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Abstract

Generalizing distributions is an old practice and has ever been considered as precious
as many other practical problems in statistics. It simply started with defining different
mathematical functional forms, and then induction of location, scale or inequality
parameters. The generalization through induction of shape parameter(s) started in
1997, and the last two decades were full of such practices. But to cope with the
complex situations under series and parallel structures, the art of mixing discrete and
continuous started in 1998. In this article, we present a survey on compounding
univariate distributions, their extensions and classes. We review several available
compound classes and propose some new ones. The recent trends in the construction
of generalized and compounding classes are discussed, and the need for future works
are addressed.

Keywords: Compound G-classes, generalized classes, G-geometric class, G-Poisson
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1 Introduction
The modern era on distribution theory stresses on problem-solving faced by the prac-
titioners and applied researchers and proposes a variety of models so that lifetime data
set can be better assessed and investigated in different fields. In other words, there
is strong need to introduce useful models for better exploration of the real-life phe-
nomenons. Nowadays, the trends and practices in defining probability models totally
differ in comparison to themodels suggested before 1997. Onemain objective for propos-
ing, extending or generalizing (models or their classes) is to explain how the lifetime
phenomenon arises in fields like physics, computer science, insurance, public health,
medical, engineering, biology, industry, communications, life-testing and many oth-
ers. For example, the well-known and fundamental distributions such as exponential,
Rayleigh, Weibull and gamma are very limited in their characteristics and are unable to
show wide flexibility. The number of shape parameters, closed-form expressions of the
cumulative distribution function (cdf), forms of the quantile function (qf ), density and
failure rate shapes, skewness and kurtosis features, entropy measures, estimation of stress
reliability R = P(Y < X), structural properties, use of advanced mathematical functions
and power series, which are available through computing platforms like Mathematica,
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Maple, Matlab, Python, Ox and R, variety of estimation methods, estimation of parame-
ters in case of censored and uncensored situations, simulation results, coping with data
sets having different shapes and goodness-of-fits are somewell-established characteristics
that a proposed lifetime model may possess.
For complex phenomenons in reliability studies, lifetime testing, human mortality

studies, engineering modeling, electronic sciences and biological surveys, the failure
rate behavior can be bathtub, upside-down bathtub and other shaped but not usually
monotone increasing or decreasing. Thus, in order to cope with bothmonotonic and non-
monotonic failure rate shapes, researchers have introduced several generalizations (or
G-classes) which are very flexible to study needful properties of the model and its fitness.
In the last two decades, two main generalization approaches were adopted and prac-

ticed, and have also received increased attention.

1.1 First generalization approach (G-classes)

The first approach deals with the shape parameter(s) induction in parent (or baseline)
distribution to explore tail properties and to improve goodness-of-fits. Some well-
known generalized (or G-) classes are: Marshall-Olkin-G (Marshall and Olkin 1997),
exponentiated-G (Gupta et al. 1998), beta-G (Eugene et al. 2002), Kumaraswamy-
G (Cordeiro and de-Castro 2011), McDonald-G (Alexander et al. 2012), ZBgamma-
G (Zografos and Balakrishnan 2009; Amini et al. 2014), RBgamma-G (Ristić and
Balakrishanan 2012; Amini et al. 2014), odd-gamma-G (Torabi and Montazari 2012),
Kummer-beta-G (Pescim et al. 2012), beta extended Weibull-G (Cordeiro et al. 2012b),
odd exponentiated generalized-G (Cordeiro et al. 2013a), truncated exponential-G
(Barreto-Souza and Simas 2013), logistic-G (Torabi and Montazari 2014), gamma
extended Weibull-G (Nascimento et al. 2014), odd Weibull-G (Bourguignon et al.
2014a), exponentiated-half-logistic-G (Cordeiro et al. 2014a), Libby-Novick beta-G
(Cordeiro et al. 2014b; Ristić et al. 2015), Lomax-G (Cordeiro et al. 2014d), Harris-G
(Batsidis and Lemonte 2015; Pinho et al. 2015), modified beta-G (Nadarajah et al. 2014b),
odd generalized-exponential-G (Tahir et al. 2015), Kumaraswamy odd log-logistic-G
(Alizadeh et al. 2015b), beta odd log-logistic-G (Cordeiro et al. 2016), Kumaraswamy-
Marshall-Olkin-G (Alizadeh et al. 2015c), beta-Marshall-Olkin-G (Alizadeh et al.
2015a), Weibull-G (Tahir et al. 2016b), exponentiated-Kumaraswamy-G (da-Silva et al.
2016), ZBgamma-odd-loglogistic-G (Cordeiro et al. 2015a) and Tukey’s g- and h-G
(Jiménez et al. 2015). For more details on some well-established G-classes, the reader is
referred to Tahir and Nadarajah (2015).
The mathematical properties of the Kumaraswamy-G family were studied by Nadarajah

et al. (2012), Hussian (2013), and Cordeiro and Bager (2015). The failure rate and aging
properties of the beta-G and ZBgamma-G models were addressed by Triantafyllou and
Koutras (2014). The structural properties of the ZBgamma-G and RBgamma-G models
were recently investigated by Nadarajah et al. (2015b), and Cordeiro and Bourguignon
(2016).
The revolutionary idea in generalization begun with the work of Alzaatreh et al. (2013)

who proposed transformed-transformer (T-X) (Weibull-X and gamma-X) family of dis-
tributions. This approach was further extended to the exponentiated T-X (Alzaghal et al.
2013), T-X{Y}-quantile based approach (Aljarrah et al. 2014), T-R{Y} (Alzaatreh et al.
2014), T-Weibull{Y} (Almheidat et al. 2015), T-gamma{Y} (Alzaatreh et al. 2016a),
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T-Cauchy{Y}(Alzaatreh et al. 2016b), Gumbel-X (Al-Aqtash 2013; Al-Aqtash et al. 2014)
and logistic-X (Tahir et al. 2016).
After the wide-spread popularity of well-established exponentiated-G, Marshall-Olkin-

G, beta-G, Kumaraswamy-G andMcDonald-G classes, and T-X family, the transmuted-G
class of distributions has received increased attention in the last decade. This class is
based on the quadratic rank transmutation map (QRTM) pioneered by Shaw and Buckley
(2009) and highlighted by Aryal and Tsokos (2009, 2011).
For any baseline distribution cdf G(x), the cdf of the transmuted-G class (for |η| ≤ 1) is

given by

F(x) = (η + 1)G(x) − ηG(x)2, (1)

where η is the transmuted (or shape) parameter. For η = 0, the above equation reduces to
the baseline distribution.
The general properties of the transmuted family were obtained by Bourguignon et al.

(2016a) andDas (2015). The transmuted family was further extended as the exponentiated
transmuted-G type 1 using the Lehmann alternative type 1 (LA1) class (due to Gupta et al.
1998) by Nofal et al. (2016) and Alizadeh et al. (2016a), the exponentiated transmuted-
G type 2 using the Lehmann alternative type 2 (LA2) class (due to Gupta et al. 1998) by
Merovci et al. (2016), and the transmuted exponentiated generalized-G by Yousof et al.
(2015).
More than fifty transmuted distributions have been reported in the literature, which are

complied in chronological order in Table 1; see also Section 8.4.

1.2 Second generalization approach (compounding)

The second approach deals with the compounding of discrete models, namely the
geometric, Poisson, logarithmic, binomial, negative-binomial (NB), Conway-Maxwell-
Poisson (COMP) and power-series with continuous lifetime models. The basic idea of
introducing compound models or families is that a lifetime of a system with N (dis-
crete random variable) components and the positive continuous random variable, say Yi
(the lifetime of the ith component), can be denoted by the non-negative random variable
Y = min(Y1, . . . ,YN ) (the minimum of an unknown number of any continuous random
variables) or Z = max(Y1, . . . ,YN ) (the maximum of an unknown number of any con-
tinuous random variables), based on whether the components are in series or in parallel
structure. Some useful references for the readers are Louzada et al. (2012a), Leahu et al.
(2013) and Bidram and Alavi (2014).
The objectives of our article are three-fold: Firstly, we present an up-to-date account

on the compounded distributions and their generalizations for the readers of modern
distribution theory. Secondly, this survey will motivate the researchers to fill the gap and
to furnish their work in remaining applied areas. Thirdly, this survey will also be helpful
as a tutorial to the beginners of compound modeling art.
The rest of the article is organized as follows. In Section 2, two compound G-classes are

reviewed to represent the distributions of the minimum and maximum of an unknown
number of continuous random variables having the same parent lifetime distribution. In
Section 3, fourteen existing and new compound classes for the minimum constructed
from the zero-truncated geometric (ZTG), zero-truncated Poisson (ZTP), logarithmic
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Table 1 Contributed work on transmuted distributions

S.No. Pioneer Year Distribution Author(s)
1. 2009 Transmuted extreme value Aryal and Tsokos (2009)
2. 2011 Transmuted Weibull Aryal and Tsokos (2011)

Ahmad et al. (2015b)
Khan et al. (2016b)

3. 2013 Transmuted log-logistic Aryal (2013)
Granzotto and Louzada (2015)

4. 2013 Transmuted Rayleigh Merovci (2013a)
Ahmad et al. (2015a)

5. 2013 Transmuted exponentiated-exponential Merovci (2013b)
Khan et al. (2015a)

