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Abstract
The Birnbaum-Saunders distribution was derived in 1969 as a lifetime model for a
specimen subjected to cyclic patterns of stresses and strains, and the ultimate failure of
the specimen is assumed to be due to the growth of a dominant crack in the material.
The inverse Gaussian distribution is used to describe the first passage time for a particle
(moving with constant velocity) that is subject to linear Brownian motion. These two
models have a rich history, and they have been shown to be much related. In this
article, these two models will be reviewed and comparisons will be made. Specifically,
two moment-ratio diagrams will be presented that gives insight to the reason of both
distributions often achieve similar fits to experimental data. Next, a generalized
Birnbaum-Saunders distribution, will be presented and several properties will be
derived. In particular, it will be shown that this generalized model can be expressed as a
mixture of inverse Gaussian-type random variables (similar to the two-parameter
Birnbaum-Saunders model). Estimation of the parameters in the generalized
Birnbaum-Saunders distribution will be discussed. Lastly, some conclusions from this
investigation are presented.

Keywords: Bimodality, Cycles to failure, Fatigue, Generalized Birnbaum-Saunders
distribution, Moment-ratio diagram

1 Introduction
Birnbaum and Saunders (1969a) derived a lifetime distribution, known as the Birnbaum-
Saunders distribution (abbreviated as B-S hereafter), which is founded on modeling the
failure of a specimen that is subjected to a cyclic pattern stresses and strains. The ulti-
mate failure is due to the growth of a dominant crack in the material. At each increment
of load, this dominant crack extends by a random, non-negative amount. Another model,
the inverse Gaussian distribution (abbreviated by I-G hereafter), was originally used to
describe the first passage time in a Brownian motion. However, the inverse Gaussian dis-
tribution has been used quite frequently to model reliability data, and the relationship
between the B-S and the I-G distributions was first established by Bhattacharyya and
Fries (1982). Starting in Section 2, these two distributions will be presented, and the main
results, extensions, and summaries from an extensive literature review will be provided.
Following that section, the main purpose of this paper is two-fold and is introduced in
the two following sections. In Section 3, comparisons of these two models will be made
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by providing two moment-ratio diagrams for both the B-S and I-G distributions. The first
diagram is a graph of the coefficient of variation (CV) versus skewness and the second
diagram is a graph of the skewness versus the kurtosis. While functionally these standard-
izedmoments are very different, when they are graphed they prove to be very similar. This
will further support the claims that the B-S and I-G distributions are nearly interchange-
able. Following this, a three-parameter extension to the B-S distribution proposed by
Díaz-García and Domínguez-Molina (2006) is presented in Section 4. Some very unique
properties and summary values will be presented, and it is shown that the distribution
has relationship to other models found in the literature. In addition, this model has the
ability to exhibit a bimodal shape for certain ranges of parameter values. We also discuss
different estimation methods for the parameters in the three-parameter B-S distribution
and study their performances in Section 4. Two numerical examples are given in Section 5
to illustrate the usefulness of the generalized distribution and the estimation methods.
Lastly, Section 6 presents some conclusions from this investigation.

2 The two-parameter B-S and I-G distributions
The precise derivation of the B-S model is given in Birnbaum and Saunders (1969a)
and also summarized in Owen (2006). The cumulative distribution function (CDF) for a
random variable S that follows the B-S distribution is given by

F(s) = Pr(S ≤ s) = �

[
1
α

(√ s
β

−
√

β

s

)]
, s > 0, (1)

where α > 0, β > 0, and � represents the standard normal CDF. To use shorthand,
we describe the random variable S that has distribution function (1) as S ∼ B-S(α,β).
The distribution (1) has some interesting properties given in Johnson et al. (1995b). The
parameter β is a scale parameter since by definition S/β ∼ B-S(α, 1). In addition, β is the
median for the distribution as from (1),

F(β) = Pr(S ≤ β) = �(0) = 0.5.

The parameter α is a shape parameter. The B-S distribution exhibits the well-known
reciprocal property: the random variable S−1 ∼ B-S(α, 1/β), so it is in the same family of
distributions (see Saunders 1974).
If Z is a standard normal random variable, then

S = β

2

(
2 + α2Z2 + αZ

√
α2Z2 + 4

)
(2)

has the B-S distribution in (1). This presentation is also given in Owen (2006) but it is
slightly different from Birnbaum and Saunders (1969a). In addition, the expression in (2)
is useful for random number generation and for deriving integer moments. The mean and
variance for S are

E(S) = β

(
1 + α2

2

)
(3)

and Var(S) = (αβ)2
(
1 + 5α2

2

)
, (4)

respectively. Higher order moments will come into play in the subsequent sections. Since
these higher order moments cannot be found in the literature, they are provided here.
The third and fourth moments (both about zero) are given by
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E(S3) = β3
(
1 + 9α2

2
+ 9α4 + 15α6

2

)
(5)

and E(S4) = β4
(
1 + 8α2 + 30α4 + 60α6 + 105α8

2

)
, (6)

respectively. These can be expressed by using the relationship (2) above. The expected
value for a standard normal variable that is raised to an integer power is given in
Zacks (1992).
The probability density function (PDF) of the random variable S following the B-S

distribution in (1) is given by

f (s) = F ′(s) = 1
2αβ

√
β

s

(
1 + β

s

)
× 1√

2π
exp

[
− 1
2α2

(
s
β

− 2 + β

s

)]
, s > 0, (7)

where α > 0, β > 0 and it is characteristically right-skewed when graphed. As α

decreases, particularly for values less than unity, the density becomes nearly symmetric
as the curve spread (variance) decreases. This two-parameter family of distributions has
various applications in reliability and life testing. For example, Birnbaum and Saunders
(1969b) consider an example to model the strength of aluminum coupons subjected
to cyclic stresses and strains. Three data sets are considered, each having different
levels of maximum stress per cycle. The parameters in (1) are estimated using maxi-
mum likelihood (ML) estimation. The likelihood equations are given in Birnbaum and
Saunders (1969b) and the ML estimates for α and β need to be found using numeri-
cal techniques. Dupuis and Mills (1998) consider an alternative to ML estimation for
the B-S distribution that is shown to be robust to the presence of contaminated data.
Ng et al. (2006) considered modified moment techniques for estimation and bias-
reduction methods for estimation of the parameters in the B-S model. Ashcar (1993)
derived the approximate Fisher information matrix for the parameters α and β and con-
sidered Bayesian inference using non-informative and Jeffrey’s priors. Other important
efforts include a log-linear model for the B-S distribution, which was derived by Rieck and
Nedleman (1991).
In the past decade, considerable research has been dedicated to the generalizations and

applications of the B-S distribution. Numerous authors have investigated different aspects
related to the B-S distribution. For instance, various generalizations and extensions of
the B-S distribution are proposed and discussed; see, for example, Díaz-García and
Leiva-Sánchez (2005), Díaz-García and Domínguez-Molina (2006), Owen (2006), Leiva
et al. (2008), Sanhueza et al. (2008), Gómez et al. (2009), Guiraud et al. (2009), Leiva
et al. (2009), Castillo et al. (2011), Cordeiro and Lemonte (2011), Genç (2013), Cordeiro
and Lemonte (2014) and Cordeiro, et al.: A model with long-term survivors: Negative
binomial Birnbaum-Saunders (to appear). These generalized B-S distributions have been
applied to model data obtained from different disciplines including environmental sci-
ences, reliability engineering and biomedical studies. For example, Leiva et al. (2008) used
generalized B-S distributions to model air pollutant concentration, Leiva et al. (2009) pro-
posed a length-biased B-S distribution for water quality data, Guiraud et al. (2009) used a
non-central B-S distribution for reliability analysis and Cordeiro, et al.: Amodel with long-
term survivors: Negative binomial Birnbaum-Saunders (to appear) proposed the negative
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binomial B-S distribution as a cure rate survival model. Software packages written in R (R
Core Team 2015) for B-S and generalized B-S distributions have been developed by Leiva
et al. (2006) and Barros et al. (2009).
In particular, Owen (2006) derived a three-parameter model based on the B-S model

