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Abstract

A probability distribution can be characterized through various methods. In this
paper, we have established some new characterizations of folded Student’s t
distribution by truncated first moment, order statistics and upper record values. It is
hoped that the results will be quite useful in the fields of probability, statistics, and
other applied sciences.
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1. Introduction
Characterization of a probability distribution plays an important role in probability and

statistics. Before a particular probability distribution model is applied to fit the real

world data, it is necessary to confirm whether the given continuous probability distri-

bution satisfies the underlying requirements by its characterization. A probability dis-

tribution can be characterized through various methods (see, for example, Ahsanullah

et al. (2014), among others). Since the characterizations of probability distributions

play an important part in the determination of distributions by using certain properties

in the given data, there has been a great interest, in recent years, in the characteriza-

tions of probability distributions by truncated moments. For example, the development

of the general theory of the characterizations of probability distributions by truncated

moment began with the work of Galambos and Kotz (1978). Further development con-

tinued with the contributions of many authors and researchers, among them Kotz and

Shanbhag (1980), Glänzel et al. (1984), and Glänzel (1987) are notable. Most of these

characterizations are based on a simple relationship between two different moments

truncated from the left at the same point. As pointed out by Glänzel (1987), these

characterizations may serve as a basis for parameter estimation. The characterizations

by truncated moments may also be useful in developing some goodness-of-fit tests of

distributions by using data whether they satisfy certain properties given in the cha-

racterizations of distributions. For example, as pointed out by Kim and Jeon (2013), in

actuarial science, the credibility theory proposed by Bühlmann (1967) allows actuaries

to estimate the conditional mean loss for a given risk to establish an adequate pre-

mium to cover the insured’s loss. In their paper, Kim and Jeon (2013) have proposed a

credibility theory based on truncation of the loss data, or the trimmed mean, which
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also contains the classical credibility theory of Bühlmann (1967) as a special case.

It appears from the literature that not much attention has been paid to the

characterization of the folded Student’s t distribution with n degrees of freedom.

For the folded Student’s t distribution with n = 2 degrees of freedom, the interested

readers are referred to Ahsanullah et al. (2014). In this paper, motivated by the im-

portance of the Student’s t distribution in many practical problems when only the

magnitudes of deviations are recorded and the signs of the deviations are ignored,

we have established some new characterizations of folded Student’s t distribution

by truncated first moment, order statistics and upper record values, which, we

hope, will be useful for practitioners and researchers in the fields of probability,

statistics, and other applied sciences, such as, actuarial science, economics, finance,

among others.

The organization of this paper is as follows. Section 2 discusses briefly the folded

Student’s t distribution and some of its properties. The characterizations of the folded

Student’s t distribution are presented in section 3. The concluding remarks are pro-

vided in Section 4. We have provided two lemmas in Appendix A (as Lemma A.1 and

Lemma A.2) to prove the main results of the paper.
2. Folded student’s t distribution and its distributional properties
In this section, we briefly discuss the folded Student’s t distribution and some of its dis-

tributional properties.
2.1 Folded student’s t distribution

An important class of probability distributions, known as the folded distributions,

arises in many practical problems when only the magnitudes of deviations are re-

corded, and the signs of the deviations are ignored. The folded Student’s t distribu-

tion is one such probability distribution which belongs to this class. It is related to

the Student’s t distribution in the sense that if Y is a distributed random variable

having Student’s t distribution, then the random variable X = |Y| is said to have a

folded Student’s t distribution. The distribution is called folded because the prob-

ability mass (that is, area) to the left of the point x = 0 is folded over by taking the

absolute value. As pointed out above, such a case may be encountered if only the

magnitude of some random variable is recorded, without taking into consideration

its sign (that is, its direction). Further, this distribution is used when the measure-

ment system produces only positive measurements, from a normally distributed

process. The folded Student’s t distribution was developed by Psarakis and Panaretoes

(1990). For details on the folded Student’s t distribution, see Johnson et al. (1994). For

some bivariate extension of the folded Student’s t distribution, the interested readers are

referred to Psarakis and Panaretos (2001). Recently, many researchers have studied the

statistical methods dealing with the properties and applications of the folded Student’s t

distribution, among them Brazauskas and Kleefeld (2011, 2014), and Scollnik (2014),

are notable.