6. 2013 Transmuted Fréchet Mahmoud and Mandouh (2013)
7. 2013 Transmuted Lomax Ashour and Eltehiwy (2013a)
8. 2013 Transmuted Lindley Merovci (2013c)
9. 2013 Transmuted quasi-Lindley Elbatal and Elgarhy (2013)
10. 2013 Transmuted exponentiated-Lomax Ashour and Eltehiwy (2013b)
11. 2013 Transmuted modified inverse Weibull Elbatal (2013a)
12. 2013 Transmuted generalized inverted exponential Elbatal (2013b)
13. 2013 Transmuted exponentiated-modified Weibull Ashour and Eltehiwy (2013c)
14. 2013 Transmuted generalized linear exponential Elbatal et al. (2013)
15. 2013 Transmuted additive Weibull (AW) Elbatal and Aryal (2013)
16. 2013 Transmuted modified Weibull (MW) Khan and King (2013)
17. 2014 Transmuted Pareto Merovci and Puka (2014)
18. 2014 Transmuted Maxwell Iriarte and Astorga (2014)
19. 2014 Transmuted linear exponential Tian et al. (2014)
20. 2014 Transmuted inverse Rayleigh (IR) Sharma et al. (2014)

Ahmad et al. (2014)
21. 2014 Transmuted generalized Rayleigh (GR) Merovci (2014)

Iriarte and Astorga (2015)
22. 2014 Transmuted inverted Weibull (IW) Khan et al. (2014)

Khan and King (2014a)
23. 2014 Transmuted generalized IW Merovci et al. (2014)

Khan and King (2014b)

24. 2014 Exponentiated transmuted Weibull Ebraheim (2014)

25. 2014 Beta transmuted Weibull Pal and Tiensuwan (2014)

26. 2014 Transmuted exponentiated-gamma Hussian (2014)

Lucena et al. (2015)

27. 2014 Transmuted exponentiated-Fréchet Elbatal et al. (2014)

28. 2015 Transmuted exponential Owoloko et al. (2015)

29. 2015 Transmuted Burr III Abdul-Moniem (2015)

30. 2015 Transmuted Gompertz Abdul-Moniem and Seham (2015)

Khan et al. (2016c)

31. 2015 Transmuted modified IR Khan and King (2015)

32. 2015 Generalized transmuted AW Mansour et al. (2015a)

33. 2015 Kumaraswamy transmuted MW Mansour et al. (2015b)

34. 2015 Transmuted generalized MW Cordeiro et al. (2015c)

35. 2015 Kumaraswamy transmuted exponentiated MW Al-Babtain et al. (2015)

36. 2015 Transmuted Marshall-Olkin (MO) Fréchet Afify et al. (2015a)

37. 2015 Exponentiated transmuted GR Afify et al. (2015b)

38. 2015 Transmuted Weibull-Lomax Afify et al. (2015c)

39. 2015 Transmuted Dagum Elbatal and Aryal (2015)

Shahzad and Asghar (2016)

40. 2015 Transmuted exponentiated-Pareto Luguterah and Nasiru (2015)

Fatima and Roohi (2015)
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Table 1 Contributed work on transmuted distributions (Continued)

S.No. Pioneer Year Distribution Author(s)

41. 2015 Generalized transmuted Lindley Mansour and Mohamed (2015)

42. 2015 Transmuted Chen Khan et al. (2015b)

43. 2015 Beta transmuted Fréchet da-Silva et al. (2015a)

44. 2016 Transmuted Kumaraswamy Khan et al. (2016a)

45. 2016 Transmuted generalized Lindley Elgarhy et al. (2016)

46. 2016 Transmuted Almalki-Yuan MW Vardhan and Balaswamy (2016)

47. 2016 Transmuted power function Haq et al. (2016)

48. 2016 Transmuted geometric Chakraborty and Bhati (2016)

49. 2016 Transmuted Birnbaum-Saunders Bourguignon et al. (2016b)

50. 2016 Kumaraswamy Transmuted MO Fréchet Yousof et al. (2016)

51. 2016 Transmuted Weibull-Pareto Afify et al. (2016)

(Ln), zero-truncated binomial (ZTBi) and zero-truncated negative-binomial (ZTNB) dis-
tributions are described. In Section 4, we obtain the dual models for the maximum
corresponding to those models discussed in Section 3. Section 5 deals with several com-
pounding models and their extensions, which can be derived under the construction of
the minimum and maximum of random variables. Sections 7 and 8 deal with other or
different types of compounded models. In Section 8, we present recent trends on com-
pounding of distributions, their G-classes and mixing of compounded and transmuted
distributions. The main purpose of Section 9 is to briefly review general inference proce-
dure, crude rate survival models and their inference. The paper is concluded with some
remarks in Section 10.

2 Construction of compound G-classes
Suppose that a system has N subsystems assumed to be independent and identically dis-
tributed (i.i.d.) at a given time, where the lifetime of the ith subsystem is denoted by Yi, and
that each subsystem is made of α parallel units, so that the system will fail if all the sub-
systems fail. We note that for a parallel system, the system fails only if all the subsystems
fail, but for a series system, the failure of any subsystem will destroy the whole system.
Further, suppose that the random variableN follows any discrete distribution with proba-
bility mass function (pmf) P(N = n) (for n = 1, 2, . . .). We consider that the failure times
of the components Zi,1, . . . ,Zi,α for the ith subsystem are i.i.d. random variables having a
suitable cdf, which is a function of the baseline cdf depending on a parameter vector τ ,
say T[G(x; τ),α]= G(x; τ)α (for x > 0). In the following construction, although α is a
positive integer called power or resilience parameter, we can consider that α > 0.
If we define Y = min{Y1, . . . ,YN }, then the conditional cdf of Y given N is

F(y | N) = P
[
min(Y1, . . . ,YN ) < y|N)

] = 1 − [1 − P
α(Z1,1 ≤ y)

]N

= 1 − [1 − G(y; τ)α
]N . (2)

If we define Z = max{Y1, . . . ,YN }, then the conditional (or complementary) cdf of Z
given N is

F(z | N) = P [max(Y1, . . . ,YN ) < z|N)] = [Pα(Zn,n ≤ z)
]N

= [
G(z; τ)α

]N . (3)
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The unconditional cdf of Y follows from Eq. (2) as

F(y) =
∞∑

n=1
F(y|N)P(N = n) = 1 −

∞∑

n=1

[
1 − G(y; τ)α

]n
P(N = n). (4)

The unconditional cdf of Z follows from Eq. (3) as

F(z) =
∞∑

n=1
F(z|N)P(N = n) =

∞∑

n=1

[
G(z; τ)α

]n
P(N = n). (5)

Many compound G-classes can be constructed from Eqs. (4) and (5) by choosing a
discrete model with pmf P(N = n). The random variables Y = min{Y1, . . . ,YN } and
Z = max{Y1, . . . ,YN } generate several models that arise in series and parallel systems
with identical components and have many industrial and biological applications. For
example, the time to the failure of a series system with an unknown number of protected
components or the cancer recurrence of an individual after undergoing a certain treat-
ment can be modeled by the generated distribution of Y. In a dual mechanism, the time
to the failure of a parallel system with an unknown number of protected components or
a disease manifestation, if it occurs only after an unknown number of factors have been
active, can be modeled by the generated distribution of Z.

3 Compound G-classes
In this section, we present 14 compoundedmodels obtained from Eq. (4). In Section 4, we
present the corresponding complementary models based on Eq. (5). The list below does
not include all compounded models but a large number of them and some new ones. For
example, it does not describe the exponentiated-G-Conway-Maxwell Poisson (EGCOMP)
class pioneered by Cordeiro et al. (2012a) and its special GCOMP model, among others.
For all formulated models, we provide only their cdfs since the corresponding probability
density functions (pdfs) can be determined by simple differentiation.

3.1 Exponentiated G-geometric class

If T[G(y; τ);α]= G(y; τ)α and N be a ZTG r.v. with pmf P(N = n) = q pn−1, n =
1, 2, . . . , p ∈ (0, 1), where p is the success probability, the cdf of the exponentiated G-
geometric (EGG) class can follow as

FEGG(y) = 1 − q
p

∞∑

n=1

[
p(1 − G(y; τ)α

)
]n = G(y; τ)α

1 − p + pG(y; τ)α
.

The EGG class has recently been introduced by Nadarajah et al. (2015a), and can also
be called the generalized G-geometric class. For α = 1, the EGG class reduces to the G-
geometric (GG) class proposed by Alkarni (2012). They investigated some of its general
properties.

Remark 1 Swapping p with q in the ZTG pmf with p + q = 1, the cdf of an alternative
EGG (denoted by EGGA) class is given by

FEGGA(y) = 1 − p
q

∞∑

n=1

[
q
(
1 − G(y; τ)α

)]n = G(y; τ)α

p − (p − 1)G(y; τ)α
.

For α = 1, the EGGA class reduces to the alternative G-geometric (GGA) class defined
by Castellares and Lemonte (2016).
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3.2 Exponentiated Kumaraswamy-G-geometric class (new)

For any baseline cdf G(x) and pdf g(x), Cordeiro and de-Castro (2011) defined the cdf
of the Kumaraswamy-G class by Ka,b(x; τ) = 1 − [1 − G(x)a]b, where a > 0 and b >

0 are both shape parameters. Let T[G(y; τ);α]= Ka,b(y; τ)α and N be a ZTG r.v. with
pmf P(N = n) = q pn−1, n = 1, 2, . . . , the cdf of the exponentiated Kumaraswamy-G-
geometric (EKGG) class can follow as

FEKGG(y) = 1 − q
p

∞∑

n=1

{
p
[
1 − Ka,b(y; τ)α

]}n = Ka,b(y; τ)α

1 − p
[
1 − Ka,b(y; τ)α

] .

