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Abstract

We introduce and study the extended-G geometric family of distributions, which
contains as special models some important distributions such as the XTG (Xie et al.
2002) geometric, Weibull geometric, Chen (Chen 2000) geometric, Gompertz
geometric, among others. This family not only includes distributions with bathtub and
unimodal failure rate functions but provides a broader class of monotone failure rates.
Its density function can be expressed as a linear mixture of extended-G densities. We
derive explicit expansions for the ordinary and incomplete moments, generating
function, mean deviations and Rénvy entropy. The density of the order statistics can
also be given as a linear mixture of extended-G densities. The model parameters are
estimated by maximum likelihood. The potentiality of the new family is illustrated by
means of an application to real data.
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1 Introduction
In the last few years, new classes of distributions were proposed by extending theWeibull
distribution to cope with bathtub shaped failure rates. A good review of some of these
models is addressed by Pham and Lai (2007). Among these models, we point out the
exponentiatedWeibull (Mudholkar et al. 1995, 1996), additiveWeibull (AW) (Xie and Lai
1995), XTG (Xie et al. 2002), modified Weibull (MW) (Lai et al. 2003), beta exponential
(Nadarajah and Kotz 2006), BLZ (Bebbington et al. 2007), generalized modified Weibull
(GMW) (Carrasco et al. 2008), beta modifiedWeibull (BMW) (Silva et al. 2010a) and beta
Weibull geometric (Cordeiro et al. 2013) distributions.
Alternatively, various works introduced more flexible distributions in modeling mono-

tone or unimodal failure rates but it is not useful for modeling the bathtub shaped failure
rates. Adamidis and Loukas (1998) defined the exponential geometric distribution to
model lifetime data with decreasing hazard rate function (hrf ). Gupta and Kundu 1999,
2001a, b proposed the generalized exponential (GE) (also called the exponentiated expo-
nential) distribution, and investigated some of its mathematical properties. This distribu-
tion has only increasing or decreasing hrf. Following the same idea of the GE distribution,
Silva et al. (2010b) proposed the generalized exponential geometric (GEG) model and
demonstrated that its hrf can be increasing, decreasing or unimodal. Another general-
ization of the Weibull for modeling monotone or unimodal failure rates, referred to as
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theWeibull geometric (WG) distribution, was investigated by Barreto-Souza et al. (2011).
The Kumaraswamy log-logistic distribution was studied by de Santana et al. (2012). This
generalization contains distributions with unimodal and bathtub shaped hrfs.
In this paper, we propose the new extended-G geometric (EGG) family of lifetime mod-

els by compounding the extended-G (EG) (Nadarajah and Kotz 2005) class of models and
the geometric distribution. This family has two important aspects: it involves one addi-
tional shape parameter to the baseline model and the new parameter has a clear physical
interpretation. We expect that it will attract wider applications in biology, medicine and
reliability, and other areas of research.
Further, several distributions are obtained as special cases of this family including the

extended exponential geometric (EEG), modified Weibull geometric (MWG), exponen-
tial power geometric (EPG), log-Weibull geometric (LWG), generalized power Weibull
geometric (GPWG), among several others. Besides these distributions, the EGG family
contains other promising new distributions as, for example, the additive Weibull geo-
metric (AWG) and XTG geometric (XTGG) distributions (see “Appendix”). Due to its
flexibility in accommodating different forms of the risk function, the new family is an
important tool to be used in a variety of problems in modeling survival data. Various EGG
distributions are not only convenient for modeling comfortable bathtub-shaped failure
rates but they are also suitable for testing goodness-of-fit of some special models.
The paper is organized as follows. In Section 2, we define the EGG family and demon-

strate that its probability density function (pdf) is given as a linearmixture of EG densities.
In Sections 3 and 4, we derive the moments and moment generating function (mgf),
respectively. The mean deviations and Bonferroni and Lorenz curves are obtained in
Section 5. In Section 6, we demonstrate that the Rényi entropy of the EGG family is a
linear combination of EG entropies with different scale parameters. In Section 7, the den-
sity function of the EGG order statistics is expressed as a linear mixture of EG densities.
Maximum likelihood estimation of the model parameters is addressed in Section 8. In
Section 9, we give an application to ozone level data to prove empirically the potential-
ity of the proposed family. Concluding remarks are provided in Section 10. Some special
models are presented in the “Appendix”.

