|Y>t(y) =
⎧⎨
⎩

β
σ
cosh

(
y+t
σ

)
for 0 ≤ y < μ − t

γ
σ
e

−y
σ for y ≥ μ − t,

respectively, where

α = 1 − 1
1 − e−

μ
σ sinh(t/σ)

, β = e
−μ
σ

1 − e−
μ
σ sinh(t/σ)

, γ = e− t
σ cosh(μ/σ)

1 − e−
μ
σ sinh(t/σ)

.

Straightforward calculations lead to the result below, whose proof shall be omitted.

Proposition 2.7. If X ∼ FL(μ, σ) then the mean residual life function (24) is given by
m(t) = σ for t ≥ μ and

m(t) = μ − t
1 − e−

μ
σ sinh(t/σ)

+ σ e−
μ−t
σ (26)

for 0 ≤ t ≤ μ.

Remark 2.7. Note that the function m given above is continuous on [ 0,∞] with the
value of μ + σ exp(−μ/σ) for t = 0, which is to be expected asm(0) is just the mean of Y
itself.

2.7 The Lorenz curve

The Lorenz curve, defined as

L(y) = 1
EY

∫ y

0
t · g(t)dt,
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where g is the PDF of the random variable Y, is a standard tool in economics, used to
measure the social or wealth inequality [see, e.g., Gastwirth (1971)]. When we substitute
the PDF of FL distribution given in (4), we obtain

L(y) = 1
b

·
{
e−

μ
σ

{
σ + y sinh(y/σ) − σ cosh(y/σ)

}
for 0 ≤ y ≤ μ

μ + σ e−
μ
σ − (σ + y)e−

y
σ cosh(μ/σ) for y ≥ μ,

(27)

where a = μ + 2σ e
−μ
σ − μe

−2μ
σ and b = μ + σ e

−μ
σ is the mean of the FL distribution.

2.8 Entropy

Here we derive Shannon entropy,

H(X) = E[− log g(X)] , (28)

of an FL random variable X with PDF g. This is a standard measure of uncertainty, intro-
duced in Shannon (1948). The following result, which is proven in the Appendix, contains
relevant details.

Proposition 2.8. If X ∼ FL(μ, σ) then

H(X) = log(2σ) − log θ + θ2[ 1 + log θ − log
(
1 + θ2

)
]−θ
[π
2

− tan−1 θ
]
, (29)

where θ = exp(−μ/σ).

Remark 2.8. When μ = 0, so that X reduces to an exponential variable with mean σ ,
we obtain H(X) = log σ + 1, which is the entropy in this special case.

3 Parameter estimation
Here we consider the problem of estimating the parameters μ and σ of the folded
Laplace distribution. We shall focus on the method of moments, which is computation-
ally straightforward. Maximum likelihood estimation for this case, which is theoretically
and computationally much more involved, is currently under investigation and will be
reported elsewhere.
Let Y1,Y2, . . . ,Yn be independent and identically distributed (IID) random variables

that follow the FL(μ, σ) model, and let M1 = Ȳn = 1
n
∑n

i=1 Yi and M2 = 1
n
∑n

i=1 Y 2
i be

the first two sample moments. To derive the method of moment estimators (MMEs) of
the two parameters we shall use an equivalent alternative parameterization, where μ is
replaced by

δ = μ

σ
∈ [ 0,∞). (30)

When we set the first two moments of an FL distribution (given in Proposition 2.3)
equal to the sample moments {Mi}, we obtain the following system of two equations in
two unknowns:

M1 = σ
(
δ + e−δ

)
,

M2 = σ 2 (δ2 + 2
)
.

(31)
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By squaring the first equation in (31) and taking the ratios of the corresponding sides,
we can eliminate σ and obtain a single equation for the parameter δ:

δ2 + 2(
δ + e−δ

)2 = M2

M2
1
. (32)

As shown in the proof of Proposition 3.1 (see below) given in the Appendix, the function

h(δ) = δ2 + 2(
δ + e−δ

)2 , δ ∈[ 0,∞), (33)

that appears on the left-hand-side of (32), is monotonically decreasing in δ with

h(0) = 2 and lim
δ→∞ h(δ) = 1. (34)

Thus, Eq. (32) admits a unique solution whenever

1 <
M2

M2
1

< 2. (35)

In turn, under the condition (35), the system of Eq. (31) has a unique solution given by

δ̂n = r
(
M2

M2
1

)
, σ̂n =

√√√√ M2[
r
(
M2
M2

1

)]2 + 2
, (36)

where r is the inverse of the function h. The following result summarizes this discussion.