For α = 1, the EKGG class gives the new Kumaraswamy-G geometric (KGG) family.

3.3 McDonald-G-geometric class (new)

Alexander et al. (2012) defined the cdf of the McDonald-G class by Ma,b,c(x; τ) =
IG(x;τ)c(a, b), where B(a, b) = ∫ 10 wa−1 (1−w)b−1 dw, Bz(a, b) = ∫ z0wa−1 (1−w)b−1 dw and
Iz(a, b) = Bz(a, b)/B(a, b) are the beta function, incomplete beta function and incomplete
beta function ratio, respectively.
If α = 1 and T[G(y; τ)]= Ma,b,c(y; τ), and N be a ZTG r.v. with pmf P(N = n) =

q pn−1, n = 1, 2, . . . , the cdf of the McDonald-G geometric (MGG) class is given by

FMGG(y) = 1 − q
p

∞∑

n=1

{
p
[
1 − Ma,b,c(y; τ)

]}n = Ma,b,c(y; τ)

1 − p
[
1 − Ma,b,c(y; τ)

] .

3.4 Beta-G-geometric class (new)

For any baseline cdf G(x), Eugene et al. (2002) defined the cdf of the beta-G class by

Ba,b(x) = IG(x;τ)(a, b).

If α = 1 and T[G(y; τ ]= Ba,b(y; τ), and N be a ZTG r.v. with pmf P(N = n) =
q pn−1, n = 1, 2, . . . , the cdf of the beta-G geometric (BGG) class is given by

FBGG(y) = 1 − q
p

∞∑

n=1

{
p
[
1 − Ba,b(y; τ)

]}n = Ba,b(y; τ)

1 − p
[
1 − Ba,b(y; τ)

] .

3.5 Exponentiated G-Poisson class

If T[G(y; τ);α]= G(y; τ)α and N be a ZTP r.v. with parameter λ defined by the pmf
P(N = n) = λn/[ n! (eλ −1)] , n = 1, 2, . . ., the cdf of the exponentiated G-Poisson (EGP)
class can follow as

FEGP(y) = 1 −
∞∑

n=1

[
1 − G(y; τ)α

]n
λn

n! (eλ − 1)
= 1 − e−λG(y;τ)α

1 − e−λ
.

The EGP class has been studied by Gomes et al. (2015). For α = 1, it becomes the G-
Poisson (GP) class as defined recently by Tahir et al. (2016a) by the name of the Poisson-X
class since it was based on the T-X family.

3.6 Exponentiated Kumaraswamy-G-Poisson class (new)

If T[G(y; τ);α]= G(y; τ)α and N be a ZTP r.v. with parameter λ, the cdf of the
exponentiated Kumaraswamy-G Poisson (EKGP) class is given by

FEKGP(y) = 1 −
∞∑

n=1

[
1 − Ka,b(y; τ)α

]n λn

n! (eλ − 1)
= 1 − e−λKa,b(y;τ)α

1 − e−λ
.
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For α = 1, the EKGP class reduces to the Kumaraswamy-G Poisson (KGP) family
studied by Ramos et al. (2015).

3.7 McDonald-G-Poisson class (new)

Let α = 1 and T[G(y; τ)]= Ma,b,c(y; τ) and N be a ZTP r.v. with parameter λ, the cdf of
the McDonald-G Poisson (MGP) class can be expressed as

FMGP(y) = 1 − 1
eλ − 1

∞∑

n=1

{
λ
[
1 − Ma,b,c(y; τ)

]}n

n!
= 1 − e−λMa,b,c(y;τ)

1 − e−λ
.

3.8 Beta-G-Poisson class (new)

If α = 1 and T[G(y); τ ]= Ba,b(y; τ) and N be a ZTP r.v. with parameter λ, the cdf of the
beta-G Poisson (BGP) class reduces to

FBGP(y) = 1 − 1
eλ − 1

∞∑

n=1

{
λ
[
1 − Ba,b(y; τ)

]}n

n!
= 1 − e−λBa,b(y;τ)

1 − e−λ
.

3.9 Exponentiated G-logarithmic class (new)

If T[G(y; τ);α]= G(y; τ)α and N be a Ln r.v. with pmf P(N = n) = (1 −
φ)n/[−n ln φ] , φ ∈ (0, 1), n = 1, 2, . . . , the cdf of the exponentiated G-logarithmic
(EGLn) class is given by

FEGLn(y) = 1 −
∞∑

n=1

[
1 − G(y; τ)α

]n (1 − φ)n

−n ln φ
= 1 − ln

{
1 − (1 − φ)[ 1 − G(y; τ)α]

}

ln φ
,

by noting that
∑∞

n=1 Qn/n = − ln(1 − Q).
For α = 1, the EGLn class becomes the G-logarithmic (GLn) family introduced by

Alkarni (2012).

3.10 Exponentiated Kumaraswamy-G-logarithmic class (new)

If T[G(y; τ);α]= G(y; τ)α and N be a Ln r.v. with pmf P(N = n) = (1 −
φ)n/[−n ln φ] , φ ∈ (0, 1), n = 1, 2, . . . , the cdf of the exponentiated Kumaraswamy-
G-logarithmic (EKGLn) is given by

FEKGLn(y) = 1 −
∞∑

n=1

[
1 − Ka,b(y; τ)α

]n (1 − φ)n

−n ln φ

= 1 − ln
{
1 − (1 − φ)[ 1 − Ka,b(y; τ)α]

}

ln φ
.

For α = 1, the EKGLn cdf is identical to the cdf of the new Kumaraswamy-G-
logarithmic (KGLn) class.

3.11 McDonald-G-logarithmic class (new)

If T[G(y; τ)]= Ma,b,c(y; τ) and N be a Ln r.v. with pmf P(N = n) = (1 −
φ)n/[−n ln φ] , φ ∈ (0, 1), n = 1, 2, . . . , the cdf of the McDonald-G-logarithmic
(MGLn) class is defined by
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FMGLn(y) = 1 −
∞∑

n=1

[
1 − Ma,b,c(y; τ)

]n (1 − φ)n

−n ln φ

= 1 − ln
{
1 − (1 − φ)[ 1 − Ma,b,c(y; τ)]

}

ln φ
.

3.12 Beta-G-logarithmic class (new)

If α = 1 and T[G(y; τ)]= Ba,b(y; τ) and N be a Ln r.v. with pmf P(N = n) = (1 −
φ)n/[−n ln φ] , φ ∈ (0, 1), n = 1, 2, . . . , the cdf of the beta-G-logarithmic (BGLn) class
is given by

FBGLn(y) = 1 − ln
{
1 − (1 − φ)[ 1 − Ba,b(y; τ)]

}

ln φ
.

3.13 Exponentiated G-binomial class (new)

If T[G(y; τ);α]= G(y; τ)α and N be a ZTBi r.v. with pmf given by

P(N = k) =
(n
k
)
θk (1 − θ)n−k

1 − (1 − θ)n
, θ ∈ (0, 1), k = 1, 2, . . . , n,

the cdf of the exponentiated G-binomial (EGBi) class reduces to

FEGBi(y) = 1 − [1 − θ G(y; τ)α
]n

1 − (1 − θ)n
.

Bakouch et al. (2012b) studied a special case of the EGBi class so-called the
exponentiated-exponential binomial (EEBi) model. For α = 1, the EGBi class becomes
the G-binomial (GBi) class pioneered by Alkarni (2013).

3.14 Exponentiated G-NB class (new)

If T[G(y; τ);α]= G(y; τ)α and N be a ZTNB r.v. with parameter β ∈ (0, 1) as the
probability of success and pmf given by

P(N = n) =
(
s + n − 1

n

)
βn

(1 − β)−s − 1
, s > 0, n = 1, 2, . . . ,

the cdf of the exponentiated G-NB (EGNB) class can follow as

FEGNB(y) = 1 − 1
(1 − β)−s − 1

∞∑

n=1

(
s + n − 1

n

) {
β
[
1 − G(y; τ)α

]}n .

Using the binomial expansion (1 − w)−s − 1 =∑∞
n=1

(s+n−1
n
)
wn, we obtain

FEGNB(y) = (1 − β)−s − {1 − β
[
1 − G(y; τ)α

]}−s

(1 − β)−s − 1
. (6)

For α = 1, the EGNB class leads to the G-NB (GNB) class proposed by Percontini et al.
(2013b).

Remark 2 i If we replace the probability of success β by 1 − β and the dispersion
parameter s by θ in (6), the cdf of an alternate form of the GNB class (denoted by
EGNB1) will be

FEGNB1(y) = 1 − βθ

1 − βθ

{[
G(y; τ)α + (1 − β)Ḡ(y; τ)α

]−θ − 1
}
. (7)
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For α = 1, the EGNB1 class leads to the GNB family discussed by Nadarajah et al.
(2013b), who also studied, as a special case of the GNB1 class, the
exponential-truncated negative-binomial (ETNB) model.

ii If we express β in terms of the population mean of the distribution in (6), the cdf of
an alternate form of the GNB class (denoted by EGNB2) will be

FEGNB2(y) = 1 − [1 + ηθ G(y; τ)α
]− 1

η

1 − (1 + ηθ)
− 1

η

.