2 The EGG family
The cumulative distribution function (cdf) of the EG class is defined by

Gα,τ (y) = 1 − exp{−αH(y)}, y > 0, (1)

where α > 0 is a rate parameter, H(y) is a monotonically increasing function of y with
the only limitation H(y) ≥ 0 and τ denotes the vector of unknown parameters in H(y). If
H(y) is a power function, Eq. (1) reduces to the Weibull distribution. The EG class pdf is
given by

gα,τ (y) = αh(y) exp{−αH(y)}, y > 0, (2)

where h(y) = ∂H(y)/∂y. We denote by Yα ∼ EG(α, τ ) a random variable Yα having
density function (2). TheMWdistribution is a special case of (2) whenH(y) = yγ exp(λy),
where γ > 0 and λ ≥ 0. Clearly, the Weibull distribution is obtained as a basic exemplar
when λ = 0.
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The EG quantile function (qf ) is given by

Qα,τ (u) = H−1
{
− 1

α
log(1 − u)

}
, (3)

which plays an important role in the algebraic developments in the paper. We only need
the inverse function of H(y) to determine (3). Table 1 lists closed-form inverses of H(·)
for some EG sub-models.
Let Z be a geometric random variable with probability mass function given by P(z; p) =

(1 − p) pz−1 for z ∈ N and p ∈ (0, 1). Suppose that {Yi}Zi=1 are independent and identi-
cally distributed (iid) random variables having the same density function (2), where the
unknown number Z of random variables follows this geometric distribution. We assume
that the random variables Z and Y ′

i s are independent. The EGG family is defined by
X = min

({Yi}Zi=1
)
, where Z has this geometric distribution. We provide three interesting

situations for applying this family:

• Reliability - the new distribution can arise in series and parallel systems with identical
components, which appear in many industrial applications and biological organisms;

• Times to the first and last failure - suppose the failure of a device occurs due to the
presence of an unknown number Z of initial defects of same kind, which can be
identifiable only after causing failure and are repaired perfectly. Let Yi be the time to
the failure of the device due to the i th defect, for i ≥ 1. Under the assumptions that
the Yi’s are iid EG random variables independent of Z, the EGG distribution is
appropriate for modeling the times to the first and last failures, respectively;

• Time to relapse of cancer under the first-activation scheme - suppose that an
individual in the population is susceptible to a certain type of cancer. Let Z be the
number of carcinogenic cells for that individual left active after the initial treatment
and denote by Yi the time spent for the i th carcinogenic cell to produce a detectable
cancer mass, for i ≥ 1. Under the assumptions that {Yi}i≥1 is a sequence of iid EG
random variables independent of Z, we conclude that the time to relapse of cancer of
a susceptible individual has the EGG distribution.

The conditional density function of X given Z = z is given by

f (x|z;α, τ ) = z α h(x) exp{−αH(x)} [
1 − exp {−αH(x)}] ,

Table 1 Inverse function x = H−1(y) for some EG models

Distribution x = H−1(y)

Exponential power [log(y+1)]1/β

λ

Chen
[
log(y + 1)

]1/β
XTG λ

[
log

(
y/λ + 1

)] 1
β

Log-Weibull σ log(y) + μ

Kies y1/βσ+μ

y1/β+1

Generalized power Weibull β
[
(y + 1)1/θ − 1

]1/α1
BLZ

log(t)±
√
[log(y)]2+4α1β
2α1

Gompertz log(α1y+1)
α1

Pham
[
log(1+y)
log(a1)

]1/α1
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and then the EGG density function reduces to

f (x; p,α, τ ) = α (1 − p) h(x) exp{−αH(x)}[ 1 − p exp{−αH(x)}]−2 , x > 0. (4)

TheMWG distribution is obtained from (4) whenH(x) = xγ exp(λx), where γ > 0 and
λ ≥ 0. Further, the WG distribution is also obtained as a special case when λ = 0. The
EG distribution follows as the limiting distribution (the limit is defined in terms of the
convergence in distribution) of the EGG distribution when p → 0+. On the other hand,
if p → 1−, we obtain the distribution of a random variable Y such that P(Y = 0) = 1.
Hereafter, a random variable X having density function (4) is denoted by X ∼

EGG(p,α, τ ). The EGG cdf is given by

F(x; p,α, τ ) = 1 − exp{−αH(x)}
1 − p exp{−αH(x)} , x > 0. (5)

The hrf corresponding to (4) becomes

h(x; p,α, τ ) = αh(x)
1 − p exp{−αH(x)} , x > 0. (6)

The EGG family contains as special models somewell-known distributions. Several new
models can also be easily generated as those listed in the “Appendix”. Plots of the density
functions (24)-(25) (given in the “Appendix”) and the corresponding hrfs for the XTGG
and MWG distributions are displayed in Figs. 1 and 2, respectively.
For |z| < 1 and ρ > 0, we can write

(1 − z)−ρ =
∞∑
j=0


(ρ + j)

(ρ) j!

zj. (7)

A useful representation for the EGG pdf (x > 0) follows by applying (7) in Eq. (4)

f (x; p,α, τ ) =
∞∑
j=0

wj g(j+1)α,τ (x), (8)

where wj = (1 − p) pj for j = 0, 1, . . . and g(j+1)α,τ (x) denotes the density function of the
random variable Y(j+1)α . Evidently,

∑∞
j=0 wj = 1. Note that the right-hand side of (8) is

mathematically more tractable than the density of X. So, the EGG density function can
be expressed as a linear mixture of EG densities. Equation (8) is very useful to derive
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Fig. 1 Plots of the XTGG density and hazard rate functions for some parameter values
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Fig. 2 Plots of the MWG density and hazard rate functions for some parameter values

some mathematical quantities (for example, ordinary, incomplete and factorial moments
and mgf) for the EGG family from an infinite weighted linear combination of those EG
quantities.