Proposition 3.1. Let Y1, . . . ,Yn be a random sample from an FL(μ, σ) distribution, and
let M1 and M2 be the first and the second sample moments based on the {Yi}, respectively.
Then, there exist unique moment estimators of δ = μ/σ and σ , given by (36), whenever the
condition (35) is satisfied.

Note that since the sample variance

S2n = 1
n

n∑
i=1

(Yi − Ȳn)2 = 1
n

n∑
i=1

Y 2
i − Ȳ 2

n = M2 − M2
1

satisfies the relation S2n ≥ 0, the left-hand-side inequality in (35) is generally true, unless
we have an exceptional case where all the sample values are equal (andM2 = M2

1). To be
consistent with Eq. (32), in this case we set δ̂n = ∞, leading to σ̂n = 0. When we re-write
the moment Eq. (31) equivalently as

M1 = μ + σ e
−μ
σ

M2 = μ2 + 2σ 2
(37)

and substitute σ = 0, we obtain μ̂n = M1 = Ȳn (this special FL distribution assigns the
entire mass to a single point μ̂n). Further, the right-hand-side inequality in (35) can be
stated as

Ȳ 2
n >

1
n

n∑
i=1

Y 2
i − Ȳ 2

n = S2n,

or, equivalently, as Sn/Ȳn < 1. But this is expected to be true for large n, since the sam-
ple coefficient of variation Sn/Ȳn converges to the theoretical one, which is known to be
less than 1 (see Proposition 2.4). In the boundary case M2 = 2M2

1 (Sn/Ȳn = 1), to be
consistent with Eq. (32), we set δ̂n = 0. This should be interpreted as μ̂n = 0, in which
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case, according to (37), we would set σ̂ = M1 (so that the resulting FL distribution is
exponential). We propose the same interpretation whenM2 > 2M2

1. With these practical
conventions, the MMEs of μ and σ always exist and are unique.

Remark 3.1. In view of (30), the MME of μ is μ̂n = δ̂nσ̂n.

Remark 3.2. When one of the two parameters is known, the MME of the other one can
be easily obtained from the first moment equation in (31). Clearly, when δ is given, then
the parameter σ is uniquely estimated as

σ̂n = M1
δ + e−δ

.

Alternatively, with a known σ , the MME of δ is the unique value for which v(δ) = δ +
exp(−δ) = M1/σ , provided thatM1/σ ≥ 1. This is easily deduced from the properties of
the function v, which is continuous and monotonically increasing on the interval [ 0,∞),
with v(0) = 1 and v(δ) → ∞ as δ → ∞. The condition M1/σ = Ȳn/σ ≥ 1 is expected
to be true when n is large, since by law of large numbers Ȳn converges to the mean EY
given by the right-hand-side of the first equation in (31), which is greater than or equal to
σ . In the boundary case M1/σ = 1 we have δ̂n = 0 (so that also μ̂n = 0), indicating an
exponential distribution. One can follow the same interpretation whenM1/σ ≤ 1.

Remark 3.3. To find the MMEs of δ and σ in practice one can use standard Newton-
Raphson algorithm or utilize a statistical package (such as R) to compute the unique zero
of the (well-behaved) function h(δ) − M2/M2

1, δ ∈[ 0,∞).

Standard large sample theory results (see, e.g., Rao 1973) show that the estimators (36)
are consistent and asymptotically normal.

Proposition 3.2. The vector (δ̂n, σ̂n) of MMEs given in Proposition 3.1 is
(i) consistent;
(ii) asymptotically normal, that is

√
n[ (δ̂n, σ̂n) − (δ, σ)] converges in distribution to a

bivariate normal distribution with the (vector) mean zero and the covariance matrix

�MME = 1(
e−δ[ 2 + δ + δ2]−2

)2
[
w11 w12
w12 w22

]
, (38)

where

w11 = 8 − e−δδ5 − 10e−δδ3 − 14e−δδ − 4e−2δδ2 − 7e−2δ + 5δ2,
w12 = σ

2
{
e−2δ[ 2 + 8δ + 2δ2 + δ3 + δ4]+e−δ[ 2δ4 + 14δ2 + 2δ − 2]−10δ

}
,

w22 = σ 2 {5 − e−2δ[ δ3 − δ2 − 4δ − 5]−e−δ[ δ3 + 4δ + 10]
}
.

