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Abstract
We propose a generalized Weibull family of distributions with two extra positive
parameters to extend the normal, gamma, Gumbel and inverse Gausssian distributions,
among several other well-known distributions. We provide a comprehensive treatment
of its general mathematical properties including quantile and generating functions,
ordinary and incomplete moments and other properties. We introduce the log-
generalized Weibull-log-logistic, this is new regression model represents a parametric
family of models that includes as sub-models several widely known regression models
that can be applied to censored survival data. We discuss estimation of the model
parameters by maximum likelihood and provide two applications to real data.
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1 Introduction
We introduce a generalized family of univariate distributions generated by Weibull ran-
dom variables. For any baseline cumulative distribution function (cdf) G(x; η) (for x ∈ R)
and probability density function (pdf) g(x; η) = dG(x; η)/dx, depending on a parameter
vector η, let q denote the dimension of the vector η. The generalized Weibull (“GW” for
short) family of distributions is defined by the cdf

F(x) = α β

∫ − log[1−G(x;η)]

0
tα−1 e−α tβdt = 1 − exp

{
−α

(− log [1 − G(x; η)]
)β} . (1)

The pdf corresponding to (1) is given by

f (x) = α β g(x; η)

[1 − G(x; η)]
{− log [1 − G(x; η)]

}β−1 exp
{
−α

(− log [1 − G(x; η)]
)β} . (2)

Hereafter, a random variableX having the called generalizedWeibull-G (GW-G) density
function (2) is denoted by X ∼ GW-G(α,β , η). The aim of this paper is to derive some
mathematical properties of X in explicit forms.
Alzaatreh et al. (2013) proposed a new method of generating families of continuos dis-

tributions, called the T-X family, which has theWeibull-X family as a special case. The cdf
of the T-X family is given by
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F(x) =
∫ − log[1−G(x;η)]

0
r(t) dt = R{− log[1 − G(x; η)] }, (3)

where R(t) and r(t) are the cdf and pdf of a random variable T, respectively. If a random
variable T in (3) has the Weibull distribution, we obtain the GW-G distribution. Each
GW-G distribution can be obtained from a specified G distribution. For α = β = 1,
the G distribution arises as a basic exemplar of the GW-G distribution with a continuous
crossover towards cases with different shapes (for example, a particular combination of
skewness and kurtosis). The hazard rate function (hrf ) of X is given by

h(x) = α β g(x; η)

[1 − G(x; η)]
{− log[ 1 − G(x; η)]

}β−1 .

We provide explicit expressions for the quantile function (qf ), ordinary and incom-
plete moments, mean deviations, Bonferroni and Lorenz curves, Rényi entropy, Shannon
entropy, reliability and some properties of the order statistics.
The paper is outlined as follows. Section 2 provides some special distributions in the

GW family. In Section 3, we derive useful expansions for the pdf and cdf of X. We can eas-
ily apply these expansions for all GW-G distributions. In Section 4, we obtain the quantile
function (qf ) of X. In Section 5, we derive explicit expressions for the ordinary and incom-
plete moments. The moment generating function (mgf) of X is determined in Section 6.
Mean deviations, probability weighted moments (PWMs), entropies and reliability are
investigated in Sections 7, 8, 9 and 10. In Section 11, we derive an expansion for the den-
sity function of the GWorder statistics. Some inferential tools are discussed in Section 12.
In Section 13, we present a generalization of regression models based on the GW family.
The performance of the maximum likelihood estimators (MLEs) are also investigated by
a simulation study in this section. In Section 14, we fit some GW-G distributions to two
real data sets to demonstrate the potentiality of this family. Finally, Section 15 ends with
some conclusions.

2 Special Weibull-G distributions
The GW family density function (2) allows for greater flexibility of its tails and can be
widely applied inmany areas of engineering and biology. Here, we present and study some
special cases of this family because it extends several widely-known distributions in the
literature. The density (2) will be most tractable when the cdf G(x; η) and pdf g(x; η) have
simple analytic expressions.

2.1 The generalizedWeibull-normal (GW-N) distribution

The GW-N distribution is defined from (2) by taking G(x; η) and g(x; η) to be the cdf
and pdf of the normal N(μ, σ 2) distribution, where η = (μ, σ 2)T . Its density function is
given by

fGW−N (x) =
αβφ

(
x−μ
σ

)
1 − �

(
x−μ
σ

) {− log
[
1 − �

(
x − μ

σ

)]}β−1
exp
{
−α

[
− log

(
1 − �

(
x − μ

σ

))]}
,

(4)

where x ∈ R, μ ∈ R is a location parameter, σ > 0 and α > 0 are scale parame-
ters, β > 0 is a shape parameter, and φ(·) and �(·) are the pdf and cdf of the standard
normal distribution, respectively. A random variable with density (4) is denoted by X ∼
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GW-N(α,β ,μ, σ 2). For μ = 0 and σ = 1, we obtain the standard GW-N distribution.
Further, the GW-N distribution with α = β = 1 becomes the normal distribution. Plots
of the GW-N density function for selected parameter values are displayed in Fig. 1.

2.2 The generalizedWeibull-Gumbel (GW-Gu) distribution

Consider the Gumbel distribution with location parameter μ ∈ R and scale parameter
σ > 0, where the pdf and cdf (for x ∈ R) are

g(x; η) = 1
σ
exp

{(
x − μ

σ

)
− exp

(
x − μ

σ

)}
and

G(x; η) = 1 − exp
{
− exp

(
x − μ

σ

)}
,

respectively. In this case η = (μ, σ)T . The mean and variance are equal to μ − γ σ

and π2σ 2/6, respectively, where γ is the Euler’s constant (γ ≈ 0.57722). Inserting these
expressions into (2) gives the GW-Gu density function

fGW−Gu(x) = αβ

σ
exp

{
β
(x − μ

σ

)
− α exp

(
β

(
x − μ

σ

))}
, (5)

where x,μ ∈ R and α,β , σ > 0. The Gumbel distribution corresponds to α = β = 1.
Plots of (5) for selected parameter values are dispalyed in Fig. 2.

2.3 The generalizedWeibull-log-normal (GW-LN) distribution

Let G(x) be the log-normal distribution with cdf

G(x; η) = 1 − �
(− log(x) + μ

σ

)
for x > 0, σ > 0 and μ ∈ R, where η = (μ, σ)T . The GW-LN density function (for x > 0)
reduces to

fGW−LN (x) = αβ(
√
2π σ x)−1

�
(− log(x)+μ

σ

) exp
{

−1
2

[
log(x) − μ

σ

]2
− α

[
− log

(
�

(− log(x) + μ

σ

))]β
}

×
{

− log
[
�
(− log(x) + μ

σ

)]}β−1
.