3 Moments
In this section, we derive an explicit expression for the EGG moments. Let βs(α, τ ) =
E

(
Ys

α

)
be the sth moment of the EG class (2) with parameters α and τ . The sth moment of

X, say μ′
s, can be expressed in terms of the corresponding moments of EG distributions.

In fact, we obtain a very simple expression from (8)

μ′
s = E(Xs) =

∞∑
j=0

wj βs((j + 1)α, τ ). (9)

Equation (9) reveals that the moments of X are linear combinations of the correspond-
ing moments of Y(j+1)α for j ≥ 0. So, the moments of the EGG family are expressed as
infinite linear combinations of those EG moments.
Next, we provide three alternative expressions for βs(α, τ ). First, by substituting u =

Qα,τ (y) given by (3) in the sth moment of Yα determined from (2), we obtain

βs(α, τ ) =
∫ 1

0
Qα,τ (u)sdu. (10)

A second formula follows from (2) by changing variable v = H(y)

βs(α, τ ) = s
∫ ∞

0
ps,τ (v) e−αvdv = Ps,τ (−α), (11)

where ps,τ (v) = H−1(v)s−1

h(H−1(v)) and Ps,τ (−α) = L(ps,τ (v);α) is the Laplace transform of ps,τ (v).
A third formula for βs(α, τ ) comes from the Mellin transform of h(y) e−αH(y), namely

βs(α, τ ) = αM
(
h(y) e−αH(y); s + 1

)
.

Several tables provide Mellin transforms for common functions. The Laplace and
Mellin transforms are defined in Prudnikov et al. (1986). Equations (9)–(11) are the main
results of this section. They can be used to obtain analytically or numerically themoments
of several EGG special models.
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Further, we provide an application of (9) in conjunction with (10) and (11). Substituting
H(y) of the XTG distribution given in the “Appendix” into Eq. (11) and assuming that
m = s/β is an integer, and after some algebra, we have

βs(α,β , λ) = s
∫ ∞

0
vs−1 exp(λα) exp

{−λα exp
[
(v/λ)β

]}
dv

= m λs exp(λα)
∂m−1(λα)−t
(t, λα)

∂tm−1

∣∣∣
t=0

, (12)

where 
(t,α) = ∫ ∞
t wα−1 e−wdw is the upper incomplete gamma function. Equation (12)

gives the moments of the XTG distribution. Hence, we can express the XTGG moments
by combining Eqs. (9) and (12).
The central moments (μs) and cumulants (κs) of X can be obtained from (9) as

μs =
s∑

j=0
(−1)j

(
s
j

)
μ′s
1 μ′

s−j and κs = μ′
s −

s−1∑
j=1

(
s − 1
j − 1

)
κj μ

′
s−j,

respectively, where κ1 = μ′
1. The skewness and kurtosis measures can be determined

from the central moments using well-known relationships. Plots of the skewness and kur-
tosis for some parameter values as functions of α for the XTGG and MWG distributions
are displayed in Figs. 3 and 4, respectively.
Finally, for empirical purposes, the shape of many distributions can be usefully

described by the incompletemoments. These types ofmoments play an important role for
measuring inequality, for example, income quantiles and Lorenz and Bonferroni curves.
The sth incomplete moment of X is determined from (8) as

ms(y) =
∫ y

0
xs f (x; p,α, τ )dx =

∞∑
j=0

wj

∫ Q(j+1)α,τ (y)

0
Q(j+1)α,τ (u)sdu. (13)

Both integrals in (13) can be evaluated numerically for most EGG distributions.

4 Generating function
An expression for the mgf of X can be determined from Eq. (8) using the EG generating
function. Initially, we can derive a simple linear combination for the mgf of X, say
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Fig. 3 Skewness and kurtosis of the XTGG distribution as functions of α for some values of p, with λ = 0.3
and β = 0.8
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Fig. 4 Skewness and kurtosis of the MWG distribution as functions of α for some values of p, with λ = 0.04
and γ = 0.8

M(t; p,α, τ ), from Eq. (8) given by

M(t; p,α, τ ) =
∞∑
j=0

wj M(j+1)α,τ (t), (14)

where Mα,τ (t) = ∫ ∞
0 ety gα,τ (y)dy is the generating function of Yα . A simple formula for

Mα,τ (t) follows from Eqs. (2) and (3)

Mα,τ (t) =
∫ 1

0
exp{t Qα,τ (u)}du. (15)

Equations (14) and (15) are the main results of this section. Combining these two
equations, we can derive the generating functions of some EGG special models.