(39)

Remark 3.4. The MMEs (μ̂n, σ̂n) of the parameters μ and σ , where μ̂n = δ̂nσ̂n, are also
consistent and asymptotically normal, with

√
n[ (μ̂n, σ̂n) − (μ, σ)] converging in distri-

bution to a bivariate normal distribution with the (vector) mean zero and the covariance
matrix
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Table 1 Estimation of the WTI and the Brent oil data. The standard errors (SE) that appear next to the
estimates are approximated from the asymptotic distributions of the estimators

Data Sample The 1st The 2nd

Set Size n Moment Moment μ̂ (SE) σ̂ (SE)

WTI oil prices 1415 1.002 1.001 1.002 (0.001) 0.038 (0.001)

Brent oil prices 777 1.001 1.003 1.001 (0.001) 0.015 (0.001)

�̃MME = σ 2(
e−δ[ 2 + δ + δ2]−2

)2
[
w̃11 w̃12
w̃12 w̃22

]
, (40)

where

w̃11 = e−2δ (2δ4 + 6δ3 + 9δ2 + 2δ − 7
)− e−δ

(
8δ2 − 16δ

)+ 8,
w̃12 = − 1

2e
−δ
{
e−δ
(
δ4 − 3δ3 − 10δ2 − 18δ − 2

)− 6δ2 + 18δ + 2
}
,

w̃22 = −e−2δ (δ3 − δ2 − 4δ − 5
)− e−δ

(
δ3 + 4δ + 10

)+ 5.
(41)

The proof of the above is similar to that of Proposition 3.2, and shall be omitted.

Fig. 2 Histogram of the WTI oil data along with the theoretical folded Laplace PDF, where μ = 1.002 and
σ = 0.038 (panel a) and histogram of the Brent oil data along with the theoretical folded Laplace PDF, where
μ = 1.001 and σ = 0.015 (panel b)
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Fig. 3 Quantile (Q-Q) plot of the WTI oil price data against fitted FL distribution, based on n = 1415 daily
returns (panel a) and quantile (Q-Q) plot of the Brent oil price data against fitted FL distribution, based on
n = 777 daily returns (panel b)

4 Illustrative data examples
In this section we present an application of the folded Laplace distribution in modeling
West Texas Intermediate (WTI) and Brent Oil historical oil prices. The WTI data are
collected from January 3, 1986 to February 15, 2003, with the total of 1416 data points
with the WTI Spot Price FOB (dollars per barrel). The data source is US Department
of Energy via wikiposit.org (http://wikiposit.org/uid?DOE.RWTC). The Brent Oil prices,
taken from the Invest Excel (http://investexcel.net/), cover the period from January 1,
2009 to January 1, 2012, with the total of 778 data points (dollars per barrel).
We work with the daily returns Yk = Sk/Sk−1, where Sk represents the oil price on day

k. Clearly, the values are positive, with n1 = 1415 and n2 = 777 daily returns derived from
WTI and Brent daily oil prices, respectively. Our goal is to model the oil price returns
using the FL(μ, σ) distribution. We apply the method of moments discussed in Section 3
to estimate the parameters μ and σ of the FL model. The results of the estimation are
summarized in Table 1, containing the MMEs along with their standard errors. The latter
are computed from the asymptotic distribution given by (40–41).
Figure 2a and b, respectively, show histograms of the WTI and the Brent oil data, along

with the theoretical FL PDFs (with estimated parameters).
Next, we produced Q-Q plots of the WTI and the Brent oil data, obtaining a nearly

straight lines [see Fig. 3a and b, respectively]. Overall, it appears the FLmodel fits theWTI
data and the Brent oil prices data reasonably well. The above examples illustrate modeling

http://wikiposit.org/uid?DOE.RWTC
http://investexcel.net/
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potential of the FL distribution in situations where the underlying phenomena are restric-
tive to positive values and the empirical distributions resemble the Laplace distribution
with its sharp peak at the mode.