Definition: Let Y be a random variable having the Student’s t distribution with n

degrees of freedom. Let X = |Y|. Then X has a folded Student’s t distribution with n

degrees of freedom and its pdf fX(x) is given by



− n þ 1ð Þ
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f X xð Þ ¼ 2ffiffiffiffi
n

p
B n

2 ;
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2

� � 1þ x2

n

� �
2

; x > 0; ð1Þ

where B (., .) denotes the beta function; see, for example, Gradshteyn and Ryzhik

(1980), among others. To describe the shapes of the folded Student’s t distribution, the

plots of the pdf (1) for some values of the parameter n are provided in Fig. 1. The

effects of the parameter can easily be seen from these graphs. Similar plots can be

drawn for others values of the parameters.
2.2 Moment of folded student’s t distribution

For n = 1, E (X) and E (X2) do not exist for the folded Student’s t distribution having

the pdf (1). When n > 1, the mean, E (X), the second moment, E (X2), and the variance,

Var (X), for the folded Student’s t distribution having the pdf (1), are respectively given as

follows (see, for example, Psarakis & Panaretoes (1990)):

E Xð Þ ¼ 2

ffiffiffi
n
π

r Γ
nþ 1
2

� �

n − 1ð ÞΓ n
2

� � ; n > 1;

∞; n ¼ 1

8>>><
>>>:
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E X2
� � ¼ n

n − 2
; n > 2

and
Fig. 1 Plots of the folded student’s t distribution pdf
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where Γ(.) denotes the gamma function. Now, noting the following well-known asymp-

totic relation

limx→∞
Γ x þ αð Þ

xα Γ xð Þ
	 


¼ 1

for real α and x, see, for example, Wendel (1948), and Abramowitz and Stegun (1970), page

257, 6.1.46, among others, and using this in the above expressions (2) and (3) for E (X)

and Var (X) respectively, it can easily be seen that, in the limit, we have the following:

limn→∞E Xð Þ ¼ limn→∞ 2

ffiffiffi
n
π

r
Γ nþ1

2

� �
n − 1ð ÞΓ n

2

� �
" #

¼
ffiffiffi
2
π

r
≈0:79789;

and

limn→∞Var Xð Þ ¼ limn→∞
n

n − 2
−

4n

π n − 1ð Þ2
Γ nþ1

2

� �
Γ n

2

� �
" #2( )

¼ 1−2
π

¼ π−2
π
≈0:36338:

For more distributional properties of folded Student’s t distribution, the interested
readers are referred to Psarakis and Panaretoes (1990), and Johnson et al. (1994),

among others.

3. Characterization of folded student’s t distribution
In this section, we present some new characterizations of folded Student’s t distribution

by truncated first moment, order statistics and upper record values, as given below.

3.1 Characterization by truncated first moment

The characterizations of folded Student’s t distribution by truncated first moment are

provided below.

Assumption 3.1: Suppose the random variable X is absolutely continuous with the

cumulative distribution function F(x) and the probability density function f(x). We as-

sume that γ = inf { x | F (x) > 0} , and δ = sup { x | F (x) < 1} . We also assume that

E(X) exists.

Theorem 3.1.1: If the random variable X satisfies the Assumption 3.1 with γ = 0 and

δ =∞, then E (X|X ≤ x) = g (x) τ (x), where τ xð Þ ¼ f xð Þ
F xð Þ and g xð Þ ¼ n

n − 1

1 þ x2
n

� �n þ 1
2

− 1 þ x2
n

� �	 

; if and only if X has the folded Student’s t distribution

with the pdf as given in Eq. (1).