5 Mean deviations
The amount of scatter in a population is measured to some extent by the totality of devia-
tions from the mean and median. We can obtain the mean deviations about the ordinary
mean μ′

1 = E(X) and about the medianM of X using the relationships

δ1 =
∫ ∞

0
| t − μ′

1| f (t)dt and δ2 =
∫ ∞

0
| t − M| f (t)dt,

and then

δ1 = 2
[
μ′
1 F

(
μ′
1
) − m1

(
μ′
1
) ]

and δ2 = μ′
1 − 2m1(M), (16)

where μ′
1 comes from (9) with s = 1 and M is given by M = H−1 (

α−1 log[ (2 − p)]
)
.

Further, we obtain from (13) with s = 1

m1(y) =
∞∑
j=0

wj

∫ Q(j+1)α,τ (y)

0
Q(j+1)α,τ (u)du.
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We define the quantity Aα,τ (z) = ∫ z
0 y gα,τ (y)dy = ∫ Qα,τ (z)

0 Qα,τ (u)du. A simple
application of Aα,τ (z) to the log-Weibull (LW) distribution gives

Aα,τ (z) = μGα,τ (z) + σ

∫ Gα,τ (z)

0
log

{
− 1

α
log(1 − u)

}
du

= [
μ − σ log(α)

]
Gα,τ (z) + σ

∫ Gα,τ (z)

0
log

{− log(1 − u)
}
du,

where Gα,τ (z) = 1 − exp
{ − exp

( t−μ
σ

)}
.

Setting v = 1 − u, the integral can be determined using MAPLE as∫ 1

x
log

{− log(v)
}
dv = −x log

[− log(x)
] − Ei(1,− log(x)) − γ ,

where Ei(a, z) = ∫ ∞
1 x−a ezxdx is the exponential integral and γ is the Euler constant.

Then,

Aα,τ (z) = [
μ − σ log(α)

]
Gα,τ (z) + σ

{− [
1 − Gα,τ (z)

]
log

{− log
[
1 − Gα,τ (z)

]}
−Ei

(
1,− log

[
1 − Gα,τ (z)

]) − γ
}
.

Finally, a practical application of δ1 and δ2 refers to the Bonferroni and Lorenz curves
of X defined by B(π) = m1(q)/

(
π μ′

1
)
and L(π) = m1(q)/μ′

1, respectively, where π is a
specified probability and q = F−1(π) is given by

q = H−1
(

α−1 log
[

(1 − pπ)

(1 − π)

])
.

These curves have applications in economics to study income and poverty, reliability,
demography, insurance and medicine. Plots of the Bonferroni and Lorenz curves for the
XTGG distribution for some parameter values are displayed in Fig. 5.

6 Rényi entropy
The entropy of a random variable X is a measure of uncertainty variation. The Rényi
entropy is defined by IEGG(γ ) = 1

1−γ
log

{∫
R
f γ (x)dx

}
, where γ > 0 and γ �= 1. Based

on the EGG density function (4) and using the power series (7), we obtain
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f (x; p,α, τ )γ = αγ (1 − p)γ h(x)γ
∞∑
j=0


(2γ + j) pj


(2γ ) j!
exp

{−(γ + j) αH(x)
}
, x > 0.

(17)

Setting α�
j = (γ + j)α/γ , we can write IEGG(γ ) as a linear combination of EG entropies.

We obtain

IEGG(γ ) =
[
γ (1 − p)

]γ
(1 − γ )

∞∑
j=0



(
2γ + j

)
pj(

γ + j
)γ


 (2γ ) j!
Ij(γ ),

where Ij(γ ) denotes the EG Rényi entropy with scale parameter α�
j . Hence, the EGG Rényi

entropy is a linear combination of EG Rényi entropies with scale parameters given by α�
j

for j = 0, 1, . . . The EG entropy depends on the form ofH(·) and can be evaluated (at least
numerically) using most statistical software programs.

7 Order statistics
Order statistics make their appearance in many areas of statistical theory and practice.
The density function fi:n(x) of the ith order statistic, say Xi:n, for i = 1, . . . , n, in a random
sample of size n from the EGG family can be expressed as

fi:n(x) = f (x)
B(i, n − i + 1)

n−i∑
j=0

(−1)j
(
n − i
j

)
F(x)i+j−1, (18)

where B(·, ·) is the beta function. Let 0 < u = exp{−αH(y)} < 1. From Eqs. (4), (5) and
(18), we can write

fi:n(x) = α (1 − p) h(x)u
B(i, n − i + 1)

n−i∑
j=0

(−1)j
(
n − i
j

)
(1 − u)i+j−1

(1 − p u)i+j+1 .