in (7), and this was from a consequence of relaxing the assumption of independent
crack extensions and viewing critical crack growth as a long-memory process. The
three-parameter Birnbaum-Saunders distribution derived in Owen (2006) has PDF

f1(t) = 1√
2π

1
a
√
btκ

(
1 − κ + bκ

t

)
exp

[
− (t − b)2

2a2bt2κ

]
, t > 0, (8)

where a > 0, b > 0 and κ > 0 are the parameters. To avoid confusion in a literature
review, this model in (8) is referred to as the GB-S1.
The I-G distribution, another important distribution in reliability analysis, has PDF

p(x) =
√

λ

2πx3
exp

[
−λ(x − μ)2

2μ2x

]
, x > 0, (9)

where μ > 0 and λ > 0 are the parameters. We denote a random variable X having
distribution (9) as X ∼ I-G(μ, λ). Both μ and λ behave as shape-type parameters. When
graphed, (9) exhibits a right-skewed shape. Interested readers can refer to Johnson et al.
(1995a) for a discussion on the I-G distribution and for more information, see Chhikara
and Folks (1989). Of interest here is the scale-change property: if X ∼ I-G(μ, λ), then
aX ∼ I-G(aμ, aλ) for a constant a > 0. In addition, the mean, variance, third and fourth
moments (again, both about zero) are given by

E(X) = μ, (10)

Var(X) = μ3

λ
, (11)

E(X3) = μ3 + 3μ4

λ
+ 3μ5

λ2
, (12)

E(X4) = μ4 + 6μ5

λ
+ 15μ6

λ2
+ 15μ7

λ3
, (13)

respectively. The I-G distribution is a two-parameter exponential family (see Lehmann
and Casella 1998), and this fact has often made the I-G distribution more attractive for
the development of exact statistical procedures.

3 Relationships between and comparisons of the B-S and I-Gmodels
Of utmost importance here are the work published in two papers that relate the B-S and
I-G models. In this section, relationships between these two models will be established.

3.1 Literature review

In Bhattacharyya and Fries (1982), the identical approach in Birnbaum and Saunders
(1969a) was viewed as a Wiener process of accumulated fatigue in time (with positive
drift parameter μ and diffusion constant τ 2), and this leads directly to an I-G distribu-
tion. From this derivation, it is shown that a B-S random variable or “event” is actually
contained within the I-G model since only positive increments in the growth of the dom-
inant crack are allowed in Birnbaum and Saunders (1969a) (a “negative growth” can be
viewed as a repair in the dominant crack, but this event is rare whenever μ � τ ). There-
fore, the B-S distribution can be considered as an approximation of the I-G distribution,
but Bhattacharyya and Fries (1982) argued that this approximation is not necessary since
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the I-G distribution benefits from its exponential family structure. Still, the observation
in Bhattacharyya and Fries (1982) has elucidated the observation that (7) and (9) can
give similar shapes when fitting observed failure data. Following this result, Desmond
(1986) demonstrated that the B-S distribution can be written as an equal mixture of
an I-G distribution and the distribution of the reciprocal of an I-G random variable.
That is, for the mutually statistically independent random variables X1, X2, and B, where
X1 ∼ I-G(β ,β/α2), X−1

2 ∼ I-G(1/β , 1/(α2β)), and B follows Bernoulli distribution with
Pr(B = 0) = Pr(B = 1) = 0.5. Then,

BX1 + (1 − B)X2 = S ∼ B-S(α,β) (14)

Desmond (1986) argued that in a stochastic modeling point of view, the B-S distribution
is often more appropriate but the I-G is preferred for statistical analysis (see, for example,
Durham and Padgett 1997, Owen 2007). In addition, Desmond (1986) observed that the
hazard functions for the B-S and I-G distributions are very similar, giving further evidence
that the two models are nearly identical.

3.2 Alternative approach to relate the B-S and I-G distributions

Construction of moment ratio diagrams has provided alternative ways for comparing
univariate distributions and illustrating their differences. By selecting two standardized
moments for a host of distributions, these can be graphed and used to not only compare
and contrast distribution qualities but also the diagrams give a means for selecting poten-
tial models based on sample data. The “standardized moments” that are being referred
to are the coefficient of variation (CV) γ2, coefficient of skewness (or third standardized
moment) γ3, and the kurtosis (or fourth standardized moment) γ4. Following Cox and
Oates (1984) (see also Johnson et al. 1995a; 1995b), the moment ratio diagrams are given
by:

(I) plotting γ2 on the horizontal axis (abscissa) and γ3 on the vertical axis (ordinate)
(II) plotting γ3 on the horizontal axis and γ4 on the vertical axis (the classical

presentation of this graph is given upside down)

To identify a potential distribution to consider when modeling a dataset, sample stan-
dardized moments can be calculated and plotted as points in either (I) and/or (II) – thus,
probability distributions that are “close” to the point estimates can be considered as can-
didates for probability models. A recent article by Vargo et al. (2010) revisited themoment
ratio diagrams and presented comprehensive graphs of (I) and (II) above for over 30 com-
monly used univariate distributions. Limiting relationships between several well-known
families (e.g., t and chi-square) were also considered. In addition, to identify potential dis-
tributions to model a dataset, the authors presented a novel application of bootstrapping.
Therein, bootstrap samples are generated and the sample estimates of CV, skewness, and
kurtosis (represented as γ̂2, γ̂3 and γ̂4, respectively) are calculated in order to generate the
“concentration ellipse” to graph on the moment ratio diagrams. In this way, distributions
that are close to the concentration ellipse should be considered as candidates. Since point
estimates of higher moments can be highly variable, this bootstrap approach includes the
sampling error.
Several distributions are presented in Vargo et al. (2010), but the B-S and I-G distri-

butions are absent while the Wald distribution is included. The Wald distribution is an
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ambiguous model; there are some references that state that the Wald distribution is iden-
tical to the I-G distribution, but other references claim that the Wald distribution is a
special case of the I-G distribution with μ = 1 (see, page 262 of Johnson et al. 1995a).
Therefore, in this section the two moment-ratio diagrams (I) and (II) will be developed
for both the two-parameter I-G and B-S distributions.
For a (general) random variable Y with mean μ and standard deviation σ , the three

standardized moments (and their relationship to moments taken about zero) are given by

γ2 = σ

μ
, (15)

γ3 = E
[(

Y − μ

σ

)3
]

= E(Y 3) + 2μ3 − 3μ(μ2 + σ 2)

σ 3 , (16)

γ4 = E
[(

Y − μ

σ

)4
]

= E(Y 4) − 4μE(Y 3) + 6μ2σ 2 − 3μ4

σ 4 . (17)

Taking these expressions along with the moments for B-S distribution presented in
(3)–(6) and the moments for I-G distribution presented in (10)–(13), the results are
summarized in Table 1.
The results in Table 1 correct the mistakes in the coefficient of skewness and kurtosis

that appeared in the literature (see, for example, Ng et al. 2006, Balakrishnan et al. 2011,
Lemonte and Ferrari 2011).
There are two remarks from Vargo et al. (2010) that are applicable here: (i) since β

is a scale parameter in the B-S model, all of the standardized moments are free of β ;
and (ii) since μ and λ are both shape parameters in the I-G model, they both appear in
the standardized moments. However, since all of the standardized moments are common
functions of the quotientμ/λ, this will simplify the display of themoment-diagrams. Note
that in Vargo et al. (2010), it is most typical that the plotted points seen in moment-
ratio diagrams lie not far from the origin. Figures 1 and 2 are the moment ratio diagrams
(I) and (II), respectively, for the B-S and I-G distributions. The similarity of the shapes
provides more evidence that the two distributions are quite similar and even in many
cases comparable.