For α = 1, the EGNB2 class leads to the GNB family. Louzada et al. (2012b) studied a
special model of this class.

4 Complementary compound G-classes
Complementary compound models are constructed by considering the maximum of a
sequence of i.i.d. random variables which represents the risk time of a system having com-
ponents in parallel structure. In this section, we generate from Eq. (5) the complementary
G-classes of those ones presented in Section 3. Some proposed complementary G-classes
are really new ones.

4.1 Complementary exponentiated G-geometric class (new)

If T[G(z; τ);α]= G(z; τ)α and N be a ZTG r.v. with geometric pmf P(N = n) =
q pn−1, n = 1, 2, . . . , the cdf of the complementary exponentiated G-geometric (CEGG)
class reduces to

FCEGG(z) = q
p

∞∑

n=1

[
pG(z; τ)α

]n = (1 − p)G(z; τ)α

1 − pG(z; τ)α
.

This equation is also called the complementary generalized G-geometric family. For
α = 1, the CEGG class becomes the complementary G-geometric (CGG) family.

Remark 3 Swapping p with q in the ZTG pmf with p + q = 1, the cdf of an alternative
CEGG (CEGGA) class will be

FCEGGA(z) = p
q

∞∑

n=1

[
qG(z; τ)α

)
]n = pG(z; τ)α

1 − (1 − p)G(z; τ)α
.

For α = 1, the CEGGA class leads to the complementary G-geometric (CGG) family
proposed by Castellares and Lemonte (2016).

4.2 Complementary exponentiated Kumaraswamy-G-geometric class (new)

If α = 1, T[G(z; τ)]= Ka,b(z; τ) and N be a geometric r.v. with pmf P(N = n) =
q pn−1, n = 1, 2, . . . , the cdf of the CEKGG class is given by

FCEKGG(z) = q
p

∞∑

n=1

{
p
[
Ka,b(z; τ)α

]}n = q[Ka,b(z; τ)α]
1 − pKa,b(z; τ)α

.

For α = 1, the CEKGG class leads to the complementary KGG (CKGG) class.
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4.3 Complementary McDonald-G-geometric class (new)

If α = 1, T[G(z; τ)]= Ma,b,c(z; τ) and N be a geometric r.v. with pmf P(N = n) =
q pn−1, n = 1, 2, . . . , the cdf of the complementary McDonald-G-geometric (CMGG)
class can follow as

FCMGG(z) = q
p

∞∑

n=1

{
p
[
Ma,b,c(z; τ)

]}n = q [Ma,b,c(z; τ)]
1 − pMa,b,c(z; τ)

.

4.4 Complementary beta-G-geometric class (new)

If α = 1, T[G(z; τ)]= Ba,b(z; τ), and N be a geometric r.v. with pmf P(N = n) =
q pn−1, n = 1, 2, . . . , the cdf of the complementary beta-G-geometric (CBGG) class is
given by

FCBGG(z) = q
p

∞∑

n=1

[
pBa,b(z; τ)

]n = q Ba,b(z; τ)

1 − pBa,b(z; τ)
.

4.5 Complementary exponentiated G-Poisson class (new)

If T[G(z; τ);α]= G(z; τ)α and N be a ZTP r.v. with parameter λ, the cdf of the
complementary exponentiated G-Poisson (CEGP) can follow as

FCEGP(z) =
∞∑

n=1

[
G(z; τ)α

]n λn

n! (eλ − 1)
= eλG(z;τ)α − 1

eλ − 1
.

For α = 1, the CEGP class leads to the complementary G-Poisson (CGP) class.

4.6 Complementary exponentiated Kumaraswamy-G Poisson class (new)

If T[G(z; τ);α]= Ka,b(z; τ)α and N be a ZTP r.v. with parameter λ, the cdf of the
complementary exponentiated Kumaraswamy-G Poisson (CEKGP) class is given by

FCEKGP(z) =
∞∑

n=1

[
Ka,b(z; τ)α

]n λn

n! (eλ − 1)
= eλKa,b(z;τ)α − 1

eλ − 1
.

For α = 1, the CEKGP class reduces to the complementary Kumaraswamy-G Poisson
(CKGP) class.

4.7 Complementary McDonald-G Poisson class (new)

If α = 1 and T[G(z; τ)]= Ma,b,c(z; τ) andN be a ZTP r.v. with parameter λ, the cdf of the
complementary McDonald-G Poisson (CMGP) class reduces to

FCMGP(z) =
∞∑

n=1

[
Ma,b,c(z; τ)

]n λn

n! (eλ − 1)
= eλMa,b,c(z;τ) − 1

eλ − 1
.

4.8 Complementary beta G-Poisson class (new)

If α = 1, T[G(z); τ ]= Ba,b(z; τ) and N be a ZTP r.v. with parameter λ, the cdf of the
complementary beta G-Poisson (CBGP) class is given by

FCBGP(z) = 1
eλ − 1

∞∑

n=1

{
λ
[
Ba,b(z; τ)

]}n

n!
= eλBa,b(z;τ) − 1

eλ − 1
.



Tahir and Cordeiro Journal of Statistical Distributions and Applications  (2016) 3:13 Page 12 of 35

4.9 Complementary exponentiated G-logarithmic class (new)

If T[G(z; τ);α]= G(z; τ)α and N be a Ln r.v. with pmf given by P(N = n) = (1 −
φ)n/[−n ln φ] , φ ∈ (0, 1), n = 1, 2, . . . , the cdf of the complementary exponentiated
G-logarithmic (CEGLn) class can be expressed as

FCEGLn(z) = 1
− ln φ

∞∑

n=1

[(1 − φ)G(z; τ)α]n

n
= ln [1 − (1 − φ)G(z; τ)α]

ln φ
,

by noting that
∑∞

n=1 Qn/n = − ln(1 − Q). For α = 1, the CEGLn class becomes the
complementary G-logarithmic (CGLn) class.

4.10 Complementary exponentiated Kumaraswamy-G-logarithmic class (new)

IfT[G(z; τ);α]= Ka,b(z; τ)α andN be a Ln r.v. with P(N = n) = (1−φ)n/[−n ln φ] , φ ∈
(0, 1), n = 1, 2, . . . , the cdf of the complementary exponentiated Kumaraswamy G-
logarithmic of type 1 (CEKGLn1) class is given by

FCEKGLn(z) =
∞∑

n=1

[
Ka,b(z; τ)α

]n (1 − φ)n

−n ln φ
= ln

[
1 − (1 − φ)Ka,b(z; τ)α

]

ln φ
.

For α = 1, the complementary Kumaraswamy-G-logarithmic (CEKGLn) class becomes
the complementary G-logarithmic (CGLn) class.

4.11 Complementary McDonald-G-logarithmic class (new)

If α = 1, T[G(z; τ)]= Ma,b,c(z; τ) and N be a Ln r.v. with pmf P(N = n) = (1 −
φ)n/(−n ln φ), φ ∈ (0, 1), n = 1, 2, . . . , the cdf of the complementary McDonald-G-
logarithmic (CMGLn) class can be expressed as

FCMGLn(z) =
∞∑

n=1

[
Ma,b,c(z; τ)

]n (1 − φ)n

−n ln φ
= ln

[
1 − (1 − φ)Ma,b,c(z; τ)

]

ln φ
.

4.12 Complementary beta-G-logarithmic class (new)

If α = 1 and T[G(z; τ)]= Ba,b(z; τ) and N be a Ln r.v. with pmf P(N = n) =
(1 − φ)n/(−n ln φ), φ ∈ (0, 1), n = 1, 2, . . . , the cdf of the complementary beta-G-
logarithmic (CBGLn) class is given by

FCBGLn(z) =
∞∑

n=1

[
Ba,b(z; τ)

]n (1 − φ)n

−n ln φ
= ln

[
1 − (1 − φ)Ba,b(z; τ)

]

ln φ
.

4.13 Complementary exponentiated G-binomial class (new)

If T[G(z; τ);α]= G(z; τ)α and N be a ZTBi r.v. with pmf

P(N = k) =
(n
k
)
θk (1 − θ)n−k

1 − (1 − θ)n
, θ ∈ (0, 1), k = 1, 2, . . . , n,

the cdf of the complementary exponentiated G-binomial (CEGBi) class is given by

FCEGBi(z) = 1
1 − (1 − θ)n

[ n∑

k=0

(
n
k

) [
θ G(z; τ)α

]k
(1 − θ)n−k − (1 − θ)n

]

= {1 − θ [1 − G(z; τ)α]}n − (1 − θ)n

1 − (1 − θ)n
.

For α = 1, the CEGBi class becomes the complementary G-binomial (CGBi) class.
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4.14 Complementary exponentiated G-NB class (new)

If T[G(z; τ);α]= G(z; τ)α and N be a ZTNB r.v. with parameter β ∈ (0, 1) with pmf

P(N = n) =
(
s + n − 1

n

)
βn

(1 − β)−s − 1
, s > 0, n = 1, 2, . . .

Using the binomial expansion (1 − w)−s − 1 = ∑∞
n=1

(s+n−1
n
)
wn, the cdf of the

complementary exponentiated G-NB (CEGNB) class reduces to

FCEGNB(z) = [1 − β G(z; τ)α]−s − 1
(1 − β)−s − 1

.

For α = 1, the CEGNB class leads to the new complementary GNB class.