Using the binomial expansion and (7), we obtain after some algebra

fi:n(x) =
∞∑
s=0

n−i∑
j=0

i+j−1∑
r=0

vi:n(s, j, r) gα̃,τ (x), (19)

where α̃ = (r + s + 1)α and

vi:n(s, j, r) = (1 − p)
∞∑
s=0

n−i∑
j=0

i+j−1∑
r=0

(−1)j+r n! (i + j + s)! ps

(i + j) (r + s + 1) (i − 1)! (n − i − j)! (i + j − 1 − r)! j! r! s!
.

Equation (19) reveals that the density function of the EGG order statistics can be
expressed as a triple linear mixture of EG densities. We have checked using MAPLE and
MATHEMATICA that

∞∑
s=0

n−i∑
j=0

i+j−1∑
r=0

vi:n(s, j, r) = 1.

The triple sums in (19) can be computed using most packages with a large number
(say 20) of terms in place of infinity. So, we can derive several mathematical properties
(ordinary and incomplete moments, mgf, etc) for the EGG order statistics directly from
those quantities of the EG distribution. For example, the pth ordinary moment of Xi:n can
be obtained from (19) and the quantity βs(α, τ ) defined at the beginning of Section 3 as

E
(
Xp
i:n

) =
∞∑
s=0

n−i∑
j=0

i+j−1∑
r=0

vi:n(s, j, r) βp(̃α, τ ). (20)
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8 Maximum likelihood estimation
We determine the maximum likelihood estimates (MLEs) of the parameters of the EGG
family from complete samples only. Let x1, . . . , xn be a random sample of size n from
the EGG (p,α, τ ) distribution. The log-likelihood function for the vector of parameters
θ = (p,α, τ )T becomes

l(θ) = n
[
log(α) + log(1 − p)

] +
n∑

i=1
log [h(xi)] − α

n∑
i=1

H(xi) (21)

− 2
n∑

i=1
log

[
1 − p exp {−αH(xi)}

]
.

The components of the score vector U(θ) are obtained by differentiating (21)

Up(θ) = − n
(1 − p)

+ 2
n∑

i=1

exp{−αH (xi)}
1 − p exp{−αH (xi)} ,

Uα(θ) = n
α

−
n∑

i=1
H(xi) + 2

n∑
i=1

pH(xi) exp{−αH (xi)}
1 − p exp{−αH (xi)} ,

Uτ (θ) =
n∑

i=1

ḣ(xi)τ
h(xi)

− α

n∑
i=1

Ḣ(xi)τ − 2
n∑

i=1

αpḢ(xi)τ exp{−αH(xi)}
1 − p exp{−αH(xi)} ,

where ḣ(xi)τ = ∂h(xi)/∂τ and Ḣ(xi)τ = ∂H(xi)/∂τ are p × 1 vectors. Because the
equations Up(θ) = 0, Uα(θ) = 0 and Uτ (θ) = 0 are nonlinear, the MLE θ̂ have to be
evaluated numerically. The log-likelihood can be maximized either directly by using the
MaxBFGS routine in the matrix programming language Ox (see, Doornik 2007).
For interval estimation and hypothesis tests on the model parameters, we require

the observed information matrix J = J(θ), whose elements can be evaluated
numerically. Under general regularity conditions, the asymptotic distribution of (̂θ −
θ) is Np+2

(
0, I(θ)−1), where I(θ) is the expected information matrix. We can substitute

I(θ) by the observed information matrix J (̂θ) evaluated at θ̂ . The multivariate normal
Np+2

(
0, J (̂θ)−1) distribution can be used to obtain approximate confidence intervals for

the individual parameters.
We can compute the maximum values of the unrestricted and restricted log-likelihoods

to construct likelihood ratio (LR) statistics for testing some sub-models of the EGG family.
For example, we may use the LR statistic to check if the fit using the MWG distribution
is statistically “superior” to a fit using the MW distribution for a given data set. In any
case, hypothesis tests of the type H0 : θ = θ0 versus H : θ �= θ0, can be performed using
LR statistics. For example, the comparison of the MWG and MW distributions, where
θ = (p,α, λ, γ )T , is equivalent to test H0 : p = 0 versus H : H0 is not true. The LR
statistic reduces to

w = 2
{
�
(̂
p, 1, α̂, λ̂, γ̂

) − �
(
0, α̃, λ̃, γ̃

)}
,

where p̂, α̂, λ̂ and γ̂ are the MLEs under H and α̃, λ̃ and γ̃ are the estimates under H0.