Proof: Suppose that E (X|X ≤ x) = g (x) τ (x). Then, since E ðX X ≤ xj Þ ¼Z x

0
uf uð Þdu
F xð Þ ; and τ xð Þ ¼ f xð Þ

F xð Þ ; we have g xð Þ ¼

Z x

0
uf uð Þdu
f xð Þ : Now, if the random
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variable X satisfies the Assumption 3.1 and has the folded Student’s t distribution as

given in Eq. (1), then, after simplification, we have

g xð Þ ¼

Z x

0
uf uð Þdu
f xð Þ ¼ 1 þ x2

n

� � n þ 1
2

Z x

0
u 1 þ u2

n

� �−n þ 1
2

du

¼ n
n − 1

1 þ x2

n

� �n þ 1
2

− 1 þ x2

n

� �" #
:

2
� �n þ 1

2 2
� �	 

Conversely, suppose that g xð Þ ¼ n
n − 1 1 þ x

n − 1 þ x
n : Then, after

differentiation, we have

g= xð Þ ¼ n
n − 1

n þ 1
n

x 1 þ x2

n

� � n − 1
2

−
2x
n

( )
:

Using the above expressions for g (x) and g/(x), after simplification, we obtain
x − g= xð Þ
g xð Þ ¼ −

n þ 1ð Þ
n

x 1 þ x2

n

� �−1

:

Consequently, by using Lemma A.1, we obtain
f = xð Þ
f xð Þ ¼ −

n þ 1ð Þ
n

x 1 þ x2

n

� �−1

:

On integrating the above equation with respect to x, we obtain

f xð Þ ¼ c 1 þ x2
n

� �−n þ 1
2

; where c is a constant to be determined.

On integrating the above equation with respect to x from x = 0 to x = ∞, and using

the condition
Z ∞

0
f xð Þdx ¼ 1; and noting the integral representation of beta function,

that is, B u; vð Þ ¼
Z∞
0

tu − 1

1 þ tð Þu þ vdt; u > 0; v > 0; (see, Gradshteyn and Ryzhik

(1980), Eq. 8.380.3, Page 948), we obtain c ¼ 2ffiffi
n

p
B n

2;
1
2ð Þ ; and thus f X xð Þ ¼ 2ffiffiffi

n
p

B n
2;

1
2ð Þ

1þ x2
n

� �− n þ 1ð Þ
2

; x > 0; which is the pdf of folded Student’s t distribution with n

degrees of freedom. This completes the proof.

Special Case: By taking n = 3 in Theorem 3.1.1, it is easy to see that, for an abso-

lutely continuous (with respect to Lebesgue measure) non-negative random variable X

with cdf F (x) and pdf f (x), we have E (X|X ≤ x) = g (x) τ (x), where g xð Þ ¼ x2 x2þ3ð Þ
6 ;

and τ(x) is the reversed hazard rate function given by τ xð Þ ¼ f xð Þ
F xð Þ ; if and only if X has

the folded Student’s t3 distribution with the pdf f xð Þ ¼ 2
π

ffiffi
3

p 1 þ x2
3

� �−2
; x > 0:

Theorem 3.1.2: If the random variable X satisfies the Assumption 3.1 with γ = 0 and

δ =∞, then E X X ≥ xj Þ ¼ ~g xð Þ r xð Þ;ð where r xð Þ ¼ f xð Þ
1 − F xð Þ and ~g xð Þ ¼ n

n − 1 1 þ x2
n

� �
;

if and only if X has the folded Student’s t distribution with the pdf as given in Eq. (1).
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Proof: Suppose that E X X ≥ xj Þ ¼ ~g xð Þ r xð Þ:ð Then, since E ðX X ≥ xj Þ ¼Z ∞

x
u f uð Þdu

1 − F xð Þ and r xð Þ ¼ f xð Þ
1 − F xð Þ ; we have ~g xð Þ ¼

Z ∞

x
u f uð Þdu
f xð Þ : Now, if the

random variable X satisfies the Assumption 3.1 and has the folded Student’s t distribu-

tion as given in Eq. (1), then, after simplification, we have

~g xð Þ ¼

Z ∞

x
u f uð Þdu
f xð Þ ¼ 1 þ x2

n

� � n þ 1
2

Z ∞

x
u 1 þ u2

n

� �−n þ 1
2

du

¼ n
n − 1

1 þ x2

n

� �
:

n x2
� �
Conversely, suppose that ~g xð Þ ¼ n − 1 1 þ n : Then, after differentiation,

we have

~g xð Þð Þ= ¼ 2x
n − 1

:

Using the above expressions for ~g xð Þ and ~g xð Þð Þ=; after simplification, we obtain
− x þ ~g xð Þð Þ=
h i

~g xð Þ ¼ −
n þ 1ð Þx

n 1 þ x2
n

� � :
Consequently, by using Lemma A.2, we have
f = xð Þ
f xð Þ ¼ −

n þ 1ð Þx
n 1 þ x2

n

� � :

On integrating the above equation with respect to x, we obtain

f xð Þ ¼ c 1 þ x2
n

� �−n þ 1
2

; where c is a constant to be determined.

On integrating the above equation with respect to x from x = 0 to x = ∞, and

noting that
Z ∞

0
f xð Þdx ¼ 1; and B u; vð Þ ¼

Z∞
0

tu − 1

1 þ tð Þu þ v dt; u > 0; v > 0;

we obtain c ¼ 2ffiffi
n

p
B n

2;
1
2ð Þ; and thus f X xð Þ ¼ 2ffiffiffi

n
p

B n
2;

1
2ð Þ 1þ x2

n

� �− n þ 1ð Þ
2

; x > 0;

which is the pdf of folded Student’s t distribution with n degrees of freedom. This com-

pletes the proof.

Note: It is interesting to point out here that there is connection between

Theorem 3.1.1 and Theorem 3.1.2. For example, since, as in Theorem 3.1.1 and

Theorem 3.1.2, g xð Þ ¼

Z x

0
uf uð Þdu
f xð Þ and ~g xð Þ ¼

Z ∞

x
u f uð Þdu
f xð Þ respectively, we

have g xð Þ þ ~g xð Þ ¼

Z ∞

0
uf uð Þdu
f xð Þ ¼ E Xð Þ

f xð Þ : that is,

g xð Þ ¼ E Xð Þ
f xð Þ − ~g xð Þ; or ~g xð Þ ¼ E Xð Þ

f xð Þ − g xð Þ;
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where E (X) denotes the mean, as given in Eq. (2), of folded Student’s t distribution with

the pdf (1). Thus, using the expressions for f (x) as in Eq. (1), and for E (X) as in Eq. (2),

respectively, we can easily derive the formulas for g (x) or ~g xð Þ when X follows the folded

Student’s t distribution.

3.2 Characterization by order statistics

The characterizations of folded Student’s t distribution by order statistics are provided

in Theorem 3.2.1 and Theorem 3.2.2 below. We will consider the pdf f (x) of the folded

Student’s t distribution as given in Eq. (1). Let X1, X2, … , Xn be n independent copies

of the random variable X having absolutely continuous distribution function F(x) and

pdf f (x). Suppose that X1, n ≤ X2, n ≤ … ≤ Xn, n are the corresponding order statistics.

It is known that Xj, n|Xk, n = x, for 1 ≤ k < j ≤ n, is distributed as the (j − k) th order

statistics from (n − k) independent observations from the random variable V having the

pdf fV (v|x) where f V vjxð Þ ¼ f vð Þ
1 − F xð Þ ; 0 ≤ v < x; see, for example, Ahsanullah

et al. (2013), Chapter 5, or Arnold et al. (2005), Chapter 2, among others. Further,

Xi.,n|Xk, n = x, 1 ≤ i < k ≤ n, is distributed as ith order statistics from k independent obser-

vations from the random variable W having the pdf fW(w|x) where f W wjxð Þ ¼ f wð Þ
F xð Þ ;

w < x: We assume that Sk−1 ¼ 1
k − 1 X1; n þ X2; n þ … þ Xk−1; n

� �
; and Tk; n ¼

1
n − k Xkþ1; n þ Xkþ2; n þ … þ Xn:n

� �
:

Theorem 3.2.1: Suppose the random variable X satisfies the Assumption 3.1

with γ = 0 and δ =∞, then E (Sk − 1|Xk, n = x) = g (x) τ (x), where g xð Þ ¼ n
n − 1

1 þ x2
n

� �n þ 1
2

− 1 þ x2
n

� �	 

and τ xð Þ ¼ f xð Þ

F xð Þ ; if and only if X has the folded

Student’s t distribution with the pdf as given in Eq. (1).