4 A generalized B-S distribution
The B-S distribution in (1) can be made more general by allowing the exponent (presently
set to the value 1/2) to take on other values. In so doing, it will be shown that this
extension exhibits some very interesting properties while still retaining a functional rela-
tionship to the I-G.We define the generalized Birnbaum-Saunders distribution by its CDF
representation given by

F2(t) = �

{
1
α

[(
t
β

)ν

−
(

β

t

)ν]}
, (18)

Table 1 Coefficient of variation γ2, coefficient of skewness γ3, and kurtosis γ4 for B-S and I-G
distributions

Distribution γ2 γ3 γ4

B-S(α, β) α
√
4+5α2

2+α2
4α(6+11α2)

(4+5α2)3/2
3 + 6α2(40+93α2)

(4+5α2)2

I-G(μ, λ)
√

μ
λ

3
√

μ
λ

3 + 15
(

μ
λ

)



Owen and Ng Journal of Statistical Distributions and Applications  (2015) 2:11 Page 7 of 23

Fig. 1 Second and third standardized moments plotted for the B-S and I-G distributions. Note since the
second moment will often be less than 0.5

where α > 0, β > 0, and ν > 0 make this a valid CDF. This is refereed to as the
“second” generalized B-S distribution as to not confuse with another, but very differ-
ent, unrelated generalized B-S distribution in Owen (2006). We denote this generalized
B-S distribution as GB-S2. This generalization of B-S distribution was proposed by Díaz-
García and Domínguez-Molina (2006) (see also Eq. (B9.2) of Sanhueza et al. 2008). This
model includes (1) as a special case when ν = 0.5. Here, we describe a random variable T
that has distribution function (18) as T ∼ GB-S2(α,β , ν). The PDF for the GB-S2(α,β , ν)

distribution is given by

f2(t) = ν

tα
√
2π

[(
t
β

)ν

+
(

β

t

)ν]
× exp

{
− 1
2α2

[(
t
β

)2ν
+
(

β

t

)2ν
− 2

]}
, t > 0. (19)

Fig. 2 Third and fourth standardized moments plotted for the B-S and I-G distributions
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This generalized Birnbaum-Saunders distribution is a flexible three-parameter family
of distributions, and the shape of the density varies widely with different values of the
parameters. Interestingly, the density is bimodal if both α > 2 and ν > 2, and the major
mode is always less than the minor mode. In Figs. 3 and 4, we present various graphs of
the PDF in (19); since β is a scale parameter, without loss of generality, it is fixed at unity
for all cases. For the reader’s interest, we also provide the values of the mean and standard
deviation for each distribution that were calculated using (24).
As it can be seen, the densities in Fig. 4 are interesting since that while the medians are

equal the means and standard deviations are quite different. Lastly, the ability for (19) to
achieve a bimodal shape truly expands the flexibility for the model; often, when dealing
with a dataset with twomodes amixturemodel is the standard approach (see, for example,
Chen et al. 2008).

4.1 Properties and related distributions

The distribution in (18) has some very interesting properties, andmany similar properties
of the two-parameter model (1) still hold for (18). Namely, β remains a scale parameter
and is also the median for the distribution. Both α and ν are shape-type parameters. If Z
is a standard normal variable, then the random variable

T = β

[
αZ + √

α2Z2 + 4
2

]1/ν
(20)

follows GB-S2(α,β , ν). Thus, random variates from this generalized distribution can
easily be simulated. Clearly, the reciprocal property is also preserved since a trivial
calculation shows that

T−1 ∼ GB-S2(α, 1/β , ν).

In fact, (18) generally describes the family of distributions of power transformations for
random variables distributed as (1); it is straightforward to show that if S ∼ B-S(α,β),

Fig. 3 Graphs of theGB − S2 PDF (19) with β = 1. Solid line, α = 0.5, ν = 1 (mean = 1.030, s.d. = 0.253), dashed
line: α = 0.5, ν = 0.5 (mean = 1.125, s.d. = 0.573); dotted line: α = 1, ν = 0.3 (mean = 2.928, s.d. = 5.651)
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Fig. 4 Graphs of the GB − S2 PDF (19) with β = 1. Solid line: α = 8, ν = 6 (mean = 1.046, s.d. = 0.309), dashed
line: α = 8, ν = 2.5 (mean = 1.277, s.d. = 1.038), dotted line: α = 0.25, ν = 0.25 (mean = 1.131, s.d. = 0.595)

then for any nonzero real-valued constant k, Sk ∼ GB-S2(α,βk , 0.5|k|−1), where | · | rep-
resents the absolute value function. In addition, when k is a positive integer, the GB-S2
variable Sk can be expressed as a mixture of I-G-type random variables. Following the
work of Desmond (1986) as described in Section 3.1, the binomial theorem can be applied.
Since all cross-product terms are zero, we can obtain the following relationship:

Sk = [BX1 + (1 − B)X2]k = BXk
1 + (1 − B)Xk

2 , (21)

where X1, X2, and B are as defined in Section 3.1. In (21), the random variables X1 and
X2 are raised to the power k, which are called power I-G distribution. One may refer to
Hossain et al. (1997) for a description of the power I-G distribution as well as properties
of mixtures of I-G random variables.
Closed-form expressions of moments for (18) do not exist for all values of the parame-

ters but they can be evaluated using the following relationship. IfT ∼ GB-S2(α,β , ν), then
it can be shown that the transformation U = lnT has the following distribution function

G(u) = �

[
2
α
sinh

(
u − δ

η

)]
,−∞ < u < ∞, (22)

where δ = lnβ and η = 1/ν. The distribution (22) is the three-parameter form
of the sinh-normal (here, abbreviated by S-N) distribution (see, for example, Johnson
et al. 1995b), and we denote a random variable U following distribution (22) as U ∼
S-N(α, δ, η). The parameter α > 0 is a shape parameter, −∞ < δ < ∞ is a location
parameter (also the mean of the distribution), and η > 0 is a scale parameter. The PDF of
the S-N distribution is always symmetric about δ and it is mound shaped if α > 2. For val-
ues of α > 2, the PDF is bimodal. This distribution is also referred to as the “central” S-N
distribution. For a detail description of the S-N distribution and a normal approximation
to the S-N distribution for small values of α, see Rieck (1999).
The relationship between the two-parameter B-S distribution and a two-parameter S-

N distribution was established in Rieck and Nedleman (1991): if S ∼ B-S(α,β), then U =
ln S ∼ S-N(α, lnβ , 2). Later, Rieck (1999) obtained expressions for integer and fractional
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moments for distribution (22) using the moment generating function (MGF) of the two-
parameter S-N distribution via the relation

MU(r) = E[exp(Ur)]= E(Sr).