Fig. 1 The GW-N density function for some parameter values: a For values β = 1.5, μ = 0 and σ = 1. b For
values α = 1.5, μ = 0 and σ = 1
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Fig. 2 The GW-Gu density function for some parameter values: a For β = 1.5, μ = 0 and σ = 3. b For
α = 1.5, μ = 0 and σ = 3

For α = β = 1, we obtain the log-normal distribution. Figures 3 and 4 display some pos-
sible shapes of the GW-LNdensity and hazard functions, respectively, for some parameter
values.

2.4 The generalizedWeibull-log-logistic (GW-LL) distribution

Consider the log-logistic distribution with shape parameter a > 0 and scale parameter
γ > 0, where the pdf and cdf (for x > 0) are given by

g(x; η) = γ

aγ
xγ−1

[
1 +

( x
a

)γ ]−2
and G(x; η) = 1 − 1

1 + ( xa )γ ,
respectively, where η = (a, γ )T . Inserting these expressions into (2) yields the GW-LL
density function

fGW−LL(x) = αβγ xγ−1

aγ

(
1 +

( x
a

)γ )−1 [
log
(
1 +

( x
a

)γ )]β−1
exp

{
−α
[
log
(
1 +

( x
a

)γ )]β}
.

(6)

The log-logistic distribution corresponds to α = β = 1. Plots of (6) and hazard function
for selected parameter values are displayed in Figs. 5 and 6, respectively.

3 Useful expansions
For any real parameter c and z ∈ (0, 1), it can be proven that[− log(1 − z)

]c = zc + c
∞∑
i=0

pi(c + i) zi+c+1, (7)

Fig. 3 The GW-LN density function for some parameter values: a For β = 2.5, μ = 1 and σ = 2. b For α = 2,
μ = 1 and σ = 2
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Fig. 4 Plot of the GW-LN hazard function for some parameter values

where pi(c) are Stirling polynomials. The first six polynomials are p0(w) = 1/2, p1(w) =
(2 + 3w)/24, p2(w) = (w + w2)/48, p3(w) = (−8 − 10w + 15w2 + 15w3)/5760,
p4(w) = (−6w − 7w2 + 2w3 + 3w4)/11520 and p5(w) = (96 + 140w − 224w2 −
315w2 + 63w5)/2903040. These coefficients are related to the Stirling polynomials1 by
pn−1(w) = Sn(w)/[ n! (w + 1)] for n ≥ 1, where S0(w)= 1, S1(w) = (w + 1)/2, etc.
The proof of the expansion (7) is given in details by Flajonet and Odlyzko (1990) (see
Theorem 3A, page 227) and Flajonet and Sedgewick (2009) (see Theorem VI.2, page 385).
In this paper, we adopt the polynomials pi(w) in accordance withNielson (1906) andWard
(1934).
Some useful expansions for (1) and (2) can be derived using the concept of exponentia-

ted distributions. For an arbitrary baseline cdf G(x), a random variable is said to have the
exponentiated-G (“exp-G”) distribution with power parameter a > 0, say X ∼ exp-G(a),
if its pdf and cdf are

ha(x) = aG(x)a−1g(x) and Ha(x) = G(x)a,

respectively. The properties of exponentiated distributions have been studied by many
authors in recent years, see Mudholkar and Srivastava (1993) for exponentiated Weibull,

Fig. 5 The GW-LL density function for some parameter values: a For β = 2.5, a = 25 and γ = 1. b For α = 2,
a = 25 and γ = 1
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Fig. 6 Plot of the GW-LL hazard function for some parameter values

Gupta et al. (1998) for exponentiated Pareto, Gupta and Kundu (1999) for exponenti-
ated exponential, Nadarajah (2005) for exponentiated Gumbel, Kakde and Shirke (2006)
for exponentiated lognormal, and Nadarajah and Gupta (2007) for exponentiated gamma
distributions.
By expanding the exponential function in (1), we can write

F(x) =
∞∑

m=0

(−1)m+2 αm+1

(m + 1)!

{
− log

[
1 − G(x)

]}(m+1)β

and then using (7)

F(x)=
∞∑

m=0

(−1)m+2 αm+1

(m + 1)!

{
G(x)(m+1) β +(m + 1)β

∞∑
i=0

pi[ (m + 1)β + i]G(x)i+(m+1)β+1
}
.

Expanding G(x)(m+1)β and G(x)i+(m+1)β+1 in power series, F(x) can be expressed as

F(x) =
∞∑
k=0

wk G(x)k =
∞∑
k=0

wk Hk(x), (8)

where Hk(x) denotes the cdf of the exp-G(k) distribution and

wk =
∞∑

m,j=0

(−1)m+j+k+2 αm+1

(m + 1)!

(
j
k

){(
(m + 1)β

j

)
+ (m + 1)β

∞∑
i=0

pi
[
(m + 1)β + i

]
×
(
i + (m + 1)β + 1

j

)}
. (9)

The corresponding pdf of X can be expressed as

f (x) =
∞∑
k=0

(k + 1) vk G(x)k g(x) =
∞∑
k=0

vk hk+1(x), (10)
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where hk+1(x) denotes the pdf of the exp-G(k + 1) distribution and vk = wk+1. So, sev-
eral properties of the GW-G distribution can be obtained by knowing those of the exp-G
distribution, see, for example, Mudholkar et al. (1995), Gupta and Kundu (2001) and
Nadarajah and Kotz (2006a), among others.

4 Quantile function
Let QG(u) = G−1(u) be the quantile function (qf ) of G for 0 < u < 1. Inverting F(x) = u
in (1), we obtain the qf of X as

x = F−1(u) = QG
(
1 − exp

{
− [−α−1 log(1 − u)

]1/β}) . (11)

Hence, Eq. (11) reveals that the GW-G qf can be expressed in terms of the G qf. Quan-
tiles of interest can be obtained from (11) by substituting appropriate values for u. In
particular, the median of X is obtained when u = 1/2, expressed by

M = QG
(
1 − exp

{
− [α−1 log(2)

]1/β}) .
We can also use (11) for simulating GW-G random variables by setting u as a uniform

random variable In the unit interval (0, 1). Using the power series expansion in Eq. (11),
we have

x = F−1(u) = QG

{
1 − exp

[
−
( ∞∑
k=0

vk+1 uk+1
)]}

.

where vk = (−1)k+1/(k α). Hence, the last equation reveals that the GW-G qf can be
expressed as the G qf applied a power series.