5 Review of existing compoundedmodels
In this section, we review some available compounded models. In the literature, sev-
eral authors have reported compounding discrete distributions, namely the ZTG, ZTP,
logarithmic, ZTBi, ZTNB, zero-truncated generalized Poisson and zero-truncated power-
series, with continuous lifetime models.

5.1 Compoundedmodels based on geometric distribution

For the following models, X denotes the r.v. of the baseline G model.
Exponential-geometric (EG) model. If X ∼ Exponential(β) have cdf G(x;β) = 1 −

exp(−β x), then the cdf of the EG model pioneered by Adamidis and Loukas (1998) (as
the first compounded model in the literature) can be determined from the GG class
(Section 3.1 with α = 1) as

FEG(y; p,β) = 1 − e−β y

1 − p e−β y , y,β > 0, p ∈ (0, 1).

Adamidis et al. (2005) also defined an extended EG model.
Generalized EG (GEG) model. If X ∼ Exponential(β), Silva et al. (2010) applied the LA1

class to the EG cdf in the last equation and defined the GEG cdf by

FGEG(y; p,β , γ ) =
(

1 − e−β y

1 − p e−β y

)γ

, y > 0,

where γ > 0 is the power parameter, β > 0 and p ∈ (0, 1).
Complementary EG (CEG) model (proposed). If X ∼ Exponential(β), then the CEG cdf

can be determined from the CEGGA class (Section 4.1 with α = 1) as

FCEG(z; p,β) = (1 − p)(1 − e−β z)

1 − p(1 − e−β z)
.

Long-term complementary EG (LCEG) model. If X ∼ Exponential(β), then Louzada et
al. (2012d) proposed another CEGmodel called the LCEGmodel, in a latent complemen-
tary risk framework, with cdf given by

FLCEG(z; p,β , θ) = θ(1 − p)(1 − e−β z)

e−β z(1 − θ) + θ
, z > 0, θ ∈ (0, 1), p ∈ (0, 1),

where β > 0 is a scale parameter, θ is a shape parameter and p is the long-term parameter.
Generalized complementary EG (GCEG) model. Bidram and Nadadrajah (2016) applied

the LA1 class to the CEGA cdf (given in Section 4.1 with α = 1) and obtained the GCEG
cdf as



Tahir and Cordeiro Journal of Statistical Distributions and Applications  (2016) 3:13 Page 14 of 35

FGCEG(z; p,β , γ ) =
[

(1 − p)(1 − e−β z)

1 − p (1 − e−β z)

]γ

, z > 0,

where γ > 0 is the power parameter, β > 0 and p ∈ (0, 1).
Complementary exponentiated-exponential geometric (CEEG) model. If X ∼

ExponentiatedExponential(β ,α) have cdf G(x;β ,α) =[ 1 − exp(−β x)]α , then the cdf
of the CEEG model, proposed by Louzada et al. (2014a), can be determined from the
alternative CEGG class (Section 4.1 with α = 1) as

FCEEG(z; p,β ,α) = p(1 − e−β z)α

1 − (1 − p)[ 1 − e−β z]α
, z,α,β > 0, p ∈ (0, 1).

Exponentiated-CEG (ECEG) model. Yamachi et al. (2013) generalized the CEG model
FCEG(z; p,β , b) = p(1−e−bβ z)

e−β z(1−p)+p introduced by Louzada et al. (2011) by applying the LA1
class and defined the ECEG cdf as

FECEG(z; p,β , b, γ ) =
(

p(1 − e−bβ z)

e−β z(1 − p) + p

)γ

,

where γ > 0 is the power parameter.
Beta-EG (BEG) model. If X ∼ Exponential(β), the cdf of the BEG model proposed by

Bidram (2012) and Nassar and Nada (2012) can follow from the BGG class (Section 3.4) as

FBEG(y; p,β , l,m) = Bl,m(EG)

1 − p + pBl,m(EG)

,

where

Bl,m(EG) = 1
B(l,m)

∫
[

1−e−β x

1−p e−β x

]

0
tl−1 (1 − t)m−1 dt.

Exponentiated EG (EEG) model. The cdf of the EEG model defined by Louzada et al.
(2014) can be determined from the EGGA class (Section 3.1) as

FEEG(y; p,β ,α) = (1 − e−β y)α

1 − (1 − p)[ 1 − (1 − e−β y)α]
, y > 0 α,β > 0, p ∈ (0, 1).

Ristić and Kundu (2016) proposed the generalized geometric extreme distribution,
which is identical to the EEG model given above.
Modified EG (MEG) model. Let X ∼ ModifiedExponential(β ,π) or the MO-

exponential with cdf G(x;β ,π) = 1 − exp(−β x)/[ 1 − (1 − π) exp(−β x)]. The cdf of
the modified EG (MEG) distribution given by Bordbar and Nematollah (2016) can follow
from the GG class (Section 3.1 with α = 1) as

FMEG(y; p,β ,π) = 1 − e−β y

1 − (1 − π)e−β y − pπ e−β y , y > 0.

Exponentiated-LL geometric (ELLG) and complementary exponentiated-
LL geometric (CELLG) models. If X ∼ ELL(a, b) has cdf G(x; a, b,α) =
α b
a (x/a)−b−1 [1 + (x/a)−b]−α−1, then the cdfs of the ELLG and CELLGmodels proposed
by Mendoza et al. (2016) can be determined from the GG and CGG classes described in
Sections 3.1 and 4.1 (with α = 1), respectively, as

FELLG(y; p, a, b,α) =
[
1 + (y/a)−b]−α

1 − p
{
1 − [1 + (y/a)−b]−α

} , y > 0, a, b,α, p ∈ (0, 1)

and
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FCELLG(z; p, a, b,α) = (1−p)
[
1+(z/a)−b

]−α

1−p[1+(z/a)−b]−α , z > 0, a, b,α, p ∈ (0, 1).

Generalized linear failure rate-geometric (GLFRG) model. If X ∼
LinearExponential(a, b) have cdf G(x; a, b) = 1 − exp[−(ax + (b/2)x2)], then the cdf of
the GLFRG model proposed by Nadarajah et al. (2014a) can follow from the EGG class
(Section 3.1) as

FGLFRG(y; p, a, b,α) = [ 1 − e−(ay+(b/2)y2)]α

1 − p
{
1−[ 1 − e−(ay+(b/2)y2)]α

} , y > 0, a, b,α > 0.

Complementary generalized linear failure rate-geometric (CGLFRG) model. If X ∼
LinearExponential(a, b) have cdf G(x; a, b) = 1 − exp[−(ax + (b/2)x2)], then the CGL-
FRG cdf defined by Harandi and Alamatsaz (2016) can be determined from the CEGG
class (Section 4.1) as

FCGLFRG(z; p, a, b,α) = (1 − p)[ 1 − e−(az+(b/2)z2)]α

1 − p
{
1−[ 1 − e−(az+(b/2)z2)]α

} , z > 0, a, b,α > 0.

Exponentiated power Lindley-geometric (EPLG) model. If X ∼
ExpPowerLindley(α,β , θ) introduced by Ashour and Eltehiwy (2015) have cdf
G(x;α,β , θ) =

[
1 −

(
1 + θ xβ

θ+1

)
e−θ xβ

]α
, the EPLG cdf defined by Alizadeh et al. (2016b)

can follow from the GG class (Section 3.1) as

FEPLG(y; p,α,β , θ) =
(1 − p)

[
1 −

(
1 + θ yβ

θ+1

)
e−θ yβ

]α

1 − p
[
1 −

(
1 + θ yβ

θ+1

)
e−θ yβ

]α , y > 0, α,β , θ > 0.

Weibull-geometric (WG) model. If X ∼ Weibull(a, b) have cdf G(x; a, b) = 1 − e−(b x)a ,
then the cdf of the WG model proposed by Barreto-Souza et al. (2011) can be expressed
from the GG class (Section 3.1 with α = 1) as

FWG(y; p, a, b) = 1 − e−(b y)a

1 − p e−(b y)a , y, a, b > 0, p ∈ (0, 1).

Exponentiated Weibull-geometric (EWG) model. If X ∼ Weibull(a) have cdf G(x; a) =
1 − e−xa , then the EWG cdf given by Chung and Kang (2014) can be obtained from the
EGG cdf (Section 3.1) as

FEWG(y; p, a,α) =
(
1 − e−ya)α

1 − p
[
1 − (1 − e−ya)α] , y, a,α > 0, p ∈ (0, 1).

Beta-Weibull-geometric (BWG) model. If X ∼ Weibull(a, b) have cdf G(x; a, b) = 1 −
e−(b x)a , then the cdf of the BWG model defined by Bidram et al. (2013) and Cordeiro et
al. (2013b) can follow from the BGG cdf (given in Section 3.4) as

FBWG(y; p, a, b, l,m) = Bl,m(WG)(y)
1 − p + pBl,m(WG)(y)

,

where

Bl,m(WG)(y) = 1
B(l,m)

∫ 1−e−(b y)a

1−p e−(b y)a

0
tl−1 (1 − t)m−1 dt.

Complementary exponentiatedWeibull-geometric (CEWG)model. IfX haveWeibull cdf
G(x; a, b) = 1 − e−(b x)a , the cdf of the CEWGmodel proposed by Mahmoudi and Shiran
(2012a) follows from the CEGG class (Section 4.1) as
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FCEWG(z; p, a, b,α) = (1 − p)(1 − e−(b z)a)α

1 − p
[
1 − e−(b z)a]α , z, a, b,α > 0, p ∈ (0, 1).