Proof: Since E Sk − 1jXk; n ¼ x
� � ¼

Z x

0
uf uð Þdu
F xð Þ ¼ E X X ≤ xj Þ;ð the proof

of Theorem 3.2.1 follows from Theorem 3.1.1.

Theorem 3.2.2: Suppose the random variable X satisfies the Assumption 3.1 with

γ = 0 and δ =∞, then E Tk; njXk; n ¼ x
� � ¼ ~g xð Þ r xð Þ; where r xð Þ ¼ f xð Þ

1 − F xð Þ and

~g xð Þ ¼ n
n − 1 1 þ x2

n

� �
; if and only if X has the folded Student’s t distribution with

the pdf as given in Eq. (1).

Proof: Since E Tk; njXk; n ¼ x
� � ¼

Z ∞

x
u f uð Þdu

1 − F xð Þ ¼ E X X ≥ xj Þ;ð the proof

follows from Theorem 3.1.2.
3.3 Characterization by upper record values

In this section, we will establish a theorem on the characterization of the folded

Student’s t distribution by upper record values. Suppose that X1, X2, … is a sequence of

independent and identically distributed absolutely continuous random variables with

distribution function F (x) and pdf f(x). Let Yn = max (X1, X2, … , Xn) for n ≥ 1.

We say that Xj is an upper record value of {Xn, n ≥ 1} if Yj > Yj − 1, j > 1. The indices

at which the upper records occur are given by the record times {U (n) > min(j | j >
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U(n − 1), Xj > XU(n − 1), n > 1) } and U(1) = 1. We will denote the nth upper record

value as X (n) = XU(n). The pdf of X (n) is given by

f n xð Þ ¼ R xð Þð Þn − 1

Γ nð Þ f xð Þ ; −∞ < x < ∞;

where R (x) = − ln (1 − F(x)) denotes the cumulative hazard rate function. The joint

pdf fn , n + 1 (x , y) of X (n) and X (n + 1) is given by (see Ahsanullah (1995), page 4)

f n ; n þ 1 x ; yð Þ ¼ R xð Þð Þn − 1

Γ nð Þ r xð Þ f yð Þ ; −∞ < x < y < ∞;

where r xð Þ ¼ d R xð Þ
d x ¼ f xð Þ

1 − F xð Þ denotes the hazard rate function. Thus, the conditional

pdf fn + 1 , n (y | x ) of X(n + 1)|X(n) = x is f n þ 1 ; n y j xð Þ ¼ f n ; n þ 1 x ; yð Þ
f n xð Þ ¼

f yð Þ
1 − F xð Þ : Based on these results, we now have the characterization of folded Student’s t dis-

tribution by upper record values, as provided in Theorem 3.3.1 below. We will consider the

pdf f (x) of the folded Student’s t distribution as given in Eq. (1).

Theorem 3.3.1: Suppose the random variable X satisfies the Assumption 3.1 with

γ = 0 and δ =∞. Then X has the folded Student’s t distribution with n degrees of

freedom if and only if

E X nþ 1ð ÞjX nð Þ ¼ xð Þ ¼ ~g xð Þ r xð Þ; where r xð Þ ¼ f xð Þ
1 − F xð Þ and ~g xð Þ ¼ n

n − 1 1 þ x2
n

� �
:

Proof: Since, as shown above, f n þ 1 ; n y j xð Þ ¼ f yð Þ
1 − F xð Þ ; it follows that