5 Moments
From now on, let Yk+1 ∼ exp-G(k + 1). A first formula for the nth moment of X can be
obtained from Eq. (10) as

μ′
n = E(Xn) =

∞∑
k=0

vk E
(
Yn
k+1
)
. (12)

Explicit expressions for moments of several exponentiated distributions are given by
Nadarajah and Kotz (2006a). They can be used to produce μ′

n.
A second formula for μ′

n can be obtained from (10) in terms of the baseline quantile
function QG(u). We obtain

μ′
n =

∞∑
k=0

(k + 1) vk τ(n, k), (13)

where the integral can be expressed in terms of the G quantile function

τ(n, a) =
∫ ∞

−∞
xn Ga(x) g(x)dx =

∫ 1

0
QG(u)n uadu. (14)

The ordinary moments of several GW-G distributions can be determined directly from
Eqs. (13) and (14). Here, we give two examples. For the first example, we consider the
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Gumbel distribution with cdf G(x) = 1 − exp
{− exp

( x−μ
σ

)}
. The moments of the expo-

nentiated Gumbel distribution with parameter (k + 1) can be obtained from Nadarajah
and Kotz (2006a). The nth moment of the GW-Gu distribution becomes

E(Xn) =
∞∑
k=0

vk (k + 1)
n∑

i=0

(
n
i

)
μn−i (−σ)i

(
∂

∂p

)i [
(k + 1)−p �(p)

]∣∣∣∣
p=1

.

For the second example, we consider the generalized Weibull-standard logistic (GW-
SL) distribution, where G(x) = (1+ e−x)−1. A result from (Prudnikov et al. 1986, Section
2.6.13, Eq. 4) gives (for t < 1)

E(Xn) =
∞∑
k=0

vk
(

∂

∂t

)n
B(t + k + 1, 1 − t)

∣∣∣∣
t=0

,

where B(a, b) = ∫ 10 ta−1 (1 − t)b−1dt is the beta function.
Further, the central moments (μr) and cumulants (κr) of X can be determined as

μr =
r∑

k=0
(−1)k

(
r
k

)
μ′k
1 μ′

r−k and κr = μ′
r −

r−1∑
k=1

(
r − 1
k − 1

)
κk μ′

r−k ,

respectively, where κ1 = μ′
1. Plots of the skewness and kurtosis varying the values of

α and β for the GW-N and GW-LL distributions are displayed in Figs. 7 and 8, respec-
tively. These plots reveal that the skewness and kurtosis depend on both parameters α

and β .
The incomplete moments play an important role for measuring inequality, for example,

the Lorenz and Bonferroni curves, which depend upon the first incomplete moment of a
distribution. The nth incomplete moment of X is calculated as

mn(y) =
∫ y

−∞
xn f (x) dx =

∞∑
k=0

(k + 1) vk
∫ G(y)

0
QG(u)nukdu.

Fig. 7 Skewness and kurtosis of the GW-N distribution as a function of β for some values of α and μ = 1 and
σ = 2. a Skewness. b Kurtosis
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Fig. 8 Skewness and kurtosis of the GW-LL distribution as a function of β for some values of α and μ = 1
and σ = 2. a Skewness. b Kurtosis

The last integral can be computed for most baseline G distributions.
Let μ′

n = E(Xn) be the nth ordinary moment of X calculated from (12) or (13). The nth
descending factorial moment of X is

μ′
(n) = E

(
X(r)

)
= E [X(X − 1) × · · · × (X − r + 1)] =

r∑
k=0

s(r, k) μ′
k ,

where

s(r, k) = 1
k!

[
dk

dxk
x(r)
]
x=0

is the Stirling number of the first kind which counts the number of ways to permute a
list of r items into k cycles. So, we can obtain the factorial moments from the ordinary
moments given before.

6 Generating function
Here, we provide two formulae for the moment generating function (mgf)M(t) = E(et X)

of X. A first formula forM(t) comes from (10) as

M(t) =
∞∑
k=0

vk Mk+1(t),

where Mk+1(t) is the mgf of Yk+1. Hence, M(t) can be determined from the generating
function of the exp-G(k + 1) distribution.
A second formula forM(t) can be derived from (10) as

M(t) =
∞∑
k=0

(k + 1) vk ρ(t, k), (15)

where ρ(t, a) can be calculated from the parent qf QG(x) by

ρ(t, a) =
∫ ∞

−∞
exp(tx)G(x)a g(x)dx =

∫ 1

0
exp {t QG(u)} uadu. (16)

We can obtain the mgfs of several GW-G distributions directly from Eqs. (15) and (16).
For example, the mgf of the GW-SL distribution (for t < 1) is given by

M(t) =
∞∑
k=0

(k + 1)B(t + k + 1, 1 − t) vk .
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7 Mean deviations
The mean deviations about the mean (δ1 = E(|X − μ′

1|)) and about the median (δ2 =
E(|X − M|)) of X can be expressed as

δ1 = 2μ′
1 F(μ′

1) − 2m1(μ
′
1) and δ2 = μ′

1 − 2m1(M), (17)

respectively, where μ′
1 = E(X), M = Median(X) is the median given in Section 3, F(μ′

1)

is easily calculated from the cdf (1) and m1(z) = ∫ z
−∞ x f (x)dx is the first incomplete

moment.
Here, we provide two alternative ways to compute δ1 and δ2. First, a general equation

form1(z) can be derived from (10) as

m1(z) =
∞∑
k=0

vk Jk+1(z),

where

Jk+1(z) =
∫ z

−∞
x hk+1(x)dx. (18)

Equation (18) is the basic quantity to compute the mean deviations of the exp-G distri-
butions. Hence, the mean deviations in (17) depend only on the mean deviations of the
exp-G distribution.
A second general formula form1(z) can be derived by setting u = G(x) in (18)

m1(z) =
∞∑
k=0

(k + 1) vk Tk+1(z), (19)

where

Tk+1(z) =
∫ G(z)

0
QG(u)uk du (20)

is a simple integral defined from the baseline qf QG(u).
In a similar way, the mean deviations of any GW-G distribution can be computed

from Eqs. (19)–(20). For example, the mean deviations of the GW-SL distribution are
determined immediately (by using the generalized binomial expansion) from the function

Tk+1(z) = 1
�(z)

∞∑
m=0

(−1)m �(k + m + 1)
[
1 − exp(−mz)

]
(m + 1)!

.

Applications of the first incomplete moment can be addressed to obtain
Bonferroni and Lorenz curves defined for a given probability π by B(π) =
m1(q)/[πμ′

1] and L(π) = m1(q)/μ′
1, respectively, where μ′

1 = E(X) and
q = QG

(
1 − exp

{
− [−α−1 log(1 − π)

]1/β}) is the GW-G qf at π , see equation.

8 Probability weightedmoments
A very useful mathematical quantity is the probability weighted moment (PWM) of X.
The (n, s)th PWM is given by κn,s = E{Xn F(X)s} for n, s = 0, 1, . . . Using the binomial
theorem, κn,s can be written as

κn,s = αβ

s∑
k=0

(−1)k
(
s
k

)∫ ∞

−∞
xn g(x)

[1 − G(x)]
{− log[1 − G(x)]

}β−1

× exp
{
−α

(− log [1 − G(x)]
)β} exp {−kα

[− log(1 − G(x))
]β} dx.
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Using the power series expansion in the last equation, we have

κn,s = αβ

s∑
k=0

∞∑
m,l=0

(−1)k+m+l αm+l

m! l! k−m

(
s
k

)∫ ∞

−∞
xn g(x)

[1 − G(x)]
{− log[1 − G(x)]

}β(m+l+1)−1dx.