This method is applicable to the GB-S2 distribution as well. Following Rieck (1999), the
MGF for the three-parameter S-N distribution (21) is given by

MU(r) = exp(δr)
K(ηr+1)/2(α−2) + K(ηr−1)/2(α−2)

2K1/2(α−2)
(23)

where r is any real number and Kω(z) is a modified Bessel function of the third kind of
order ω (Watson 1995). This function Kω(z) can be expressed in an integral form as

Kω(z) = 1
2

∫ ∞

−∞
exp[−z cosh(t) − ωt] dt.

Numerous software packages (e.g., R, S-PLUS, EXCEL) can evaluate Kω(z) for spe-
cific parameter values of ω and z. Of interest here is the result from Rieck (1999) that
the denominator in (23) reduces to α

√
2π exp(−α−2). Using this result, we obtain the

expression

E(Tr) = βr exp(α−2)

α
√
2π

[
K(r/ν+1)/2(α

−2) + K(r/ν−1)/2(α
−2)
]
. (24)

Thus, (24) can be used to calculate the mean and variance for the GB-S2(α,β , ν)

distribution analogous to the formulae provided in (3) and (4) for the B-S model.

4.2 Estimation of parameters

Suppose T1,T2, . . . ,Tn are independent and identically distributed random variables
from the GB-S2 distribution with CDF in (18) and PDF in (19). We denote the observed
values of T1,T2, . . . ,Tn by t1, t2, . . . , tn. TheML estimation method can be used here. The
likelihood function can be expressed as

L(α,β , ν) ∝ νn

αn(2π)n/2

n∏
i=1

1
ti

[(
ti
β

)ν

+
(

β

ti

)ν]

× exp
{

− 1
2α2

[(
ti
β

)2ν
− 2 +

(
β

ti

)2ν
]}

.

Thus, the log-likelihood function is

ln L(α,β , ν) = constant + n ln ν − n lnα

+
n∑

i=1
ln
[(

ti
β

)ν

+
(

β

ti

)ν]

− 1
2α2

n∑
i=1

[(
ti
β

)2ν
− 2 +

(
β

ti

)2ν
]
.

Taking derivatives of the log-likelihood function with respect to the parameters and
setting these derivatives to zeros, we have the likelihood equations (see Appendix):

α =
{
1
n

n∑
i=1

[(
ti
β

)2ν
− 2 +

(
β

ti

)2ν
]}1/2

, (25)
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n∑
i=1

(
ti
β

)ν −
(

β
ti

)ν

(
ti
β

)ν +
(

β
ti

)ν = n
n∑

i=1

[(
ti
β

)2ν
−
(

β

ti

)2ν
]

×
{ n∑

i=1

[(
ti
β

)2ν
− 2 +

(
β

ti

)2ν
]}−1

, (26)

n∑
i=1

[
ln
(
ti
β

)] [(
ti
β

)ν −
(

β
ti

)ν]
(
ti
β

)ν +
(

β
ti

)ν = −n
ν

+ n
{ n∑

i=1

[
ln
(
ti
β

)][(
ti
β

)2ν
−
(

β

ti

)2ν
]}

×
{ n∑

i=1

[(
ti
β

)2ν
− 2 +

(
β

ti

)2ν
]}−1

. (27)

The maximum likelihood estimators (MLEs) of β and ν, denoted by β̂ and ν̂, respec-
tively, can be obtained by solving Eqs. (26) and (27) simultaneously. Numerical methods
for two-dimensional optimizations can be employed here. Then, the MLEs of α, α̂, can be
obtained by Eq. (25). Then, the observed Fisher information matrix is given by

I(α̂, β̂ , ν̂) =
⎡⎢⎣ I11 I12 I13
I21 I22 I23
I31 I32 I33

⎤⎥⎦

=

⎡⎢⎢⎢⎣
− ∂ ln L(α,β ,ν)

∂α2 − ∂ ln L(α,β ,ν)
∂α∂β

− ∂ ln L(α,β ,ν)
∂α∂ν

− ∂ ln L(α,β ,ν)
∂α∂β

− ∂ ln L(α,β ,ν)

∂β2 − ∂ ln L(α,β ,ν)
∂β∂ν

− ∂ ln L(α,β ,ν)
∂α∂ν

− ∂ ln L(α,β ,ν)
∂β∂ν

− ∂ ln L(α,β ,ν)

∂ν2

⎤⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
(α,β ,ν)=(α̂,β̂ ,ν̂)

where

I11 = 2n
α̂2 ,

I12 = I21 = 2ν̂
β̂α̂3

n∑
i=1

⎡⎣( ti
β̂

)2ν̂
−
(

β̂

ti

)2ν̂
⎤⎦ ,

I13 = I31 = − 2
α̂3

n∑
i=1

[
ln
(
ti
β̂

)]⎡⎣( ti
β̂

)2ν̂
−
(

β̂

ti

)2ν̂
⎤⎦ ,

I22 = −4ν̂2

β̂2

n∑
i=1

⎡⎣( ti
β̂

)ν̂

−
(

β̂

ti

)ν̂
⎤⎦−2

+ 2nν̂(α̂2 + 2)
α̂2β̂2

,

I23 = I32 = 4ν̂
β̂

n∑
i=1

[
ln
(
ti
β̂

)]⎡⎣( ti
β̂

)ν̂

+
(

β̂

ti

)ν̂
⎤⎦−2

− 2ν̂
β̂α̂2

n∑
i=1

[
ln
(
ti
β̂

)]⎡⎣( ti
β̂

)2ν̂
+
(

β̂

ti

)2ν̂
⎤⎦ ,



Owen and Ng Journal of Statistical Distributions and Applications  (2015) 2:11 Page 12 of 23

I33 = n
ν̂2

− 4
n∑

i=1

[
ln
(
ti
β̂

)]2⎡⎣( ti
β̂

)ν̂

+
(

β̂

ti

)ν̂
⎤⎦−2

,

+ 2
α̂2

n∑
i=1

[
ln
(
ti
β̂

)]⎡⎣( ti
β̂

)2ν̂
+
(

β̂

ti

)2ν̂
⎤⎦ .

Hence, a local estimate of the asymptotic variance-covariance matrix of the MLEs can
be obtained by inverting the observed Fisher information matrix as

I−1(α̂, β̂ , ν̂) =
⎡⎢⎣ V̂ar(α̂) Ĉov(α̂, β̂) Ĉov(α̂, ν̂)

V̂ar(β̂) Ĉov(β̂ , ν̂)

V̂ar(ν̂)

⎤⎥⎦ .

Following the asymptotic theory of MLEs and the fact that α, β and ν are positive
parameters, use log transformations to obtain approximate confidence intervals for these
parameters (see, for example, Meeker and Escobar 1998). Specifically, for parameter α,
we can approximate the distribution of ln(α̂)−ln(α)√

Var(ln(α̂))
by a standard normal distribution,

where the variance of the log-transformedMLE,Var(ln(α̂)), can be approximated by delta
method as

V̂ar(ln(α̂)) = V̂ar(α̂)

α̂2 .