Appendix
Here we collect selected proofs of the results presented above, which are preceded by a
technical lemma.
Lemma 5.1. For c ≥ 0 let

Ic =
∫ c

0

(
ex + e−x) log (ex + e−x) dx.

Then

Ic = (ec − e−c) log (ec + e−c)− (ec − e−c)+ 4 tan−1 (ec)− π .

Proof. Standard integration by parts leads to

Ic = (ec − e−c) log (ec + e−c)− ∫ c

0

[(
ex − e−x)2 /

(
ex + e−x)] dx.

Upon the substitution u = exp(x), the integral on the right-hand-side above becomes∫ c

0

[(
ex − e−x)2 /

(
ex + e−x)] dx =

∫ ec

1

(
1 − 4

1 + u2
+ 1

u2

)
du.

Subsequent straightforward calculations produce the desired result.

Proof of Proposition 2.4. The condition CY < 1 is equivalent to
√
Var(Y ) < E(Y ).

When we substitute the expressions for the mean and the variance, then, after some
algebra, we end up with the inequality

x2 − 2 + 2e−2x + 4xe−x > 0 for all x > 0,

where x = μ/σ ∈ (0,∞). Further algebra shows that the above inequality can be
formulated as

x + 2e−x >

√
2
(
1 + e−2x) for all x > 0. (42)

By the well-known relation between arithmetic and geometric means we have√
2
(
1 + e−2x) <

2 + (1 + e−2x)
2

= 3 + e−2x

2
for all x > 0.

Thus, relation (42) will be established if we can show that
3 + e−2x

2
< x + 2e−x for all x > 0,

or, equivalently,

v(x) = 2x + 4e−x − 3 − e−2x > 0 for all x > 0. (43)

Note that the function v defined in (43) is continuous and v′(x) = 2
(
1 − e−x)2 > 0

for x > 0, showing that v is increasing on the interval (0,∞). Since v(0) = 0, the result
follows.

Proof of Proposition 2.5. First, note that, since σ > 0 and exp(−μ/σ) > 0, we have

m(Y ) = σ log
(
e

μ
σ + e

−μ
σ

)
> σ log

(
e

μ
σ

)
= σ · μ

σ
= μ = M(Y ),
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so it remains to prove that the mean exceeds the median. This is equivalent to
μ

σ
+ e

−μ
σ > log

(
e

μ
σ + e

−μ
σ

)
.

To see this, we let t = μ
σ

> 0, so that the above inequality becomes

h(t) > 0 for all t > 0,

where h(t) = t + e−t − log
(
et + e−t). Observe that

h′(t) = −
(
e−t − 1

)2
et + e−t < 0,

so that the function h is decreasing on (0,∞). Thus, our inequality will follow if we can
show that

lim
t→∞ h(t) ≥ 0. (44)

However, the function h can be written as h(t) = e−t − log[ 1+exp(−2t)], which clearly
converges to zero at infinity. Thus, the relation (44) holds and the result follows.

Proof of Proposition 2.8. When we apply the definition of Shannon entropy, given in
(28), to an FL(μ, σ) random variable X with PDF g given in (4), this results in

H(X) = −
∫ μ

0
g(x) log g(x)dx −

∫ ∞

μ

g(x) log g(x)dx = I + II.

Standard algebra leads to

I =
[
log(2σ) + μ

σ

] ∫ μ

0
g(x)dx − 1

2σ
e−

μ
σ

∫ μ

0

(
e
x
σ + e−

x
σ

)
log
(
e
x
σ + e−

x
σ

)
dx,

while

II = log(2σ)

∫ ∞

μ

g(x)dx−log
(
e

μ
σ + e−

μ
σ

) ∫ ∞

μ

g(x)dx+ 1
2σ

(
e

μ
σ + e−

μ
σ

) ∫ ∞

μ

x
σ
e−

x
σ dx,

so that, after further algebra, we obtain

I+II = log(2σ)+ μ

σ
G(μ)−log

(
e

μ
σ + e−

μ
σ

)
[ 1−G(μ)]+ 1

2σ

(
e

μ
σ + e−

μ
σ

)
A− 1

2σ
e−

μ
σ B.