Using (7) and the power series expansion, we can write{− log
[
1 − G(x)

]}β(m+l+1)−1[
1 − G(x)

] =
∞∑
q=0

{
G(x)β(m+l+1)+q−1 +

[
β(m + l + 1) − 1

]

×
∞∑
i=0

pi
[
β(m + l + 1) + i − 1

]
G(x)β(m+l+1)+q+i

}
.

Expanding G(x)β(m+l+1)+q−1 and G(x)β(m+l+1)+q+i, we have

κn,s =
∞∑
r=0

ωr

∫ ∞

−∞
xn Gr(x) g(x) dx (21)

where

ωr = β

s∑
k=0

∞∑
m,l,q,j=0

(−1)k+m+l+j+r αm+l+1

m! l! k−m

(
s
k

)(
j
r

){(
β(m + l + 1) + q − 1

j

)

+
[
β(m + l + 1) + i − 1

] ∞∑
i=0

pi
[
β(m + l + 1) + i − 1

](β(m + l + 1) + q + i
j

)}
.

The quantity κn,s can be obtained from (21) in terms of the baseline qf by setting
G(x) = u. We have

κn,s =
∞∑
r=0

ωr τ(n, r), (22)

where τ(n, r) is given by (14).
Equation (22) can be applied for most baseline G distributions to derive explicit

expressions for κn,s, since the baseline qf can usually be expressed as a power series.

9 Entropies
An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi and Shannon entropies (Shannon 1951; Rényi 1961). The
Rényi entropy of a random variable with pdf f (·) is defined by

IR(γ ) = 1
1 − γ

log
∫ ∞

0
f γ (x)dx

for γ > 0 and γ 	= 1. The Shannon entropy of a random variable X is defined by
E[− log f (X)]. It is the particular case of the Rényi entropy for γ ↑ 1.
Here, we derive expressions for the Rényi and Shannon entropies when X is a general-

ized Weibull-G random variable. Using (7), we can write

{− log[1 − G(x)]
}γ (β−1) = G(x)γ (β−1) + γ (β − 1)

∞∑
i=0

pi(γβ − γ + i)G(x)i+γ (β−1)+1.
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Expanding G(x)γ (β−1) and G(x)i+γ (β−1)+1, the last equation becomes

{− log[1 − G(x)]
}γ (β−1) =

∞∑
k=0

sk G(x)k , (23)

where

sk =
∞∑

m=0
(−1)m+k

(
m
k

) [(
γ (β − 1)

m

)
+ γ (β − 1)

∞∑
i=0

pi(γβ − γ + i)
(
i + γ (β − 1) + 1

m

)]
. (24)

By expanding the exponential function and using the results obtained in (23), we can
write

exp
{
−γα

[− log(1 − G(x))
]β} =

∞∑
�=0

τ� G(x)�

where τ� is given by

τ� =
∞∑

j,r=0

(−1)r+�+j (γ α)j

j!

(
r
�

) [(
jβ
r

)
+ j β

∞∑
i=0

pi(jβ + i)
(
i + jβ + 1

j

)]
. (25)

So,∫ ∞

0
f γ (x)dx =

∫ ∞

0

(α β)γ g(x)γ

[1 − G(x)]γ
{− log[1 − G(x)]

}γ (β−1) exp
{
−γα

(− log [1 − G(x)]
)β} dx

= (αβ)γ
∞∑

q,k,�=0
κq,k,� Iq+k+� ,

where

κq,k,� = (−1)q
(−γ

q

)
sk τ�,

sk and τ� are given by (24) and (25), respectively, and Iq+k+� comes from the parent
distribution as

Iq+k+� =
∫ ∞

0
g(x)γ G(x) q+k+� dx.

Hence, the Rényi entropy of X is given by

IR(γ ) = γ log(αβ)

1 − γ
+ 1

1 − γ
log

⎛⎝ ∞∑
q,k,�=0

κq,k,� Iq+k+�

⎞⎠ . (26)

The Shannon entropy can be obtained by limiting γ ↑ 1 in (26). However, it is easier to
derive an expression for it from first principles. Using (2), the Shannon entropy cam be
expressed as

E
[− log f (X)

] = − log(αβ) − E[ log(g(X))]+E[ log(1 − G(X))]

+ (1 − β)E{log[− log(1 − G(X))] } + α E
{[− log(1 − G(X))

]β} .



Cordeiro et al. Journal of Statistical Distributions and Applications  (2015) 2:13 Page 13 of 25

Using the series expansion for log(1 − z), we can write

{log[− log(1 − G(X))] } =
[
log
{ ∞∑
r=1

G(X)r

r

}]
(27)

= logG(X) + log
(
1 +

∞∑
r=2

G(X)r−1

r

)

= logG(X) +
∞∑
j=1

(−1)j+1

j

(
G(x)

∞∑
r=0

G(X)r

r + 2

)j

. (28)

Henceforth, we use an equation by Gradshteyn and Ryzhik (2007) for a power series
raised to a positive integer n ( ∞∑

i=0
ai ui

)n

=
∞∑
i=0

cn,i ui, (29)

where the coefficients cn,i (for i = 1, 2, . . .) are easily determined from the recurrence
equation

cn,i = (i a0)−1
i∑

m=1
[m (n + 1) − i] am cn,i−m, (30)

where cn,0 = an0. The coefficient cn,i can be determined from cn,0, . . . , cn,i−1 and hence
from the quantities a0, . . . , ai. In fact, cn,i can be given explicitly in terms of the coef-
ficients ai, although it is not necessary for programming numerically our expansions in
any algebraic or numerical software.
Based on Eqs. (29), (28) can be rewritten as

logG(X) +
∞∑
j=1

(−1)j+1

j

(
G(X)

∞∑
r=0

G(X)r

r + 2

)j

= logG(X) +
∞∑
j=1

(−1)j+1

j

∞∑
r=0

ej,r G(X)r+j, (31)

where

ej,r = 2r−1
r∑

m=1

[
m(j + 1) − r

]
m + 2

er,r−m

for r = 1, 2, . . . and ej,0 = 2−j. Using the result (31) and expanding log(1 − G(x)) in a
similar form to (27), the Shannon entropy reduces to

E
[− log f (X)

] = − log(αβ) − E
[
log g(X)

]− ∞∑
τ=0

1
τ + 1

E
[
G(X)τ+1

]
+ (1 − β)E

[
logG(X)

]
+ (1 − β)

∞∑
j=1

(−1)j+1

j

∞∑
r=0

ej,r E
[
G(X)r+j

]
+ α E

{[− log(1 − G(X))
]β} .