A two-sided 100(1 − δ)% normal-approximation confidence interval for α obtained in
this manner is then given by

[α̂l, α̂u]=

⎡⎢⎢⎢⎢⎣ α̂

exp
(

z1− δ
2

√
V̂ar(α̂)

α̂

) , α̂ · exp
⎛⎝z1− δ

2

√
V̂ar(α̂)

α̂

⎞⎠
⎤⎥⎥⎥⎥⎦ , (28)

where zq is the q-th upper percentile of a standard normal distribution. Following
the same procedure, normal-approximation confidence intervals for β and ν can be
constructed.
Beside the use of ML estimation, moment and quantile based estimators can also be

considered. Based on the first moments of the random variable T and 1/T , we have
E(T)

E(1/T)
= β2.

Therefore, the parameter β can be estimated by using the first sample moments of T
and 1/T , i.e.,

β̃1 =

⎛⎜⎜⎝
n∑

i=1
ti

n∑
i=1

1/ti

⎞⎟⎟⎠
1/2

= 2n
α̂2 .

Consider the monotone transformation

W = 1
2

[(
T
β

)ν

−
(

β

T

)ν]
,

which follows a normal distribution with mean 0 and variance α2/4. For known values
of β and ν, by equating the sample second moment of W to α2/4, an estimator of the
parameter α can be expressed as
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α̃ =
{
1
n

n∑
i=1

[(
ti
β

)ν

−
(

β

ti

)ν]2}1/2

.

Note that this equation is equivalent to the estimate obtained based on the likelihood
equation for α.
Since the parameter β is the median of the distribution, therefore, the median of

T1,T2, . . . ,Tn can be used as an estimate of β . Let us denote this estimator as

β̃2 = Median(T1,T2, . . . ,Tn).

After obtaining the estimate of β , we can consider the transformed data xi = ti/β̃ ,
i = 1, 2, . . . , n and denote the corresponding order statistics as x1:n < x2:n < . . . < xn:n.
Consider the following non-linear regression model,

yi = g(xi;α, ν) + εi, i = 1, 2, . . . , n,

where

yi = �−1
[
i − 0.5

n

]
,

xi = xi:n,

g(x;α, ν) = 1
α

(xν − x−ν),

and εi is the error term. Nonlinear least-squares estimates of the parameters α and ν of
the above model can be obtained.
In order to evaluate the performance of different estimation procedures for the param-

eters of the GB-S2(α,β , ν) distribution, a Monte Carlo simulation study is conducted. We
consider the following estimation procedures:

Method 1. Estimate β by β̃1, then obtain an estimate of ν, say ν̃1 by Eq. (27) by
substituting β = β̃1. Use Eq. (25) to obtain an estimate of α, say α̃1 with β = β̃1 and
ν = ν̃1.
Method 2. Estimate β by β̃2, then obtain an estimate of ν, say ν̃2 by Eq. (27) by
substituting β = β̃2. Use Eq. (25) to obtain an estimate of α, say α̃2 with β = β̃2 and
ν = ν̃2.
Method 3. Estimate β by β̃1, then obtain estimates of ν and α, say ν̃∗

1 and α̃∗
1 , by

using the non-linear least-squares method.
Method 4. Estimate β by β̃2, then obtain estimates of ν and α, say ν̃∗

2 and α̃∗
2 , by

using the non-linear least-squares method.
Method 5.Maximum likelihood estimation based on solving Eqs. (25) – (27).

In the simulation study, 1,000 simulations are used to estimate the biases and mean
squared errors (MSEs) of these estimators.We consider the parameter settings α = 1, ν =
0.5,β = 0.5, 1.0, 1.5; α = 1, ν = 0.9,β = 0.5, 1.0, 1.5; α = 2, ν = 0.5,β = 0.5, 1.0, 1.5. The
simulation results are presented in Table 2, Table 3 and Table 4 for sample sizes n = 20,
40 and 60.
From Table 2, Table 3 and Table 4, we observed that the ML estimators (Method 5)

do not perform well in terms of MSE for small to moderate sample sizes (say, n = 20
and n = 40), especially for the estimation of the parameter α. Even for large sample size
(n = 60), the MSEs of the ML estimators are larger than those obtained by other methods
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Table 2 Simulated biases and MSEs for different estimation procedures for parameter setting
α = 1.0, ν = 0.5