Complementary Weibull-geometric (CWG) model. If X ∼ Weibull(a, b) have cdf
G(x; a, b) = 1 − e−(b x)a , the cdf of the CWG model proposed by Tojeiro et al. (2014)
follows from the alternative CGG class given in Section 4.1 (α = 1) as

FCWG(z; p, a, b) = p
(
1 − e−(b z)a)

p + (1 − p)e−(b z)a , z, a, b > 0, p ∈ (0, 1).

Modified Weibull-geometric (MWG) model. If X ∼ ModifiedWeibull(a, b, δ) introduced
by Sarhan and Zaindin (2009) have cdfG(x; a, b, δ) = 1−exp

[−(ax + b xδ
)
], then the cdf

of the MWGmodel defined by Wang and Elbatal (2015) can be determined from the GG
class (Section 3.1, α = 1 and all parameters positive) as

FMWG(y; p, a, b, δ) = 1 − e−(ay+b yδ)

1 − p e−(ay+b yδ)
, y > 0.

Kummer-beta Weibull-geometric (KBWG) model. Ashour and Wahed (2014) extended
the WGmodel to the KBWGmodel. The KBWG cdf is given by

FKBWG(y; p, a, b, c) = K
∫ 1−e−(b y)a

1−p e−(b y)a

0
yl−1 (1 − y)m−1 e−c x dx,

where K = �(l)�(m)
�(l+m) 1F1(l; l + m;−c) and 1F1 is the Gauss hyper-geometric function.

Additive Weibull-geometric (AWG) model. If X ∼ AddiveWeibull(a, b, γ ) introduced by
Cordeiro et al. (2014c) have cdf G(x; a, b, γ ) = 1 − e−(ax+bxγ ), x, a, b > 0 and γ ∈
(0,∞)\{1}, then the cdf of the AWGmodel defined by Elbatal et al. (2016) can be obtained
from the GG class (Section 3.1, α = 1) as

FAWG(y; p, a, b, γ ) = 1 − e−(ax+bxγ )

1 − p e−(ax+bxγ )
, y > 0.

Lindley-geometric (LG)model. IfX ∼ Lindley(θ) have cdfG(x; θ) = 1−
(
1 + θ x

θ+1

)
e−θ x

(for x > 0, θ > 0), then the cdf of the LG model proposed by Zakerzadeh and Mahmoudi
(2013) can follow from the GG class (Section 3.1, α = 1) as

FLG(y; p, θ) =
1 −

(
1 + θ y

θ+1

)
e−θ y

1 − p
(
1 + θ y

θ+1

)
e−θ y

, y > 0, θ > 0, p ∈ (0, 1).

Exponentiated Lindley-geometric (ELG) model. If X ∼ Lindley(θ) have cdf G(x; θ) =
1−

(
1 + θ x

θ+1

)
e−θ x (for x > 0, θ > 0), then the cdf of the ELGmodel proposed byWang

(2013) follows from the EGG class (Section 3.1) as

FELG(y; p, θ) =
[
1 −

(
1 + θ y

θ+1

)
e−θ y

]α

1 − p + p
[
1 −

(
1 + θ y

θ+1

)
e−θ y

]α .

5.2 Compoundedmodels based on Poisson distribution

Exponential-Poisson (EP). If X ∼ Exponential(β), then the cdf of the EP model proposed
by Kuş (2007) can be obtained from the GP class defined in Section 3.5 (with α = 1) as

FEP(y; λ,β) = 1 − e−λ−λe−β y

1 − e−λ
, y,β > 0, p ∈ (0, 1).
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For some structural properties and applications of the EP model, the reader is referred
to Kuş (2007) and Cancho et al. (2011a).
Generalized EP (GEP) model. If X ∼ Exponential(β), Barreto-Souza and Cribari-Neto

(2009) obtained the GEP cdf by applying the LA1 class to the EP cdf given in the last
equation

FGEP(y; λ,β , γ ) =
(
1 − e−λ−λe−β y

1 − e−λ

)γ

, y > 0,

where γ > 0 is the power parameter, β > 0 and p ∈ (0, 1).
Complementary EP (CEP) model. If X ∼ Exponential(β), the cdf of the CEP model,

proposed by Cancho et al. (2011a) and Rezaei and Tahmasbi (2012), can be determined
from the CGP class (Section 4.5, α = 1) as

FCEP(z; λ,β) = e−λ(1−e−β z) − e−λ

1 − e−λ
, z,β λ > 0.

Modified EP (MEP)model. IfX ∼ ModifiedExponential(β) orMO-exponential with cdf
G(x;β) = 1−e−β x

1−(1−p)e−β x , then the cdf of the MEP model, proposed by Preda et al. (2011),
can follow from the GP class (Section 3.9, α = 1) as

FMEP(y; λ, p,β) = 1 − e
−λ

(
1−e−β y

1−(1−p)e−β y

)

1 − e−β y , y,β > 0, p ∈ (0, 1).

Exponentiated EP (EEP) model. If X ∼ Exponential(β), then the cdf of the EEP model
given by Ristić and Nadarajah (2014) can be obtained from the EGP class defined in
Section 3.5 as

FEEP(y; λ,β ,α) = 1 − e−λ(1−e−β y)α

1 − e−λ
, y > 0, α,β , λ > 0.

Weibull-Poisson (WP) model. If X ∼ Weibull(a) have cdf G(x; a, b) = 1 − e−bxa , then
the cdf of the WP model proposed by Lu and Shi (2012) can follow from the GP class
(Section 3.5, α = 1) as

FWP(y; λ, a, b) = eλ e−bya − eλ

1 − eλ
, y, a, b, λ > 0.

Hemmati et al. (2011) and Bereta et al. (2011) also obtained theWP or Poisson-Weibull
(PW) models from the Weibull cdf G(y; a, b) = 1 − exp{−(b y)a}. The cdf of their WP
model is given by

FWP(y; λ, a, b) = eλ e−(by)a − eλ

1 − eλ
, y, a, b, λ > 0.

Beta-Weibull Poisson (BWP) model. If X ∼ Weibull(a, b) have cdfG(x; a, b) = 1−e−bxa ,
then the cdf of the BWPmodel, proposed by Percontini et al. (2013a), can follow from the
BGP class defined in Section 3.8 as

FBEG(y; λ, a, b, l,m) = e−λ [1−Bl,m(EG)(y)] − eλ

1 − eλ
,

where

Bl,m(EG)(y) = 1
B(l,m)

∫ eλ e−bya −eλ
1−eλ

0
tl−1 (1 − t)m−1 dt.
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Complementary modified Weibull-Poisson (CMWP) model. If X ∼
ModifiedWeibull(a, b, δ) introduced by Sarhan and Zaindin (2009) have cdf
G(x; a, b, δ) = 1 − exp

[−(ax + b xδ
)
], then the cdf of the CMWP model proposed by

Ghorbani et al. (2014) can be obtained from the GP class presented in Section 3.5 (with
α = 1) as

FCMWP(z; λ, a, b, δ) = eλ[1−e−(az+b zδ )] − 1
eλ − 1

, z > 0, a, b, δ, λ > 0.

Complementary exponentiated Weibull-Poisson (CEWP) model. If X ∼ Weibull(a, b)
have cdf G(x; a, b) = 1 − e−(bx)a , then the cdf of the CEWP model defined by Mahmoudi
and Sepahdar (2013) can follow from the EGP class (see Section 3.5) as

FCEWP(z; λ, a, b,α) = eλ(1−e−(bz)a )α − 1
eλ − 1

, z, λ, a, b,α > 0.

Log-logistic generalized Weibull Poisson (LLGWP) model. Let X ∼ Weibull(a, b) have
cdf G(x; a, b) = 1 − e−bxa . Oluyede et al. (2016a) first defined the log-logistic generalized
Weibull (LLGW) cdf by FLLGW = 1− [1 + (x/s)c]−1 e−bxa from the generalized extended
Weibull familyG(x; θ ,ψ) = 1−B(x;ψ) exp{−αH(x; θ)}, where θ andψ are both vectors,
by takingH(x; θ) = xb and B(x;ψ) = 1− [1 + (x/s)c]. Then, the cdf of the LLGWPmodel
proposed by Oluyede et al. (2016c) can follow from the GP class (Section 3.5, α = 1) as

FLLGWP(y; λ, b, c, s) = 1 − eλ
[
1−(1+(y/s)c)−1 e−bya

]

1 − eλ
, y, λ, b, c, s > 0.

Lai-modified Weibull-Poisson (LaiMWP) model. If X ∼ ModifiedWeibull(a, b, δ) intro-
duced by Lai et al. (2003) have cdf G(x; a, b, δ) = 1 − exp

(−axδ ebx
)
, a, b, δ > 0, then the

cdf of the LaiMWP model proposed by Delgarm and Zadkarami (2015) can be obtained
from the GP class (Section 3.5, α = 1) as

FLaiMWP(y; λ, a, b, δ) = 1 − e−λ
[
1−e−ayδ eby

]

1 − e−λ
, y > 0, a, b, δ, λ > 0.

Exponentiated Lomax-Poisson (ELoP) model. If X ∼ Lomax(a, b) have cdf G(x; a, b) =
1 − (1 + b x)−a, then the cdf of the ELoP model proposed Ramos et al. (2013) can be
determined from the EGP class (Section 3.5) as

FELoP(y; λ, a, b,α) = eλ [1−(1+b y)−a]α − 1
eλ − 1

, y, λ, a, b,α > 0.