For any real parameter β and G(x) ∈ (0, 1), we can write from (7)

[− log(1 − G(X))
]β = G(x)β +

∞∑
�=0

p�(β)G(X)�+β+1
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where p0(β) = β/2, p1(β) = β (3β + 5)/24, p2(β) = β (β2 + 5β + 6)/48, etc. Then, the
Shannon entropy for the GW-G family is given by

E
[− log f (X)

] = − log(αβ) − E
[
log g(X)

]− ∞∑
τ=0

1
τ + 1

E
[
G(X)τ+1

]
+ (1 − β)E

[
logG(X)

]
+ (1 − β)

∞∑
j=1

(−1)j+1

j

∞∑
r=0

ej,r E
[
G(X)r+j

]
+ α E

[
G(x)β

]
+ α

∞∑
�=0

p� E
[
G(X)�+β+1

]
.

(32)

The expectations in (32) can be easily evaluated numerically for a given G(·) and g(·).
Using (10), they can also be represented as

E
[
logG(X)

] =
∞∑
k=0

(k + 1) vk
∫ ∞

0
log [G(x)] G(x)k g(x) dx = −

∞∑
k=0

vk
k + 1

,

E
[
G(X)β

] =
∞∑
k=0

(k + 1)vk
β + k + 1

,

E
[
G(X)τ+1] =

∞∑
k=0

(k + 1)vk
τ + k + 2

,

E
[
G(X)r+j] =

∞∑
k=0

(k + 1)vk
r + j + k + 1

,

E
[
G(X)�+β+1

]
=

∞∑
k=0

(k + 1)vk
� + β + k + 2

and

E
[
log g(X)

] =
∞∑
k=0

(k + 1)vk
∫ ∞

0
log[ g(x)] G(x)k g(x) dx.

The last of these representations can also be expressed in terms of the parent qf
QG(u) = G−1(u) as

E
[
log g(X)

] =
∞∑
k=0

(k + 1)vk
∫ 1

0
log
{
g [QG(u)]

}
uk du,

where the integral can be calculated for most baseline distributions using a power series
expansion for QG(u).

10 Reliability
Here, we derive the reliability, R = Pr(X2 < X1), when X1 ∼ GW-G(α1,β1) and X2 ∼
GW-G (α2,β2) are independent random variables. Probabilities of this form have many
applications especially in engineering concepts. Let fi denote the pdf of Xi and Fi denote
the cdf of Xi. By using the representations, (8) and (10), we can write

R =
∞∑

j,k=0
wj wk+1

∫ ∞

0
Hj(x) hk+1(x)dx =

∞∑
j,k=0

wj wk+1 Rjk , (33)

where Rjk = Pr(Yj < Yk) is the reliability between the independent random variables
Yj ∼ exp-G(j) and Yk ∼ exp-G(k + 1). Hence, the reliability for the GW-G random
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variables is a linear combination of those for exp-G random variables. In the particular
case α1 = α2 and β1 = β2, Eq. (33) gives R = 1/2.

11 Order statistics
Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, . . . ,Xn is a random sample from the GW-G distribution. Let Xi:n denote the
ith order statistic. The pdf of Xi:n can be expressed from (8) and (10) as

fi:n(x) = K
n−i∑
j=0

(−1)j
(
n − i
j

)
f (x) F(x)j+i−1

= K
n−i∑
j=0

(−1)j
(
n − i
j

) [ ∞∑
r=0

vr (r + 1)G(x)r g(x)
][ ∞∑

k=0
wk G(x)k

]j+i−1

,

where K = n! /[(i − 1)! (n − i)! ]. Using (29) and (30), we can write[ ∞∑
k=0

wk G(x)k
]j+i−1

=
∞∑
k=0

fj+i−1,k G(x)k ,

where fj+i−1,0 = (w0)j+i−1,

fj+i−1,k = (k w0)
−1

k∑
m=1

[m(j + i) − k] wm fj+i−1,k−m, for k = 1, 2, . . .

and wk is given by (9). Hence,

fi:n(x) =
n−i∑
j=0

∞∑
r,k=0

mj,r,k hk+r+1(x), (34)

where

mj,r,k = (r + 1)(−1)j n! vr fj+i−1,k

(k + r + 1) j! (i − 1)! (n − i − j)!
.

Equation (34) is the main result of this section. It reveals that the pdf of the GW-
G order statistics is a triple linear combination of exp-G density functions. So, several
mathematical quantities of these order statistics like ordinary, incomplete and factorial
moments, mgf, mean deviations and several others can be obtained from those quantities
of generalized Weibull-G distributions. Clearly, the cdf of Xi:n can be expressed as

Fi:n(x) =
n−i∑
j=0

∞∑
r,k=0

mj,r,k Hk+r(x).

12 Maximum likelihood estimation
Several approaches for parameter point estimation were proposed in the literature but
the maximum likelihood method is the most commonly employed. The maximum like-
lihood estimates (MLEs) enjoy desirable properties and can be used when constructing
confidence intervals and also in test statistics. Large sample theory for these estimates
delivers simple approximations that work well in finite samples. Statisticians often seek
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to approximate quantities such as the density of a test statistic that depend on the sam-
ple size in order to obtain better approximate distributions. The resulting approximation
for the MLEs in distribution theory is easily handled either analytically or numeri-
cally. The goodness of fit statistics including the Akaike information criterion (AIC),
Bayesian information criterion (BIC), Consistent Akaike information criterion (CAIC),
Anderson-Darling (A) and Cramér–von Mises (W ) are computed to compare the fitted
models.
Here, we consider estimation of the unknown parameters of the GW-G distribution

by the method of maximum likelihood. Let x1, . . ., xn be a sample from (2) and θ =
(α,β , ηT )T be vector of parameters of dimension (q + 2). The log-likelihood function for
θ is given by

l(θ) = n
[
log(α) + log(β)

]+ n∑
i=1

log
[
g(xi; η)

]− n∑
i=1

log [1 − G(xi; η)]

+ (β − 1)
n∑

i=1
log
{− log [1 − G(xi; η)]

}− α

n∑
i=1

{− log [1 − G(xi; η)]
}β . (35)

The score functions for the parameters α, β and η are easily derived analytically as

Uα(θ) = n
α

−
n∑

i=1

{− log[1 − G(xi; η)]
}β ,

Uβ(θ) = n
β

+
n∑

i=1
log
{− log[1 − G(xi; η)]

}
−α

n∑
i=1

{− log[1 − G(xi; η)]
}β log{− log[1 − G(xi; η)] }

and

Uη(θ)=
n∑

i=1

∂g (xi; η)/∂η

g (xi; η)
+

n∑
i=1

∂G(xi; η)/∂η

[1 − G(xi; η)]
+(1 − β)

n∑
i=1

∂G (xi; η)/∂η

log[1 − G(xi; η)] [1 −G(xi; η)]

−αβ

n∑
i=1

{− log[1 − G(xi; η)]
}β−1

{
∂G(xi; η)/∂η

[1 − G(xi; η)]

}
,

respectively.
The MLE θ̂ of θ is obtained by solving the nonlinear likelihood equations Uα(θ) = 0,