β α ν

Bias MSE Bias MSE Bias MSE

n = 20 β = 1.0 Method 1 0.0195 0.0425 0.9742 4.0217 0.2869 0.3524

Method 2 0.0434 0.0813 0.4214 2.2961 0.0974 0.2553

Method 3 0.0195 0.0425 0.1487 2.1084 –0.0322 0.2548

Method 4 0.0434 0.0813 –0.4201 1.3537 –0.2534 0.2354

Method 5 0.0307 0.0529 1.3228 7.3012 0.3447 0.4640

β = 1.5 Method 1 0.0381 0.0932 0.9322 3.2543 0.2855 0.3089

Method 2 0.0650 0.1731 0.3446 1.7079 0.0759 0.2060

Method 3 0.0381 0.0932 0.0979 1.6965 –0.0443 0.2157

Method 4 0.0650 0.1731 –0.4908 1.1100 –0.2836 0.2131

Method 5 0.0408 0.1285 1.4301 7.0455 0.3891 0.4982

β = 0.5 Method 1 0.0108 0.0102 0.9442 4.3086 0.2758 0.3304

Method 2 0.0217 0.0216 0.4038 2.0323 0.0936 0.2282

Method 3 0.0108 0.0102 0.1228 2.1729 –0.0445 0.2402

Method 4 0.0217 0.0216 –0.4360 1.2374 –0.2616 0.2193

Method 7 0.0095 0.0125 1.4200 7.2533 0.3673 0.4795

n = 40 β = 1.0 Method 1 0.0174 0.0208 0.4064 1.1396 0.1259 0.1394

Method 2 0.0267 0.0434 0.1390 0.8548 0.0183 0.1206

Method 3 0.0174 0.0208 –0.0899 0.9007 –0.0928 0.1441

Method 4 0.0267 0.0434 –0.4459 0.8461 –0.2485 0.1733

Method 5 0.0112 0.0220 0.5577 1.6258 0.1622 0.1789

β = 1.5 Method 1 0.0130 0.0433 0.3903 1.1135 0.1147 0.1417

Method 2 0.0244 0.0859 0.1178 0.7991 0.0066 0.1238

Method 3 0.0130 0.0433 –0.0822 0.8952 –0.0911 0.1470

Method 4 0.0244 0.0859 –0.4382 0.7508 –0.2415 0.1621

Method 5 0.0140 0.0495 0.5002 1.5122 0.1441 0.1717

β = 0.5 Method 1 0.0037 0.0050 0.3697 1.0955 0.1061 0.1347

Method 2 0.0060 0.0093 0.1313 0.8476 0.0104 0.1214

Method 3 0.0037 0.0050 –0.1212 0.8887 –0.1097 0.1481

Method 4 0.0060 0.0093 –0.4268 0.8502 –0.2423 0.1716

Method 5 –0.0001 0.0056 0.5676 1.5449 0.1693 0.1721

n = 60 β = 1.0 Method 1 –0.0023 0.0120 0.2280 0.6084 0.0645 0.0888

Method 2 0.0046 0.0267 0.0521 0.5265 –0.0104 0.0873

Method 3 –0.0023 0.0120 –0.1512 0.5816 –0.1065 0.1105

Method 4 0.0046 0.0267 –0.4006 0.6432 –0.2208 0.1402

Method 5 0.0132 0.0138 0.3006 0.7754 0.0893 0.1049

β = 1.5 Method 1 0.0089 0.0309 0.2217 0.6390 0.0642 0.0901

Method 2 0.0178 0.0562 0.0497 0.5494 –0.0094 0.0881

Method 3 0.0089 0.0309 –0.1560 0.6107 –0.1074 0.1129

Method 4 0.0178 0.0562 –0.3966 0.6474 –0.2171 0.1368

Method 5 0.0044 0.0330 0.3469 0.8634 0.1039 0.1131

β = 0.5 Method 1 0.0018 0.0032 0.2649 0.6466 0.0822 0.0934

Method 2 0.0026 0.1010 0.0850 0.5690 0.0053 0.0911

Method 3 0.0018 0.0032 –0.1172 0.5847 –0.0889 0.0145

Method 4 0.0026 0.1010 –0.3739 0.6695 –0.2078 0.1414

Method 5 0.0009 0.0033 0.3197 0.7679 0.0986 0.1013
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Table 3 Simulated biases and MSEs for different estimation procedures for parameter setting
α = 2.0, ν = 0.5

β α ν

Bias MSE Bias MSE Bias MSE

n = 20 β = 1.0 Method 1 0.0386 0.1125 1.3195 7.9982 0.1482 0.0990

Method 2 0.1371 0.4192 0.0557 2.9805 –0.0424 0.0740

Method 3 0.0386 0.1125 0.4002 4.6121 –0.0118 0.0910

Method 4 0.1371 0.4192 –1.1470 3.0691 –0.3047 0.1604

Method 5 0.0749 0.1563 1.6102 12.0105 0.1629 0.1341

β = 1.5 Method 1 0.0741 0.2669 1.2255 6.2592 0.1490 0.0933

Method 2 0.2483 0.9636 0.0169 2.5749 –0.0439 0.0760

Method 3 0.0741 0.2669 0.3387 3.8775 –0.0086 0.0843

Method 4 0.2483 0.9636 –1.1137 3.0016 –0.2946 0.1566

Method 5 0.0736 0.2879 1.8437 14.1580 0.1863 0.1367

β = 0.5 Method 1 0.0300 0.0311 1.1648 6.3143 0.1345 0.0929

Method 2 0.0830 0.1013 0.0232 2.9223 –0.0484 0.0799

Method 3 0.0300 0.0311 0.2871 3.8638 –0.0234 0.0886

Method 4 0.0830 0.1013 –1.0694 3.2768 –0.2920 0.1621

Method 5 0.0712 0.2610 1.7594 12.6750 0.1843 0.1315

n = 40 β = 1.0 Method 1 0.0283 0.0510 0.4013 1.8797 0.0427 0.0391

Method 2 0.0675 0.1607 –0.1425 1.3239 –0.0564 0.0424

Method 3 0.0283 0.0510 –0.0800 1.4982 –0.0522 0.0469

Method 4 0.0675 0.1607 –0.9059 2.0129 –0.2316 0.1069

Method 5 0.0253 0.0554 0.6419 2.4061 0.0782 0.0458

β = 1.5 Method 1 0.0386 0.1025 0.5161 1.9371 0.0593 0.0384

Method 2 0.1448 0.4378 –0.0506 1.2901 –0.0414 0.0429

Method 3 0.0386 0.1025 0.0286 1.5041 –0.0350 0.0453

Method 4 0.1448 0.4378 –0.8061 1.8517 –0.2089 0.0993

Method 5 0.0369 0.1242 0.6034 2.3951 0.0697 0.0439

β = 0.5 Method 1 0.0111 0.0126 0.5099 2.0122 0.0580 0.0370

Method 2 0.0450 0.0478 –0.0599 1.4283 –0.0459 0.0443

Method 3 0.0111 0.0126 0.0191 1.5585 –0.0372 0.0440

Method 4 0.0450 0.0478 –0.8308 2.0662 –0.2190 0.1056

Method 5 0.0121 0.0142 0.7498 2.9983 0.0894 0.0511

n = 60 β = 1.0 Method 1 0.0101 0.0312 0.3484 1.2761 0.0380 0.0300

Method 2 0.0454 0.1185 –0.0580 0.9684 –0.0351 0.0315

Method 3 0.0101 0.0312 0.0024 1.0757 –0.0282 0.0327

Method 4 0.0454 0.1185 –0.6773 1.4934 –0.1730 0.0763

Method 5 0.0117 0.0341 0.4055 1.3271 0.0490 0.0275

β = 1.5 Method 1 0.0288 0.0703 0.2911 0.9903 0.0348 0.0239

Method 2 0.0813 0.2419 –0.0925 0.7792 –0.0361 0.0269

Method 3 0.0288 0.0703 –0.0473 0.8886 –0.0320 0.0278

Method 4 0.0813 0.2419 –0.6837 1.3505 –0.1694 0.0701

Method 5 0.0366 0.0835 0.3219 1.1432 0.0369 0.0272

β = 0.5 Method 1 0.0120 0.0091 0.3565 1.1113 0.0423 0.0255

Method 2 0.0365 0.0323 –0.0721 0.8640 –0.0365 0.0296

Method 3 0.0120 0.0091 0.0150 0.9128 –0.0228 0.0269

Method 4 0.0365 0.0323 –0.6760 1.3800 –0.1699 0.0720

Method 5 0.0051 0.0081 0.3621 1.2234 0.0432 0.0260
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Table 4 Simulated biases and MSEs for different estimation procedures for parameter setting
α = 1.0, ν = 0.9