E X nþ 1ð Þ jX nð Þ ¼ xð Þ ¼

Z ∞

x
u f uð Þdu

1 − F xð Þ ¼ E X X ≥ xj Þ:ð

And, hence, the proof of Theorem 3.3.1 follows from Theorem 3.1.2.
4. Concluding remarks
Characterization of a probability distribution plays an important role in probability and

statistics, and other applied sciences. Before a particular probability distribution model is

applied to fit the real world data, it is necessary to confirm whether the given probability

distribution satisfies the underlying requirements by its characterization. A probability

distribution can be characterized through various methods. Since the characterizations of

probability distributions by truncated moments play an important part in the determin-

ation of distributions by using certain properties in the given data, in this paper we have

established some new characterizations of folded Student’s t distribution by truncated first

moment, order statistics and upper record values. It is hoped that the findings of the paper

will be useful for researchers in the fields of probability, statistics, and other applied

sciences.

Appendix A
Here, we establish the following two lemmas (Lemma A.1 and Lemma A.2) which have

been useful in proving our main results in Section 3.
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Lemma A.1

Under the Assumption 3.1, if E (X | X ≤ x) = g (x) τ (x), where τ xð Þ ¼ f xð Þ
F xð Þ and g (x)

is a continuous differentiable function of x with the condition that
Z x

0

u − g= uð Þ
g uð Þ du is

finite for x > 0, then f xð Þ ¼ ce

Z x

0

u − g= uð Þ
g uð Þ du

; where c is a constant determined

by the condition
Z ∞

0
f xð Þdx ¼ 1.

Proof: Suppose that E (X|X ≤ x) = g (x) τ (x). Then, since E ðX X ≤ xj Þ ¼Z x

0
uf uð Þdu
F xð Þ and τ xð Þ ¼ f xð Þ

F xð Þ ; we have g xð Þ ¼

Z x

0
uf uð Þdu
f xð Þ ; that is,Z x

0
uf uð Þdu ¼ f xð Þg xð Þ:

Differentiating both sides of the above equation with respect to x, we obtain

x f xð Þ ¼ f = xð Þg xð Þ þ f xð Þg= xð Þ:

From the above equation, we obtain
f = xð Þ
f xð Þ ¼ x − g= xð Þ

g xð Þ :

On integrating the above equation with respect to x, we have

f xð Þ ¼ ce

Z x

0

u − g= uð Þ
g uð Þ du

;

where c is obtained by the condition
Z ∞

0
f xð Þdx ¼ 1: This completes the proof of

Lemma A.1.

Lemma A.2

Under the Assumption 3.1, if E X j X ≥ xð Þ ¼ ~g xð Þ r xð Þ; where r xð Þ ¼ f xð Þ
1 − F xð Þ

and ~g xð Þ is a continuous differentiable function of x with the condition that

Z ∞

x

u þ ~g uð Þ½ �=
~g uð Þ du is finite for x > 0, then f xð Þ ¼ ce

−

Z x

0

u þ ~g uð Þ½ �=
~g uð Þ du;

where

c is a constant determined by the condition
Z ∞

0
f xð Þdx ¼ 1:

Proof: Suppose that E X X ≥ xj Þ ¼ ~g xð Þ r xð Þ:ð Then, since E ðX X ≥ xj Þ ¼Z ∞

x
u f uð Þdu

1 − F xð Þ and r xð Þ ¼ f xð Þ
1 − F xð Þ ; we have ~g xð Þ ¼

Z ∞

x
u f uð Þdu
f xð Þ ; that is,Z ∞

x
u f uð Þdu ¼ f xð Þ~g xð Þ:

Differentiating the above equation with respect to respect to x, we obtain
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−x f xð Þ ¼ f = xð Þ~g xð Þ þ f xð Þ ~g xð Þ½ �=:

From the above equation, we obtain

f = xð Þ
f xð Þ ¼ −x þ ~g xð Þ½ �=

~g xð Þ :

On integrating the above equation with respect to x, we have

f xð Þ ¼ ce
−

Z x

0

u þ ~g uð Þ½ �=
~g uð Þ du;

where c is obtained by the condition
Z ∞

0
f xð Þdx ¼ 1: This completes the proof of

Lemma A.2.
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