Uβ(θ) = 0 and Uη(θ) = 0. These equations cannot be solved analytically and statistical
software can be used to solve them numerically. We can use iterative techniques such
as a Newton-Raphson type algorithm to obtain θ̂ . We employ the numerical procedure
NLMixed in SAS.
Let J(θ) = {Jab} be the (q + 2)×(q + 2) observed informationmatrix (for a, b = α,β , η),

whose elements can be calculated numerically. Based on the approximate multivariate
normalNq+2(0, J (̂θ)−1) distribution of θ̂ , we can construct approximate confidence inter-
vals for the model parameters. We can compute the maximum values of the unrestricted
and restricted log-likelihoods to obtain likelihood ratio (LR) statistics for testing some
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sub-models of the GW-G distribution. Hypothesis tests of the type H0 : ψ = ψ0 versus
H1 : ψ 	= ψ0, where ψ is a vector formed with some components of θ and ψ0 is a speci-
fied vector, can be performed using LR statistics. For example, the test of H0 : α = β = 1
versus H1 : H0 is not true is equivalent to compare the GW-G and G distributions and
the LR statistic is given by

w = 2
{
�
(̂
α, β̂ , η̂

)− �(1, 1, η̃)
}
,

where α̂, β̂ and η̂ are the MLEs under H and η̃ is the estimate under H0.

13 Regressionmodels
In many practical applications, the lifetimes are affected by explanatory variables such as
the cholesterol level, blood pressure, weight and many others. Parametric models to esti-
mate univariate survival functions and for censored data regression problems are widely
used. A regression model that provides a good fit to lifetime data tends to yield more
precise estimates of the quantities of interest.
Let X be a random variable having the pdf (2). A class of regression models for location

and scale is characterized by the fact that the random variable Y = log(X) has a distribu-
tion with location parameter μ(v) dependent only on the explanatory variable vector and
a scale parameter σ . Then, we can then write

Y = μ(v) + σZ,

where σ > 0 and Z has the distribution which does not depend on v. The random variable
Y (for y ∈ �) has density function given by

f (y;α,β ,μ, σ) = α β

σ

g
(
y−μ(v)

σ

)
[
1 − G

(
y−μ(v)

σ

)] {− log
[
1 − G

(
y − μ(v)

σ

)]}β−1

× exp
{

−α

(
− log

[
1 − G

(
y − μ(v)

σ

)])β
}
, (36)

where the functions G(·) and g(·) are defined in Section 1.
For illustrative purposes, letX be a random variable having the GW-LL density function

defined in Section 2.1. The random variable Y = log(X) re-parameterized in terms of
μ = log(a) and σ = 1/γ is given by

f (y) = αβ

σ
exp

(y − μ

σ

) [
1 + exp

(y − μ

σ

)]−1 {
log
[
1 + exp

(y − μ

σ

)]}β−1

× exp
{

−α

[
log
(
1 + exp

(y − μ

σ

))]β
}
, y ∈ �, (37)

where α > 0 and β > 0 are shape parameters, μ ∈ � is the location parameter and σ > 0
is the scale parameter.
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We refer to Eq. (37) as the log-generalized Weibull-log-logistic (LGW-LL) distribu-
tion, say Y ∼ LGW-LL(α,β ,μ, σ). If X ∼ GW-LL(α,β , a, γ ), then Y = log(X) ∼
LGW-LL(α,β ,μ, σ). For α = β = 1, we obtain the logistic model. The survival function
corresponding to (37) is given by

S(y) = exp
{

−α

[
log
(
1 + exp

(
y − μ

σ

))]β
}
. (38)

Plots of the density function (37) for selected parameter values are displayed in Fig. 9,
which show great flexibility for different values of α and β .
Now, we define the standardized random variable Z = (Y − μ)/σ having the density

function

f (z) = α β exp(z)[
1 + exp(z)

] {log [1 + exp(z)
]}β−1 exp

{
−α
[
log {1 + exp(z)}]β} . (39)

Next, we propose a linear location-scale regression model linking the response variable
yi and the explanatory variable vector vTi = (vi1, . . . , vip) as follows

yi = vTi τ + σ zi, i = 1, . . . , n, (40)

where the random error zi has density function (39), τ = (τ1, . . . , τp)T , σ > 0, α > 0
and β > 0 are unknown parameters. The parameter vi = vTi τ is the location of yi. The
location parameter vector v = (v1, . . . , vn)T is represented by a linear model v = Vτ ,
where V = (v1, . . . , vn)T is a known model matrix. The LGW-LL model (40) opens new
possibilities for fitted many different types of data.
Consider a sample (y1, v1), . . . , (yn, vn) of n independent observations, where each ran-

dom response is defined by yi = min{log(xi), log(ci)}. We assume non-informative

Fig. 9 Plots of the GW-LL density for some parameter values. a For different values of α with β = 2.5 and
μ = 0 and σ = 1. b For different values of β with α = 0.1, μ = 0 and σ = 1.0. c For different values of α and
β with μ = 0 and σ = 1.0
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censoring such that the observed lifetimes and censoring times are independent. Let
F and C be the sets of individuals for which yi is the log-lifetime or log-censoring,
respectively. Conventional likelihood estimation techniques can be applied here. The log-
likelihood function for the vector of parameters θ = (α,β , σ , τT )T from model (40) has
the form l(θ) = ∑

i∈F
li(θ) + ∑

i∈C
l(c)i (θ), where li(θ) = log[ f (yi)], l(c)i (θ) = log[S(yi)], f (yi)

is the density (37) and S(yi) is the survival function (38) of Yi. The total log-likelihood
function for θ reduces to

l(θ) = r log
(

α β

σ

)
+
∑
i∈F

zi −
∑
i∈F

log
[
1 + exp(zi)

]+ (β − 1)
∑
i∈F

log
{
log
[
1 + exp(zi)

]}
−α
∑
i∈F

logβ
[
1 + exp(zi)

]− α
∑
i∈C

logβ
[
1 + exp(zi)

]
, (41)

where r is the number of uncensored observations (failures). The MLE θ̂ of the vector
of unknown parameters can be calculated by maximizing the log-likelihood (41). We use
the procedure NLMixed in SAS to calculate the estimate θ̂ . Initial values for β and σ are
taken from the fit of the log-Weibull regression model with α = 0 and β = 1.
The elements of the (p + 3) × (p + 3) observed information matrix −L̈(θ),

namely −Lαα ,−Lαβ , −Lασ ,−Lατj ,−Lββ ,−Lβσ ,−Lβτj ,−Lσσ ,−Lστj and −Lβjβs (for j, s =
1, . . . , p) can be calculated numerically. Inference on θ can be conducted in the classi-
cal way based on the approximate multivariate normalNp+3

(
0,−L̈(̂θ)−1) distribution for

θ̂ . Further, we can use LR statistics for comparing the LGW-LL model with some of its
sub-models.