β α ν

Bias MSE Bias MSE Bias MSE

n = 20 β = 1.0 Method 1 0.0098 0.0132 0.8859 4.1859 0.4528 1.0031

Method 2 0.0126 0.0243 0.4174 2.6917 0.1578 0.7571

Method 3 0.0098 0.0132 0.0205 2.1971 –0.1634 0.7715

Method 4 0.0126 0.0243 –0.4101 1.4524 –0.4618 0.7328

Method 5 0.0083 0.0153 1.4731 7.7400 0.6839 1.6105

β = 1.5 Method 1 0.0130 0.0309 0.8992 3.9446 0.4732 1.0613

Method 2 0.0220 0.0545 0.4182 2.1596 0.1773 0.7605

Method 3 0.0130 0.0309 0.0643 2.2646 –0.1191 0.7975

Method 4 0.0220 0.0545 –0.4120 1.3491 –0.4478 0.7151

Method 5 0.0174 0.0324 1.3639 6.1369 0.6680 1.4928

β = 0.5 Method 1 0.0016 0.0033 0.8285 3.4397 0.4223 0.9522

Method 2 0.0022 0.0060 0.3769 1.9818 0.1481 0.6989

Method 3 0.0016 0.0033 –0.0263 1.8751 –0.1866 0.7413

Method 4 0.0022 0.0060 –0.4537 1.2252 –0.4826 0.6884

Method 5 0.0041 0.0039 1.3170 6.0487 0.6453 1.4899

n = 40 β = 1.0 Method 1 0.0038 0.0066 0.3101 0.9566 0.1507 0.4135

Method 2 0.0058 0.0128 0.1039 0.7441 0.0009 0.3774

Method 3 0.0038 0.0066 –0.1887 0.7752 –0.2426 0.4574

Method 4 0.0058 0.0128 –0.4548 0.7507 –0.4519 0.5265

Method 5 0.0029 0.0070 0.5476 1.5316 0.2904 0.5658

β = 1.5 Method 1 0.0002 0.0144 0.3060 1.0136 0.1518 0.4263

Method 2 0.0002 0.0270 0.1067 0.8040 0.0045 0.3930

Method 3 0.0002 0.0144 –0.2057 0.8406 –0.2554 0.4841

Method 4 0.0002 0.0270 –0.4648 0.8255 –0.4624 0.5604

Method 5 0.0102 0.0149 0.5592 1.5119 0.3069 0.5646

β = 0.5 Method 1 –0.0010 0.0015 0.3810 1.0063 0.2074 0.4302

Method 2 –0.0004 0.0029 0.1759 0.7747 0.0596 0.3760

Method 3 –0.0010 0.0015 –0.1378 0.7647 –0.1964 0.4470

Method 4 –0.0004 0.0029 –0.4162 0.7652 –0.4181 0.5223

Method 5 0.0015 0.0017 0.5205 1.5198 0.2768 0.5461

n = 60 β = 1.0 Method 1 0.0012 0.0042 0.1727 0.5760 0.0825 0.2853

Method 2 0.0017 0.0076 0.0400 0.5214 –0.0212 0.2874

Method 3 0.0012 0.0042 –0.2268 0.5858 –0.2465 0.3796

Method 4 0.0017 0.0076 –0.4125 0.6330 –0.4002 0.4547

Method 5 0.0013 0.0041 0.3112 0.7285 0.1738 0.3287

β = 1.5 Method 1 –0.0019 0.0094 0.2492 0.6194 0.1329 0.2882

Method 2 –0.1581 0.0429 0.1031 0.5236 0.0221 0.2745

Method 3 –0.0019 0.0094 –0.0013 0.5552 –0.0017 0.3187

Method 4 –0.1581 0.0429 –0.3658 0.5916 –0.3655 0.4219

Method 5 0.0072 0.0104 0.3172 0.7224 0.1742 0.3264

β = 0.5 Method 1 0.0017 0.0010 0.1963 0.5976 0.0976 0.2855

Method 2 0.0032 0.0020 0.0502 0.5026 –0.0130 0.2738

Method 3 0.0017 0.0010 –0.2188 0.5991 –0.2424 0.3867

Method 4 0.0032 0.0020 –0.4192 0.6177 –0.4049 0.4456

Method 5 0.0010 0.0011 0.3104 0.8103 0.1656 0.3594
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in most cases. Therefore, we would not consider the ML estimators in the subsequence
comparisons.
Based on the simulation results, for parameter β , the estimator based on the first sample

moments of T and 1/T , i.e., β̃1 (Method 1 and Method 3) gives smallest MSEs in most
situations. However, the estimators for α and ν based on the value of β̃1 are not the best
among all the methods considered here. For estimation of parameters α and ν with small
sample sizes (n = 20), we observed that Method 4 performs better when the true value of
α = 1.0 and Method 2 performs better when the true value of α = 2.0. It is interesting to
point out that even Method 4 does not perform as well as Method 2 when the true value
of α = 2.0, the variances of the estimators from Method 4 are much smaller than that
of Method 2. For moderate and large sample sizes (n = 40 and 60), Method 2 gives the
smaller MSEs in most cases.
Overall speaking, we would recommend the use of moment-based estimator β̃1 for the

estimation of the parameter β for any sample sizes. For small sample sizes, we would
suggest the use of non-linear least-squared method by setting β = β̃2 (i.e., Method 4) to
estimate the parameters α and ν. For moderate to large sample sizes, the use of likelihood
equations by setting β = β̃2 (i.e., Method 2) is recommended.

5 Illustrative examples
5.1 Example 1: simulated data from two-fold Weibull mixture

In this subsection, we use a simulated dataset to illustrate the usefulness of the
generalized Birnbaun-Saunders distribution in modeling bimodal data and the esti-
mation procedures studied in Section 4. We consider a two-fold Weibull mixture
model which is commonly used to model two-fold competing risk failure mecha-
nism involving two failure modes in reliability engineering. The PDF of the two-
fold Weibull mixture is given by (see, for example, Murthy et al. 2004, Razal and
Salih 2009):

fMW (x) = wfW (x; a1, b1) + (1 − w)fW (x, a2, b2), (29)

where

fW (x; a, b) = a
b

(x
b

)(a−1)
exp

[
−
(x
b

)a]
, x > 0,

is the density of theWeibull distribution with shape parameter a > 0 and scale parameter
b > 0, and 0 < w < 1 is the mixing parameter. A sample of size 50 is generated from the
two-foldWeibull mixture in (29) withw = 0.6, a1 = 6, b1 = 1, a2 = 6, b2 = 1. The dataset
is presented in Table 5 and the GS-B2 distribution is used to model this dataset. The
estimates of the model parameters based on different methods studied in Section 4 are
presented in Table 6 and the histogram of the dataset with the fitted probability density
functions are plotted in Fig. 5. We also presented the 95% confidence intervals for the
model parameters based on normal-approximation of the log-transformedMLEs that are
discussed in Section 4.
Here, we also compare the model studied in Section 4 to the three-parameter

Birnbaum-Saunders distribution studied in Owen (2006) with PDF in (8). For the dataset
presented in Table 5, the maximum likelihood estimates of the parameters a, b and κ

are 0.3856, 1.1336 and 0.4536, respectively, which give the maximum log-likelihood to
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Table 5 Simulated dataset from a two-folded Weibull mixture model

0.5446 0.5934 0.5958 0.6106 0.6335 0.6945 0.7097 0.7431 0.7587 0.7851

0.8162 0.8450 0.8502 0.8503 0.8549 0.8743 0.8801 0.9335 0.9833 0.9836

1.0268 1.0394 1.0412 1.0472 1.0732 1.0849 1.0948 1.1129 1.1673 1.1824

1.3267 1.4230 1.4706 1.4995 1.5185 1.5287 1.5353 1.5362 1.5797 1.5995

1.7477 1.7985 1.8231 1.8341 1.8701 1.8793 1.9394 1.9522 2.0401 2.1118

be −63.80. Comparing to the maximum log-likelihood based on the proposed three-
parameter GS-B2 distribution which is −23.69, the proposed model clearly provides a
better fit for this dataset.
Although the five-parameter model in (29) is more flexible than the three-parameter

GS-B2 distribution, from this example, we can see that the GS-B2 distribution can
be a simpler and effective alternative to model the bimodal behavior in the density
function.