Complementary Poisson-Lomax (CPLo) model. Let X ∼ Lomax(a, b) have cdf
G(x; a, b) = 1 − (1 + b x)−a, then the cdf of the CLoP model proposed Al-Zahrani and
Sagor (2014) can follow from the CGP class (Section 4.5, α = 1) as

FCLoP(z; λ, a, b) = 1 − e−λ[1−(1+b z)−a]

1 − e−λ
, z, λ, a, b > 0.

Lindley-Poisson (LP) model. Let X ∼ Lindley(θ) have cdf G(x; θ) = 1 −(
1 + θ x

θ+1

)
e−θ x, x, θ > 0. The cdf of the LP model introduced by Gui et al. (2014) can be

determined from the GP class (Section 3.5, α = 1) as

FLP(y; λ, θ) = 1 − e−λ
[
1−
(
1+ θ y

θ+1

)
e−θ y

]

1 − e−λ
, y > 0, θ , λ > 0.
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Complementary extended Lindley-Poisson (CExtLP) model. If X ∼ ExtLindley(θ , δ,β)

proposed by Bakouch et al. (2012a) have cdf G(x; θ , δ,β) = 1 −
(
1+θ+θ x

θ+1

)δ

e−(θ x)β , the
cdf of the CExtLP model introduced by Pararai et al. (2015b) can be determined from the
CGP class (Section 4.5, α = 1) as

FCExtLP(z; λ, θ , δ,β) = 1 − e
λ

[
1−
(
1+θ+θ z

θ+1

)δ
e−(θ z)β

]

1 − eλ
, z > 0, θ , δ,β , λ > 0.

Poisson Birnbaum-Saunders (PBS) model. Let X ∼ BS(a, b) have cdf G(x; a, b) =
�
[
(1/a) +

(√
x/b −√b/x

)]
, x, a, b > 0, then the cdf of the PBS model, proposed by

Hashimoto et al. (2014) in terms of long-term survivors, can be obtained from the GP
class (Section 3.5, α = 1) as

FPBS(y; λ, a, b) = 1 − e−λ�
[
1
a+
(√

y
b−
√

b
y

)]

1 − e−λ
, y > 0, a, b, λ > 0.

Exponentiated-Burr XII Poisson (EBP) model. Let X ∼ Burr(c, k, s) have cdf
G(x; c, k, s) = 1 − [1 + (x/s)c]−k , x, c, k, s > 0, then the cdf of the EBP model introduced
by da-Silva et al. (2015b) can be determined from the EGP class (Section 3.5) as

FEBP(y; λ, c, k, s,α) = 1 − e−λ
{
1+[1−(y/s)c]−k

}α

1 − e−λ
, y > 0, c, k, s,α, λ > 0.

Complementary Burr III Poisson (CB3P) model Let X ∼ BurrIII(c, k) have cdf
G(x; c, k) = (

1 + x−c)−k , x, c, k > 0, then the cdf of the CB3P model defined by Hassan
et al. (2015) can follow from the CGP class (Section 4.5, α = 1) as

FCB3P(z; λ, c, k) = eλ (1+z−c)
−k − 1

eλ − 1
, z, c, k, λ > 0.

The Burr III distribution is also known as the Dagum distribution (Dagum 1977), which
is a very well-knownmodel for studying income and wealth inequality data. Oluyede et al.
(2016b) have recently introduced and studied the Dagum-Poisson distribution.
Poisson generalized linear failure rate (PGLFR) model. Let X ∼ GLFR(a, b,α)

introduced by Sarhan and Kundu (2009) have cdf G(x; a, b,α) =
(
1 − exp

[−ax − (b/2)x2
])α , x, a, b,α > 0, then the cdf of the PGLFR model defined

by Cordeiro et al. (2015b) can be obtained from the EGP class (Section 3.5) as

FPGLFR(y; λ, a, b,α) = 1 − e−λ {1−exp
[−ay−(b/2) y2

]}α

1 − e−λ
, y > 0, a, b,α, λ > 0.

Complementary failure rate Poisson (CLFRP) model. Let X ∼ LFR(a, b,α), then the
cdf of the CLFRP model defined by Gitifar et al. (2016) can follow from the CEGP class
(Section 4.5, α = 1) as

FCLFRP(z; λ, a, b) = eλ {1−exp
[−ay−(b/2) y2

]}
eλ − 1

, z > 0, a, b, λ > 0.

Complementary exponentiated power Lindley-Poisson (CEPLP) model. If X ∼
ExpPowerLindley(α,β , θ) introduced by Warahena-Liyanage and Pararai (2015b) have
cdf G(x;α,β , θ) =

[
1 −

(
1 + θ xβ

θ+1

)
e−θ xβ

]α
(for x > 0, α,β , θ > 0), then the EPLG cdf

defined by Pararai et al. (2016) can follow from the CGP class (Section 4.5) as

FCEPLP(y; λ,α,β , θ) = eλ
[
1−
(
1+ θ xβ

θ+1

)
e−θ xβ

]α

eλ − 1
, z > 0, α,β , θ , λ > 0.



Tahir and Cordeiro Journal of Statistical Distributions and Applications  (2016) 3:13 Page 20 of 35

5.3 Compoundedmodels based on the logarithmic distribution

The following compounded models have been reported in the literature from the loga-
rithmic discrete model.
Exponential-logarithmic (ELn). If X ∼ Exponential(β) have cdf G(x;β) = 1 −

exp(−β x), then the cdf of the exponential-logarithmic (ELn) model proposed by Tah-
masbi and Rezaei (2008) can be obtained from the GLn class (Section 3.9, α = 1)
as

FELn(y;β ,φ) = 1 − ln
[
1 − (1 − φ) e−β y]

ln φ
. (8)

Generalized ELn. Pappas et al. (2015) applied the LA1 class to the ELn cdf given in
Eq. (8), and obtained the cdf of the generalized ELn (GELn) distribution as

FGELn(y;β ,φ, γ ) =
(

1 − ln
[
1 − (1 − φ) e−β y]

ln φ

)γ

,

where γ > 0 is the power parameter.
Chen-logarithmic (ChLn). If X ∼ Chen(γ ,β) have cdfG(x; γ ,β) = eγ (exβ −1) introduced

by Chen (2000), then the cdf of the Chen-logarithmic (ChLn) model proposed by Pappas
et al. (2011) can be determined from the GLn class (Section 3.9 with α = 1) as

FChLn(y; γ ,β ,φ) = 1 −
ln
[
1 − (1 − φ)eγ (exβ −1)

]

ln φ
.

Complementary exponentiated Weibull-logarithmic (CEWLn) model. Let X ∼
EW(β , δ,α) have cdf G(x;β , δ, γ ) = α δ βδ yδ e−(β y)δ−1 [ 1 − e−(β y)δ ]α−1, then the cdf of
the complementary exponentiated Weibull-logarithmic (CEWLn) model introduced by
Mahmoudi et al. (2014) can follow from the cdf of the CGLn class given in Section 4.9 as

FCEWLn(z;β ,φ, δ,α) =
ln
[
1 − φ

(
1 − e−(β z)δ

)α ]

ln(1 − φ)
,

where φ ∈ (0, 1), α > 0 and δ > 0 are shape parameters and β > 0 is a scale parameter.
Lomax-logarithmic (LxLn) model. LetX ∼ Lomax(a, b) have cdfG(x; a, b) = (1+bx)−a,

then the cdf of the Lomax-logarithmic (LxLn) model given by Al-Zahrani and Sagor
(2015) can be obtained from the GLn class given in Section 3.9 with α = 1 as

FLxLn(y; a, b,φ) = 1 − ln
[
1 − (1 − φ) (1 + by)−a]

ln φ
.

Exponentiated Poisson-logarithmic (EPoLn) model. Let X ∼ ExpPoisson(θ ,β) have cdf
G(x; a, b) = 1 − 1−exp{−θ e−β x}

1−e−θ , then the cdf of the exponentiated Poisson-logarithmic
(EPoLn) model given by Fioruci et al. (2016) can follow from the alternative GLn cdf
(Section 3.9 with α = 1) as

FEPoLn(y;β ,φ, θ) = 1 −
ln
[
1 − φ

{
1 − e−θ e−β y

1−e−θ

}]

ln(1 − φ)
.

6 Other compoundedmodels
(i) ExtendedWeibull power series (EWPS) models. Let T[G(y; τ);α]= 1−e−αH(y;τ) be the
extendedWeibull family, where x > 0, α > 0 andH(y; τ) is a non-negative monotonically
increasing function depending on a parameter vector τ . Much more than twenty known
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lifetime model cdfs can be expressed in this form. Further, let N be a discrete random
variable following a power series (PS) distribution (truncated at zero) with pmf

pn = P(N = n) = an θn

C(θ)
, n = 1, 2, . . . , (9)

where an depends only on n, C(θ) = ∑∞
n=1 an θn and θ > 0 is such that C(θ) is finite.