13.1 Simulation

For simulating of the GW-N distribution, we consider from Eq. (11) that U is a ran-
dom variable from a uniform distribution in (0, 1). We simulate the GW-N(α = 2,β =
1.5, 0.5,μ = 0, σ = 1) model for n= 50, 150 and 300 times. For each sample size, we com-
pute the MLEs of α, β , μ and σ . Then, we repeat this process 1000 times and compute the
averages of the estimates (AEs), biases and means squared errors (MSEs). The results are
reported in Table 1.

Table 1 The AEs, biases and MSEs based on 1000 simulations of the GW-N distribution with α = 2,
β = 1.5, 0.5 μ = 0 and σ = 1, with n = 50, 150 and 300

β = 1.5 β = 0.5

n Parameter Mean Bias MSE Parameter Mean Bias MSE

50 α 2.2666 0.2666 18.1264 α 1.5286 –0.4714 2.5046

β 6.2918 4.7918 5117.984 β 0.7304 0.2304 0.3708

μ –1.0586 –1.0586 208.3427 μ –0.8475 –0.8475 2.5944

σ 3.5544 2.5544 1831.613 σ 0.9704 –0.0296 0.3156

150 α 2.1093 0.1093 2.7102 α 1.7036 –0.2964 1.7252

β 1.7796 0.2796 1.2247 β 0.6089 0.1089 0.0724

μ –0.1175 –0.1175 0.2673 μ –0.5265 –0.5265 1.8487

σ 1.1065 0.1065 0.3165 σ 0.9374 –0.0626 0.0423

300 α 2.1755 0.1755 2.0205 α 1.8607 –0.1393 1.1476

β 1.6044 0.1044 0.3035 β 0.5579 –0.4421 0.2328

μ –0.0329 –0.0329 0.1596 μ –0.2802 –0.2802 1.2004

σ 1.0379 0.0379 0.0817 σ 0.9581 –0.0419 0.0201



Cordeiro et al. Journal of Statistical Distributions and Applications  (2015) 2:13 Page 20 of 25

Table 2 Estimates of the model parameters for the myelogenous leukemia data, the corresponding
SEs (given in parentheses) and the AIC, BIC, A and W statistics

Model Estimates AIC BIC A W

N (μ, σ )
1.506 0.321 39.823 44.109 1.928 0.350

(0.040) (0.028)

GW-N (α,β ,μ, σ )
2.297 3.396 1.530 1.023 36.496 45.068 0.928 0.164

(31.667) (4.720) (3.969) (0.864)

LL (a, b)
1.526 7.926 49.579 53.866 2.748 0.496

(0.040) (0.873)

GW-LL (α,β , a, b)
4.393 0.302 2.072 19.999 37.983 46.555 1.266 0.231

(2.323) (0.035) (0.206) (0.214)

GW-Gu (α,β ,μ, σ )
0.371 1.197 1.384 0.325 37.912 46.484 0.829 0.140

(17.164) (12.395) (12.569) (3.369)

GW-LN (α,β ,μ, σ )
4.727 8.638 0.205 1.675 40.173 48.7455 1.531 0.279

(4.927) (6.179) (0.432) (1.086)

EWE (α, γ , c)
23.614 7.249 0.003 34.654 41.083 0.960 0.170

(3.954) (0.994) (0.003)

WE (α,β , λ) 0.014 2.879 1.017 34.804 41.234 0.976 0.173

(0.059) (2.048) (1.195)

Based on the figures in Table 1, we note that the MSEs of the MLEs of α, β , μ and σ

and a decay toward zero as the sample size increases, as usually expected under standard
regularity conditions. As the sample size n increases, the mean estimates of the parame-
ters tend to be closer to the true parameter values. This fact supports that the asymptotic
normal distribution provides an adequate approximation to the finite sample distribu-
tion of the estimates. The usual normal approximation can be oftentimes improved by
making bias adjustments to the MLEs. Approximations to the biases of the MLEs in
simple models may be obtained analytically. In order to improve the accuracy of these
estimates using analytical bias reduction one needs to obtain several cumulants of log like-

Fig. 10 Average estimates for different sample sizes of the GW-N distribution for fixed values α = 2, μ = 0,
σ = 1 and: a–c β = 1.5; d–f β = 0.5
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lihood derivatives which are notoriously cumbersome for the proposed model. In Fig. 10
we present the true density and the density of the average values of the parameters for
different sample sizes.

14 Applications
In this section, we present two applications to read data. In the first, the computations
were performed using the subroutine goodness.fit in the script AdequacyModel of the R
package. In the second application for censured data the computations were done using
the subroutine nlmixed of the SAS software.

14.1 Data: Strengths of glass fibers

The data (n = 63) set is on the strengths of 1.5 cm glass fibers from Smith and Naylor
(1987) contained in the gamlss.data library of the R software. Barreto-Souza et al. (2010)
fitted the beta generalized exponential (BGE) distribution to these data and proved that
its fit is better than those of the beta exponential (BE) (Nadarajah and Kotz 2006b) and
generalized exponential (GE) (Gupta and Kundu 1999) distributions. Barreto-Souza et al.
(2011) proved that the beta Fréchet (BF) distribution gives a better fit than the Fréchet
and exponentiated Fréchet (EF) (Nadarajah and Kotz 2003) distributions. Alzaghal
et al. (2013) fitted the exponentiated Weibull-exponential (EWE) distribution to the cur-
rent data and conclude that this distribution provides a better fit than the BGE and BF
distributions. Recently, Bourguignon et al. (2014) fits the Weibull-exponential (WE) dis-
tribution and shows that it is better than the exponentiated Weibull (EW) (Mudholkar
and Srivastava 1993) and exponentiated exponential (EE) (Gupta and Kundu 1999)
models.
Now, we compare the EWE and WE models with some other GW-G models fitted to

these data. We also present the fits of the baseline distributions to compare the gain with
the generated distributions. Table 2 provides the MLEs (and the corresponding standard
errors in parentheses) of the model parameters and the values of the statistics AIC, BIC,
A and W for some models.
Formal tests for the extra skewness parameters (α,β) in the GW-N distribution are

performed using LR statistics as described in Section 12. We compare the GW-N and
normal models and the GW-LL and LL models, where the LR values are listed in Table 3.
For the strengths of glass fibers data, we reject the null hypotheses of the LR tests in favor
of the GW-N and GW-LL distributions thus indicating the gain added by the parameters
α and β .
In order to assess if the model is appropriate, Fig. 11a and b display the his-

togram of the current data and the fitted densities of the GW-N, N, GW-LL, GW-
Gu, GW-LN, EWE and WE models. The figures in Table 4 and the plots of Fig. 11
indicate that the GW-Gu distribution has a significant gain compared with other
distributions.