5.2 Example 2: spot exchange rate of euro into sterling pound

To further illustrate the usefulness of the GS-B2 distribution in modeling bimodal data,
we consider a real data example of spot exchange rate of the Euro into sterling pound. The
data for this example were downloaded from the Bank of England Statistical Interactive
Database (http://www.bankofengland.co.uk/boeapps/iadb) which consist of 3,786 daily
observations on the spot exchange rate of the Euro into sterling pound during the period
August 29, 2000 to August 15, 2015. A random sample of size 100 of these 3,786 daily
spot exchange rate observations are presented in Table 7 and the histogram of the data
is presented in Fig. 6, where it is readily seen that the distribution is bimodal. The GS-B2
distribution is used to model this dataset. The estimates of the model parameters based
on different methods studied in Section 4 are presented in Table 8 and the fitted probabil-
ity density functions are plotted in Fig. 6. We also presented the 95% confidence intervals
for the model parameters based on normal-approximation of the log-transformed MLEs
that are discussed in Section 4.
The study of Boothe andGlassman (1987) showed that themixture of two normal distri-

butions is one of the best models to describe exchange rate data, hence we fit the exchange
rate data in Table 7 with a mixture of two normal distributions with PDF

fMN (x) = λfN (x;μ1, σ1) + (1 − λ)fN (x,μ2, σ2), (30)

where 0 ≤ λ ≤ 1 and

fN (x;μj, σj) = 1
σj

√
2π

exp
[
−1
2

(x − μj

σj

)2
]
,−∞ < x < ∞,

Table 6 Estimates of the parameters in GS-B2 for dataset presented in Table 5

Estimate of

α β ν

Method 1 2.9565 1.1256 2.7307

Method 2 3.5729 1.0790 3.0254

Method 3 3.4970 1.1256 3.0461

Method 4 3.6660 1.0790 3.1143

Method 5 3.6325 1.1065 3.1135

95% CI based on MLE (Method 5) (1.5859, 8.3186) (0.9193, 1.3319) (2.0135, 4.8140)

http://www.bankofengland.co.uk/boeapps/iadb
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Fig. 5 Histogram and fitted probability density functions based on different estimation methods for dataset
presented in Table 5

−∞ < μj < ∞ and σj > 0 for j = 1, 2. The above normal mixture model is fitted
by using the R package normalmixEM (Benaglia et al. 2009). The MLEs of the model
parameters based on the exchange rate data in Table 7 are λ̂ = 0.4681, μ̂1 = 1.2002,
μ̂2 = 1.4992, σ̂1 = 0.0623 and σ̂2 = 0.0951 with the maximum log-likelihood value to
be −52.2517. Comparing to the maximum log-likelihood based on the proposed three-
parameter GS-B2 distribution which is −52.5557, the GS-B2 model provides similar
maximum likelihood in fitting this dataset using three parameters instead of five parame-
ters. Note that the Akaike information criterion (AIC) of the GS-B2 distribution is 94.5034
for fitting the data set in Table 7, while the AIC of the mixture of two normal distribu-
tions is 99.1114. Therefore, the generalized Birnbaum-Saunders GS-B2 distribution could
be chosen as a better model based on AIC.

6 Conclusions
The Birnbaum-Saunders and inverse-Gaussian distributions have a long, rich history
in statistical literature. They have often deemed as interchangeable, and this article
brought to light more comparisons of their utility and similarities. The moment-ratio
diagrams showed another way that the densities and higher moments are quite similar.

Table 7 Random sample of size 100 from daily observations on the spot exchange rate of the Euro
into sterling pound during the period August 29, 2000 to August 15, 2015

1.4404 1.1897 1.3923 1.6333 1.2857 1.1726 1.2251 1.4574 1.4757 1.5566

1.1298 1.1787 1.2004 1.2074 1.4873 1.4725 1.4547 1.2513 1.1411 1.3908

1.5754 1.5698 1.1461 1.6241 1.4463 1.4910 1.4633 1.4837 1.4326 1.2799

1.4767 1.4536 1.2907 1.1647 1.1254 1.4639 1.1938 1.2684 1.4454 1.4352

1.2393 1.6595 1.4127 1.1448 1.4688 1.4623 1.1615 1.2122 1.1044 1.5635

1.2000 1.4872 1.2342 1.1908 1.4856 1.4803 1.6295 1.6159 1.6568 1.1092

1.2565 1.2472 1.4729 1.4348 1.1293 1.3284 1.1209 1.6139 1.5138 1.4868

1.2270 1.5058 1.3918 1.1451 1.3256 1.4337 1.2467 1.5673 1.1771 1.2635

1.1433 1.3280 1.4605 1.4453 1.6184 1.0856 1.2671 1.1414 1.3252 1.5695

1.1762 1.3044 1.7034 1.6238 1.5790 1.4554 1.2554 1.3363 1.2449 1.6246

1.1963 1.2469 1.6014 1.1681 1.1846 1.3171 1.1761 1.1405 1.6248 1.4294
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Fig. 6 Histogram and fitted probability density functions based on different estimation methods for dataset
presented in Table 7

A generalized Birnbaun-Saunders distribution, the GB-S2 model, is a three-parameter
distribution that not only includes the usual two-parameter B-S distribution as a spe-
cial case but also shares some unique relationships with the I-G model. Lastly, the fact
that the GB-S2 model can exhibit bimodality with certain parameter values makes it a
very flexible distribution. It is hoped that this paper generates increased interests in the
Birnbaum-Saunders, inverse-Gaussian and the three-parameter generalized Birnbaum-
Saunders GB-S2 models.

7 Appendix: likelihood equations for GB-S2 distribution
Suppose t1, t2, . . . , tn is a random sample of size n from the GB-S2 distribution with CDF
in (18) and PDF in (19). The log-likelihood function is

ln L(α,β , ν) = constant + n ln ν − n lnα

+
n∑

i=1
ln
[(

ti
β

)ν

+
(

β

ti

)ν]

− 1
2α2

n∑
i=1

[(
ti
β

)2ν
− 2 +

(
β

ti

)2ν
]
.

Table 8 Estimates of the parameters in GS-B2 for dataset presented in Table 7

Estimate of

α β ν

Method 1 4.9277 1.3487 11.2675

Method 2 3.5225 1.3324 9.2726

Method 3 5.5220 1.3487 11.9603

Method 4 4.7636 1.3324 11.0038

Method 5 5.6042 1.3529 12.0478

95% CI based on MLE (Method 5) (3.2669, 9.6136) (1.2985, 1.4095) (9.4995, 15.2797)
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Taking derivatives of the log-likelihood function with respect to the parameters, we
have

∂ ln L(α,β , ν)

∂α
= −n

α
+ 1

α3

n∑
i=1

[(
ti
β

)2ν
− 2 +

(
β

ti

)2ν
]
,

∂ ln L(α,β , ν)

∂β
= − ν

β

n∑
i=1

(
ti
β

)ν −
(

β
ti

)ν

(
ti
β

)ν +
(

β
ti

)ν + ν

βα2

n∑
i=1

[(
ti
β

)2ν
−
(

β

ti

)2ν
]
,

∂ ln L(α,β , ν)

∂ν
= n

ν
+

n∑
i=1

[
ln
(
ti
β

)] [(
ti
β

)ν −
(

β
ti

)ν]
(
ti
β

)ν +
(

β
ti

)ν

− 1
α2

n∑
i=1

[
ln
(
ti
β

)][(
ti
β

)2ν
−
(

β

ti

)2ν
]
.

By setting these derivatives to zeros, we have the following likelihood equations

∂ ln L(α,β , ν)

∂α
= 0

⇒ α =
{
1
n

n∑
i=1

[(
ti
β

)2ν
− 2 +

(
β

ti

)2ν
]}1/2

,

∂ ln L(α,β , ν)

∂β
= 0

⇒ −
n∑

i=1

(
ti
β

)ν −
(

β
ti

)ν

(
ti
β

)ν +
(

β
ti

)ν + 1
α2
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ti
β

)2ν
−
(

β

ti

)2ν
]

= 0

⇒ 1
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=
{ n∑

i=1

[
ln
(
ti
β

)][(
ti
β

)2ν
−
(

β

ti

)2ν
]}

×
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.
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