We apply formal goodness-of-fit tests in order to verify which distribution gives the best
fit. We consider the Cramér-Von Mises (W ∗) and Anderson-Darling (A∗) statistics. In
general, the smaller the values of these statistics, the better the fit to the data. Let F(x; θ)

be the cdf, where the form of F is known but θ (a k-dimensional parameter vector, say)
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is unknown. To obtain the W ∗ and A∗ statistics, we can proceed as follows: (i) compute
vi = F

(
xi; θ̂

)
, where the xi’s are in ascending order, yi = �−1 (vi) is the standard normal

qf and ui = �{(yi − y)/sy}, where y = n−1 ∑n
i=1 yi and s2y = (n − 1)−1 ∑n

i=1(yi − y)2; (ii)
calculate W 2 = ∑n

i=1{ui − (2i − 1)/(2n)}2 + 1/(12n) and A2 = −n − n−1 ∑n
i=1{(2i −

1) log(ui) + (2n + 1 − 2i) log(1 − ui)} and (iii) modify W 2 into W ∗ = W 2(1 + 0.5/n)

and A∗ into A∗ = A2 (
1 + 0.75/n + 2.25/n2

)
. For further details, the reader is referred to

Chen and Balakrishnan (1995).

9 Application: ozone level data
We illustrate the superiority of some EGG distributions over their sub-models. We
consider the data set from the New York State Department of Conservation correspond-
ing to the daily ozone level measurements in New York in May-September, 1973. The
numerical evaluations are performed using the MaxBFGS sub-routine of the Ox program
(Doornik 2007).
We consider the reparametrizations, α = α

−γ
1 for the MWG model, α = α

−β
1 for the

XTGG model and α1 = α
−β1
3 and α2 = α

−β2
4 for the AWG model. The density functions

of the XTGG and MWGmodels are presented in the “Appendix”.
Alternative models to fit these data can be based on the Burr XII (BXII) distribution.

There are various extensions of this distribution. Recently, Lanjoni et al. (2015) introduced
two extended BXII distributions by compounding the BXII and geometric distributions.
These models are called the BXII geometric type I (BXIIGI) and BXII geometric type II
(BXIIGII) distributions, whose density functions are given below:

• BXIIGI distribution

f (x; s, k, c, p) = (1 − p)c k s−c xc−1 [
1 + ( x

s
)c]−k−1{

1 − p
[
1 + ( x

s
)c]−k}2 , x > 0, (22)

where s > 0 is a scale parameter and k > 0, c > 0 and p ∈ (0, 1) are shape parameters.
• BXIIGII distribution

f (x; s, k, c, p) = (1 − p)c k s−c xc−1 [
1 + ( x

s
)c]−k−1{

1 − p + p
[
1 + ( x

s
)c]−k}2 x > 0. (23)

We fit the MWG, XTGG and AWG models, their parent distributions and the BXIIGI
and BXIIGII models to the current data. Table 2 lists the MLEs of the model parameters,
their standard errors (in parentheses) and the values of the Akaike information criterion
(AIC). These results indicate that the special MW, XTG and AWmodels have larger AIC
values when compared with those values of the new MWG, XTGG and AWG models.
Since the value of the AIC statistic is smaller for the XTGG distribution compared to the
values of the other five models, this distribution can be chosen as the best model to fit
these data among these models.
The values of the W ∗ and A∗ statistics for all eight fitted models are given in Table 3.

Thus, according to these statistics, the MWG, XTGG and AWG models fit the current
data better than their sub-models. The figures in this table also reveal that the XTGG
model has the lowest values for the W ∗ and A∗ statistics among all eight fitted models.
Hence, it could be chosen as the best model to explain these data. Figure 6 displays the
histogram of the data and some plots comparing the fitted densities.We can also conclude
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Table 2MLEs of the model parameters for the daily ozone level data, the corresponding SEs (given
in parentheses) and the AIC statistics

Model p α1 λ γ AIC

MWG 0.83032 104.81 0.0030932 1.6764 1089.21

(0.18959) (78.852) (0.0068905) (0.23498)

MW − 46.080 2.9046e-013 1.3402 1091.22

(3.3755 ) (0.00053284) ( 0.095420)

p α1 λ β AIC

XTGG 0.92198 19.384 119.79 1.7396 − 1088.39

(0.16726) (28.978) (92.031) (0.19738)

XTG − 3.7020 20682. 1.3401 − 1091.22

(1.8864) (85.071) (0.095512)

p α3 β1 α4 β2 AIC

AWG 0.75545 0.99528 116.54 0.99528 116.54 1091.45

(0.17410) (0.0393) (982.7309) (0.0393) (0.0393)

AW − 0.99622 77.29 0.99622 77.29 1093.22

(0.0251070) (512.43) (0.025107) (512.43)

p s c k AIC

BXIIGI 0.7553 16102 1.7363 10405 − 1089.5

(0.1760) (4316.05) (0.2089) (3936.62)

BXIIGII 1E-8 134.00 1.4860 5.5678 − 1092.7

(1E-9) (17.35) (0.2235) (2.4753)

that the distributions in the new family are very competitive models for describing the
daily ozone level data. Finally, these results prove empirically the potentiality of the EGG
family.