Table 3 LR tests

Strengths Hypotheses Statistic w p-value

GW-N vs N H0 : α = β = 1 vs H1 : H0 is false 7.327 0.02

GW-LL vs LL H0 : α = β = 1 vs H1 : H0 is false 15.596 <0.001
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Fig. 11 Estimated densities for strengths of glass fibers of the: a GW-N, N, GW-LL and LL models; b GW-Gu,
GW-LN, EWE and WE models

14.2 Entomology data

The data come from a study carried out at the Department of Entomology of the Luiz de
Queiroz School of Agriculture, University of São Paulo, which aim to assess the longevity
of the mediterranean fruit fly (ceratitis capitata). The need for this fly to seek food just
after emerging from the larval stage has permitted the use of toxic baits for its manage-
ment in Brazilian orchards for at least fifty years. This pest control technique consists
of using small portions of food laced with an insecticide, generally an organophosphate,
that quickly kills the flies, instead of using an insecticide alone. Recently, there have
been reports of the insecticidal effect of extracts of the neem tree leading to proposals
to adopt various extracts (aqueous extract of the seeds, methanol extract of the leaves
and dichloromethane extract of the branches) to control pests such as the mediterranean
fruit fly. The experiment was completely randomized with eleven treatments, consisting
of different extracts of the neem tree, at concentrations of 39,225 and 888 ppm. After
preliminary statistical analysis, these eleven treatments were allocated into two groups,
namely:

Table 4MLEs of the model parameters for the entomology data, the corresponding SEs (given in
parentheses) and the statistics AIC, CAIC and BIC

Model α β a γ AIC CAIC BIC

GW-LL 1.9359 0.3089 31.2742 7.1305 1276.8 1277.0 1289.4

(0.5036) (0.0287) (5.6950) (1.0640)

LL 1 1 19.7506 2.7441 1289.1 1289.2 1295.4

– – (0.9132) (0.1877)

β λ a b c AIC CAIC BIC

McW 0.0301 1.2154 0.6426 3.1889 2.5386 1290.5 1290.9 1306.3

(0.0110) (0.4149) (0.3719) (0.8995) (2.2535)

BW 0.0143 2.0779 0.8736 7.4619 1 1325.4 1325.6 1337.9

(0.0011) (0.3950) (0.2642) (0.6443) –

KwW 0.1055 2.0666 1 0.6934 0.1293 1323.1 1323.4 1335.7

(0.0112) (0.1300) – (0.1539) (0.0118)

EW 0.0449 1.5874 1.2548 1 1 1287.5 1287.6 1296.9

(0.0075) (0.2753) (0.3752) – –

Weibull 0.04007 1.7970 1 1 1 1286.1 1286.2 1292.4

(0.0018) (0.1109) – – –
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• Group 1: Control 1 (deionized water); Control 2 (acetone - 5%); aqueous extract of
seeds (AES) (39 ppm); AES (225 ppm); AES (888 ppm); methanol extract of leaves
(MEL) (225 ppm); MEL (888 ppm); and dichloromethane extract of branches (DMB)
(39 ppm).

• Group 2: MEL (39 ppm); DMB (225 ppm) and DMB (888 ppm).

For more details, see Silva et al. (2013). The response variable in the experiment is
the lifetime of the adult flies in days after exposure to the treatments. The experimental
period was set at 51 days, so that the numbers of larvae that survived beyond this period
were considered as censored observations. The total sample size was n = 72, because four
cases were lost. Therefore, the variables used in this study were: xi-lifetime of ceratitis
capitata adults in days, δi-censoring indicator and vi1-group (1 = group 1, 0 = group 2).
We start the analysis of the data considering only failure (xi) and censoring (δi)
data.
Recently, Alexander et al. (2012) analyzed these data using the McDonald-Weibull

(McW) distribution with scale parameter β > 0 and shape parameter λ > 0. We focus
on this distribution since it extends various distributions previously discussed in the life-
time literature, as: beta Weibull (BW) (Lee et al. 2007), Kumaraswamy Weibull (KwW)
(Cordeiro et al. 2010), exponentiated Weibull (EW) (Mudholkar et al. 1995) distributions
and more.
Now, we compare the McW distribution and some of their sub-models. For some

fitted models, Table 4 provides the MLEs (and the corresponding standard errors
in parentheses) of the parameters and the values of the AIC, BIC and CAIC statis-
tics. The computations were performed using the NLMixed subroutine in SAS. They
indicate that the GW-LL model has the lowest AIC, BIC and CAIC values among
those values of the fitted models, and therefore it could be chosen as the best
model.
In order to assess if the model is appropriate, Fig. 12a displays the empirical and esti-

mated cumulative distributions for the fitted GW-LL and LL distributions to the current
data. Further, Fig. 12b gives the plots of the empirical survival function and the estimated
GW-LL and LL survival functions. These plots indicate the GW-LL model provides a
good fit to these data.

Fig. 12 a Estimated GW-LL and LL cdf for the entomology data. b Estimated GW-LL and LL survival function
and the empirical survival for the entomology data
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Table 5MLEs of the parameters from the fitted LGW-LL regression model to the entomology data,
the corresponding SEs (given in parentheses), p-values in [·] and the statistics AIC, CAIC and BIC

Model α β σ θ0 θ1 AIC CAIC BIC

LGW-LL 2.1577 0.2243 0.1020 3.2690 0.3217 341.5 341.9 357.2

(0.3215) (0.0152) (0.0031) (0.0925) (0.0612)

[<0.0001] [<0.0001]

Logistic 1 1 0.3547 2.7392 0.3310 355.6 355.8 365.1

(0.0241) (0.0894) (0.1037)

[<0.0001] [0.0017]

Now, we present results by fitting the model

yi = τ0 + τ1vi1 + σ zi,

where the random variable Yi follows the LGW-LL distribution given in (37). The MLEs
of the model parameters and the asymptotic standard errors of these estimates calculated
using the NLMixed procedure in SAS are listed in Table 5.
A summary of the values of the measures AIC, CAIC and BIC to compare the LGW-LL

and logistic regression models is given in Table 5. We conclude that the fitted LGW-LL
regression model has the lowest AIC, CAIC and BIC values compared with those values
of the fitted logistic model. Figure 13 provides the plots of the estimated survival function
and estimated cdf of the LGW-LL distribution. These plots indicate this regression model
provides a good fit to these data.

15 Conclusions
We study some mathematical properties of a new generalized Weibull family of distribu-
tions with two extra positive parameters. The family is able to generalize any continuous
distribution. We provide some special models, a very useful mixture representation in
terms of exponentiated distributions, explicit expressions for the ordinary and incom-
plete moments, generating function, mean deviations, probability weighted moments,
entropies, reliability and order statistics. The model parameters are estimated by the
method of maximum likelihood. We introduce a location-scale regression model based
on the new family. The importance of the proposed models is illustrated by means of two
real life data sets. The new models provide consistently better fits than other competitive
models for these data.

Fig. 13 Estimated LGW-LL for: a survival function and empirical survival. b cdf and empirical cdf for group 1.
c cdf and empirical cdf for group 2
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