(45)

Here, G is the FL(μ, σ) CDF, so that G(μ) =[ 1 − exp(−2μ/σ)] /2, while

A =
∫ ∞

μ

x
σ
e−

x
σ dx = (μ + σ)e−

μ
σ

and

B =
∫ μ

0

(
e
x
σ + e−

x
σ

)
log
(
e
x
σ + e−

x
σ

)
dx = σ

∫ μ
σ

0

(
ey + e−y) log (ey + e−y) dy.

When we compute B using Lemma 5.1, and substitute the resulting expression, along
with the A and G(μ) given above, into (45), we obtain the result after straightforward
algebra. This completes the proof.

Proof of Proposition 3.1. It is enough to show that the function h defined in (33) is
monotonically decreasing on the interval (0,∞) and satisfies the conditions given in (34).
Indeed, it is obvious that in this case the MME of δ is as specified in (36), which in turn
leads to the MME of σ , obtained by solving either one of the Eq. (31) with δ replaced by
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δ̂n. Since the values of h at the boundary of its domain are obtained easily, we consider the
issue of the monotonicity. Straightforward calculations show that the derivative of h is

d
dδ

h(δ) = 2
[
e−δ
(
2 + δ + δ2

)− 2
]

(
δ + e−δ

)3 .

Simple algebra shows that this quantity is negative for each δ ∈ (0,∞) if and only if we
have

v(δ) = 2eδ − 2 − δ − δ2 > 0, δ ∈ (0,∞). (46)

Since the function v above is continuous on [ 0,∞) and differentiable on (0,∞) with
v(0) = 0, it is enough to prove that the derivative v′(δ) is strictly positive for each δ ∈
(0,∞). It is easy to see that latter condition is equivalent to

eδ > δ + 1
2
, δ ∈ (0,∞),

which is known to be true. This completes the proof.

Proof of Proposition 3.2. Write the estimators as

(δ̂n, σ̂n) = H(Yn,Xn) = (H1(Yn,Xn),H2(Yn,Xn)), (47)

where

H1(y1, y2) = r
(
y2
y21

)
, H2(y1, y2) =

√√√√ y2[
r
(
y2
y21

)]2 + 2

and r(·) is the inverse of h. The quantity Xn in (47) is the sample mean of Xi = Y 2
i ,

i = 1, . . . , n. To prove consistency, apply the law of large numbers to the sequence
Zi = (Yi,Y 2

i )′ and conclude that the sample mean Zn converges in distribution to the
population mean

mZ = E(Zi) = (σ (δ + e−δ
)
, σ 2 (δ2 + 2

))′ .
Consequently, by continuous mapping theorem, the sequence (47) converges in distri-

bution to H(mZ) = (δ, σ). Next, by the classical multivariate central limit theorem, we
have the convergence in distribution

√
n(Zn−mZ)

d→ N(0,�), where the right-hand-side
denotes the bivariate normal distribution with mean vector zero and covariance matrix

� =
[

Var(Yi) Cov(Yi,Y 2
i )

Cov(Yi,Y 2
i ) Var(Y 2

i )

]
.

A straightforward calculation, facilitated by Proposition 2.3, shows that

� =
[

σ 2 (2 − e−2δ − 2δe−δ
)

σ 3 (e−δ(4 − δ2) + 4δ
)

σ 3 (e−δ(4 − δ2) + 4δ
)

σ 4 (8δ2 + 20
)

]
.

Standard large sample theory (see, e.g., Rao 1973) leads to the conclusion that, as n →
∞, the variables

√
n(H(Zn) − H(mZ)) = √

n[ (δ̂n, σ̂n)′ − (δ, σ)′]
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converge in distribution to a bivariate normal vector with mean vector zero and covari-
ance matrix � = D�D′, where

D =
[

∂Hi
∂yj

∣∣∣∣
(y1,y2)=mZ

]2
i,j=1

is the matrix of partial derivatives of the vector-valued function H. A rather lengthy
calculation yields

D = 1
e−δ[ 2 + δ + δ2]−2

[
− δ2+2

σ
δ+e−δ

2σ 2

δ − 1−e−δ

2σ

]
,

which, after more algebra, produces the asymptotic covariance matrix (38). This con-
cludes the proof.
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