10 Concluding remarks
In this paper, we introduce and study a new class of distributions called the extended-
G geometric (EGG) family that generalizes the Weibull geometric and modified Weibull
geometric distributions proposed by Barreto-Souza et al. (2011) and Wang and Elbatal
(2015), respectively, among other distributions. This is achieved by compounding the
class of extended-G (EG) distributions (Nadarajah and Kotz 2005) with the geometric
distribution. The EGG family is quite flexible in analyzing positive data instead of some
other special models.

Table 3 Formal tests for some models

Model Statistics

W∗ A∗

MWG 0.091 0.545

MW 0.170 0.966

XTGG 0.078 0.474

XTG 0.170 0.966

AWG 0.088 0.539

AW 0.170 0.966

BXIIGI 0.088 0.539

BXIIGII 0.139 0.820
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Fig. 6 Fitted densities of the more adequate models for daily ozone level data

The density function of the EGG family can be expressed as a linear mixture of EG
densities. We provide a mathematical treatment of the new family including explicit
expressions for the ordinary and incomplete moments, generating function, mean devia-
tions, Bonferroni and Lorenz curves, order statistics and their moments. The estimation
of the parameters is approached by the method of maximum likelihood. An application
to real lifetime data indicate that the EGG family could provide better fits than other
well-known lifetime models. We expect that the new family of models will attract wider
applications in Statistics.

Appendix: new special EGGmodels
• ModifiedWeibull geometric distribution

The case H(x) = xγ exp(λx) and h(x) = xγ−1 exp(λx)(γ + λx), where γ > 0 and
λ ≥ 0, in Eq. (4), gives the modified Weibull geometric (MWG) distribution. If
p → 0+, it reduces to the MW distribution. The MWG distribution is very flexible to
accommodate a hrf that has increasing, decreasing, bathtub and unimodal shapes. It
is also suitable for testing goodness of fit of some special models such as the modified
Weibull (MW), Weibull geometric (WG) and Weibull distributions.

• Exponential power geometric distribution
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For the case H(x) = exp
[
(λx)β

] − 1, h(x) = βλ exp
[
(λx)β

]
(λx)β−1 and α = 1,

where β , λ > 0, we obtain the exponential power geometric (EPG) distribution. If
p → 0+ in addition to α = 1, it becomes the exponential power (EP) distribution
(Smith and Bain 1975). This distribution has the property that its hrf may take a
U-shaped form. Smith and Bain (1975) presented some general properties of least
squares estimators and discussed the case of location-scale parameter distributions.

• Chen geometric distribution
The case H(x) = exp

(
xβ

) − 1, h(x) = βxβ−1 exp
(
xβ

)
, where β > 0, corresponds to

the Chen geometric (CG) distribution. If p → 0+, it becomes the Chen distribution
(Chen, 2000), which has increasing or bathtub-shaped hrf. Chen (2000) discussed
exact confidence intervals and exact joint confidence regions for the parameters
based on type-II censored samples.

• XTG geometric distribution
For H(x) = λ

[
exp

{(
x/λ

)β} − 1
]
and h(x) = β exp

{(
x/λ

)β}
(x/λ)β−1, where β > 0

and λ > 0, we obtain the XTG geometric (XTGG) distribution. If p → 0+, it reduces
to Xie et al.’s (2002) model. They studied parameter estimation methods and showed
its applicability. If λ = 1, this model reduces to the CG distribution above.

• Log-Weibull geometric distribution
For H(x) = exp

[
(x − μ)/σ

]
, h(x) = (1/σ) exp

[
(x − μ)/σ

]
and α = 1, where

−∞ < μ < ∞ and σ > 0, we have the log-Weibull geometric (LWG) distribution. If
p → 0+, it gives as special case the log-Weibull (LW) distribution (White 1969;
Lawless 2003). White (1969) obtained the means and variances of the order statistics
of the LW distribution and listed these values in special tables. Examples of these
tables to obtain weighted least squares estimates from censored samples from a
Weibull distribution are also presented. The LW distribution is a very popular
distribution for modeling lifetime data and phenomenon with monotone failure rates.

• Kies geometric distribution
ForH(x) = [

(x−μ)/(σ −x)
]β and h(x) = β

[
(x−μ)/(σ −x)

]β−1[
(σ −μ)/(σ −x)2

]
,

where 0 < μ < t < σ < ∞, we obtain the Kies geometric (KG) distribution. If
p → 0+, it yields as a special model the Kies distribution (Kies 1958), which is an
extension of the Weibull distribution for strength modeling.

• Phani geometric distribution
The case H(x) = (x − μ)β1/(σ − x)β2 and h(x) = (x − μ)β1−1(σ − x)−(β2−1)[
β1(σ − x) + β2(x − μ)

]
, where 0 < μ < t < σ < ∞ and β1,β2 > 0, leads to the

Phani geometric (PG) distribution. If p → 0+, it reduces to the Phani distribution
(Phani 1987). If β1 = β2 = β , it gives the KG distribution discussed before. Phani
(1987) presented statistical justification for modifying the Weibull distribution for
the analysis of fibre strength data.

• Additive Weibull geometric distribution
For H(x) = (x/β1)α1 + (x/β2)α2 , h(x) = (α1/β1)(x/β1)α1−1 + (α2/β2)(x/β2)α2−1

and α = 1, where α1,α2,β1,β2 > 0, we obtain the additive Weibull geometric
(AWG) distribution. If a = b = 1 in addition to α = 1, it gives the additive Weibull
(AW) distribution (Xie and Lai 1995). This distribution has a bathtub-shaped failure
rate function. Xie and Lai (1995) studied a simple model based on adding two
Weibull survival functions, presented some simplifications of the model and analyzed
the graphical estimation technique based on the conventional Weibull plot.
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• Generalized powerWeibull geometric distribution
For H(x) = [

1 + (x/β)α1
]θ − 1, h(x) = (θα1/β)

[
1 + (x/β)α1

]θ−1
(x/β)α1 and α = 1,

where α1,β > 0 and θ ≥ 0, we obtain the generalized power Weibull geometric
(GPWG) distribution. If p → 0+, it becomes the generalized power Weibull (GPW)
distribution (Nikulin and Haghighi 2006). They proposed a chi-squared type statistic
to test the validity of the GPW family based on the head-and-neck cancer censored
data.

• BLZ geometric distribution
The case H(x) = exp(α1x − β/x), h(x) = exp (α1x − β/x)

(
α1 + βx−2) and α = 1,

where α1,β > 0, leads to the BLZ geometric (BLZG) distribution. It extends the
Bebbington et al.’s (2007) distribution, which corresponds to p → 0+ and α = 1. Its
hrf has four different forms: bathtub shape, increasing, decreasing and upside-down
bathtub. They presented the BLZ distribution as an extension of the Weibull, studied
its properties and derived explicit formulas for the turning points of the failure rate
function in terms of its parameters.

• Gompertz geometric distribution
For H(x) = α−1

1
[
exp (α1x) − 1

]
and h(x) = exp (α1x), where −∞ < α1 < ∞, we

obtain the Gompertz geometric (GG) distribution. If p → 0+, it gives the Gompertz
distribution (Pham and Lai 2007).

• Pham geometric distribution
For H(x) = axα1

1 − 1, h(x) = α1xα1−1 log (a1) ax
α1
1 and α = 1, where α1, a1 > 0, we

obtain the Pham geometric (PG) distribution. If p → 0+, it yields the Pham
distribution (Pham 2002). Pham (2002) proposed this distribution, also referred to as
the log-log distribution, and showed that it has a U-shaped hrf.

• Nadarajah-Kotz geometric distribution
For H(x) = xb1 [ exp

(
cxd

) − 1] and
h(x) = b1xb1−1[ exp

(
cxd

) − 1]+cdx(b1+d−1) exp
(
cxd

)
, where b1, c ≥ 0 and d > 0,

we obtain the Nadarajah-Kotz geometric (NKG) distribution. If p → 0+, it gives the
distribution due to Nadarajah and Kotz (2005). They presented some modifications
of the Weibull distribution and also discussed some modifications suggested by
Gurvich et al. (1997). For b1 = 0 and c = 1, this model reduces to the CG
distribution discussed before.

• Slymen-Lachenbruch geometric distribution
For H(x) = exp

[
α1 + (β/2θ)

(
xθ − x−θ

) ]
,

h(x) = (β/2x) exp
[
α1 + (β/2θ)

(
xθ − x−θ

) ] (
xθ + x−θ

)
and α = 1, where α1, θ > 0,

we obtain the Slymen-Lachenbruch geometric (SLG) distribution. If p → 0+, it
becomes the distribution proposed by Slymen and Lachenbruch (1984). They
introduced and studied two classes of distributions within the framework of
parametric survival analysis. These classes are derived from a general linear form by
specifying a function of the survival function under certain restrictions.

We now give the density functions for two distributions in the EGG family.

1. The XTGG density function is given by

f (x) = αβ exp
{
(x/λ)β

}
(x/λ)β−1 exp

{−αλ
[
exp

{
(x/λ)β

} − 1
]}

(1 − p)[
1 − p exp

{−αλ
[
exp

{
(x/λ)β

} − 1
]}]−2 . (24)
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If X is a random variable with density function (24), we write X ∼XTGG(p,α, λ,β).
2. The MWG density function is given by

f (x) = αxγ−1 exp(λx)(γ + λx) exp {−αxγ exp(λx)} (1 − p){
1 − p

[
exp

{−αxγ−1 exp(λx)
}]} 2

. (25)

If X is a random variable with density function (25), we write X ∼MWG(p,α, λ, γ ).
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