Equation (9) summarizes some power series distributions (truncated at zero) such as
the Poisson, logarithmic and geometric distributions, where C(θ) is equal to (eθ − 1),
− log(1 − θ) and θ(1 − θ)−1, respectively.
Silva et al. (2013) defined the EWPS cdf obtained under the current set-up from

Eq. (4) as

F(y; θ ,α, τ) = 1 − C(θ e−αH(y;τ))

C(θ)
, y > 0. (10)

Equation (10) includes as special cases the Weibull power series (WPS) class, which
extends the exponential power series (EPS) family. In fact, this class includes much more
than 60 (20 × 3) special models, some of them given by Silva et al. (2013) and others yet
not investigated. In a similar context, more recently, Silva et al. (2016) defined a family by
compounding the generalized gamma (GGa) and power series distributions.
(ii) Complementary extended Weibull power series (CEWPS) models. The CEWPS class

follows by taking T[G(y; τ);α]= 1 − e−αH(y;τ) and the PS distribution for the pmf. So,
the cdf of the CEWPS class can be obtained from Eq. (5) as

F(z; θ ,α, τ) = C
[
θ (1 − e−αH(x;τ))

]

C(θ)
, x > 0.

The CEWPS class can arise in parallel systems with identical components, which appear
in many industrial and biological applications.
(iii) Exponential-geometric range (max-min) model (New). Let N be the ZTG r.v.

with pmf of type 1 P(N = n) = q pn−1, n = 1, 2, . . . and define the range XR =
max{Y1 . . . ,YN |p} − min{Y1 . . . ,YN |p}. The unconditional cdf of the G-geometric range
(R = max−min) can be obtained as

F(x; p,α, τ) = (1 − p)G(x; τ)α

1 − pG(x; τ)α
.

If Y ∼ Exp(β) have density fY |β(y) = βe−βy and Z|p ∼ Geometric(p) have pmf P(N =
n) = q pn−1, n = 0, 1, . . ., Shahsanaei et al. (2012) proposed the unconditional cdf of the
exponential-geometric range (EGR) model as

F(x;β , p) = (1 − p)
(
1 − e−βx)

1 − p
(
1 − e−βx) .

The EGR distribution is useful for modeling the time between the first failure to the last
failure.
(iv) Exponential-generalized Poisson (EGP) model. Let N have the zero truncated

generalized Poisson (ZTGP) distribution with parameters λ and α and pmf

P(N = n) = λ(λ + αn)n−1 e−(λ+αn)

(1 − e−λ) �(n + 1)
, n = 1, 2, . . . .

Then, Gupta et al. (2014) proposed the EGP cdf given by

F(y;α,β , λ) = 1 − e−(λ/α)[W (g)+α]

1 − e−λ
,
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where g = −α e−(α+βy) andW (·) is the Lambert W function defined byW (x) eW (x) = x.
The above cdf can be derived from the generating function of the ZTGP distribution
M∗

N (t) = MN (t)−P(N=0)
1−P(N=0) = 1−e−(λ/α)[W (g)+α]−e−λ

1−e−λ , which is equivalent to the survival function
1 − F(t;α,β , λ).

7 A different approach of compounding
The compounding of some models (continuous with continuous and discrete with dis-
crete) are introduced such as the exponential-Weibull (Cordeiro et al. 2014c), generalized
exponential-exponential (Popović et al. 2015), geometric exponential Poisson (Nadarajah
et al. 2013a) and additive Weibull (Xie and Lai 1995) distributions.
(i) Exponential-Weibull model. Let W and T be independent random variables with

exponential and Weibull distributions characterizing two series sub-system lifetimes,
whose cdfs are GW (z) = 1 − exp(−α z) and GT (t) = 1 − exp(−β tγ ), respectively. Here,
α > 0 and γ > 0 are shape parameters and β > 0 is a scale parameter. The distribution of
the random variable X = min{W ,T} is called the exponential-Weibull (EW) distribution,
whose cdf is given by

F(x;α,β , γ ) = 1 − e−(αx+βxγ ), x > 0. (11)

We consider that α > 0, β > 0 and γ ∈ (0,∞) \ {1}, which gives identifiability to the
model. Themathematical properties of the EWmodel were investigated by Cordeiro et al.
(2014c).
(ii) Generalized exponential-exponential (GEE) model. Gupta and Kundu (1999) intro-

duced the two-parameter generalized exponential (GE) distribution with cdf given by
G(x;α, λ) = (1 − e−λx)α , where x > 0,α > 0, λ > 0. For a given α, let Y be a random
variable with the GE cdf with parameters α > 0 and λ > 0. Let α be a random variable
following an exponential distribution with parameter θ > 0. Then, Popović et al. (2015)
defined the GEE cdf (for x > 0) by

F(x; λ, θ) =
∫ ∞

0
G(x;α, λ) θ e−θαdα =

[
1 − 1

θ
log(1 − e−λx)

]−1
, λ, θ > 0.

(iii) Exponentiated geometric G-Poisson (EGGP) model (New). IfN ∼ ZTG(p) andM ∼
ZTP(λ), then the EGGP family can be determined by inserting the EGP cdf (Section 3.9)
in the cdf of the EGG class (Section 3.1) as

FEGGP(x;α, λ, τ , p) = e −λ[1−G(x;τ)α ] − e −λ

1 − e −λ − p
(
1 − e −λ[1−G(x;τ)α]) .

If α = 1 and X ∼ Exp(β) in the EGGP class above, then it follows the cdf of the
geometric exponential Poisson (GEP) defined by Nadarajah et al. (2013a).
(iv) Additive Weibull (AW) model. Suppose a system composed of two interconnected

independent series sub-systems that affect the system in a different way, both following
the Weibull distribution with proper parameters. Xie and Lai (1995) proposed the AW
model based on the simple idea of combining the failure rates of two Weibull distribu-
tions: one has a decreasing failure rate and the other one has an increasing failure rate. The
cdf of the AWmodel is given by F(t) = 1 − exp(−a tb − c td), where a > 0 and c > 0 are
scale parameters and b > d > 0 (or d > b > 0) are shape parameters, which gives iden-
tifiability to the model. The interpretation of the AWmodel is evident. A state-of-the-art
survey on the AWmodel can be found in Lemonte et al. (2014).
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8 Recent trends in compounding
There are four very recent trends on compounding of distributions, which have received
a great deal of attention.

8.1 First recent trend

Compounding a G-class with discrete model: The first recent trend deals with defin-
ing compound classes of lifetime distributions rather than studying a single compound
model. In this technique, a non-compound G-family of distributions is compounded with
a discrete model to generate a new flexible compounded class. Asgharzadeh et al. (2014)
introduced the G-Poisson-Lindley (from discrete Poisson-Lindley) class of distribu-
tions by compounding the ZTPL distribution with any other continuous lifetime model.
Four special models viz. Weibull Poisson-Lindley, Burr Poisson-Lindley, exponentiated-
Weibull Poisson-Lindley and Dagum Poisson-Lindley were investigated. Nadarajah et al.
(2015a) proposed the exponentiated G-geometric family, and reported two special mod-
els: exponentiated-Weibull geometric and exponentiated-log-logistic geometric. Ramos
et al. (2015) introduced the Kumaraswamy-G Poisson family and showed that the special
model Kumaraswamy-Weibull Poisson outperforms the competitors Kumaraswamy-
Weibull and beta-Weibull models in studying real life data on bladder cancer. Gomes et al.
(2015) proposed the exponentiated-G Poisson family and studied two special models,
namely the exponentiated-Burr XII Poisson and exponentiated-Weibull Poisson. Two
other compound G-classes are the G-Poisson (Alkarni and Oraby 2012) and Poisson-X
(Tahir et al. 2016a).

8.2 Second recent trend

Combining a continuous model with compound power series class: For the sec-
ond recent trend on compounding, one continuous lifetime model is compounded
with the power series class of distributions truncated at zero. Chahkandi and Gangali
(2009) first suggested compounding exponential and power series class, which exhibits
decreasing failure rate. The power series class can be used to construct many compound-
ing models with discrete distributions: Poisson, logarithmic, geometric, binomial and
negative-binomial. Some well-known compound models defined from the power series
class are: Weibull power series (WPS) (Morais and Barreto-Souza 2011), complementary
generalized-exponential power series (CGEPS) (Mahmoudi and Jafari 2012), comple-
mentary exponentiated-Weibull power series (CEWPS) (Mahmoudi and Shiran 2012b),
extended WPS (Silva et al. 2013), Kumaraswamy power series (KwPS) (Bidram and
Nekouhou 2013), complementary exponential power series (CEPS) (Flores et al. 2013),
Birnbaum-Saunders power series (BSPS) (Bourguignon et al. 2014b), complementary
WPS (Munteanu 2014), complementary Erlang and Erlang power series (CErPS and ErPS)
(Leahu et al. 2014), complementary extendedWPS (Cordeiro and Silva 2014), exponenti-
ated extendedWPS (Tahmasebi and Jafari 2015a), Burr XII power series (BIIPS) (Silva and
Cordeiro 2015), Lindley power series (LPS) (Warahena-Liyanage and Pararai 2015a), lin-
ear failure rate power series (LFRPS) (Mahmoudi and Jafari 2015), complementary normal
power series (CNPS) (Mahmoudi and Mahmoodian 2015), complementary generalized
Gompertz power series (CGGoPS) (Tahmasebi and Jafari 2015b), complementary inverse
Weibull power series (CIWPS) (Shafiei et al. 2016), complementary generalized modified
Weibull (CGMW) (Bagheri et al. 2016), complementary exponentiated inverse Weibull



Tahir and Cordeiro Journal of Statistical Distributions and Applications  (2016) 3:13 Page 24 of 35

power series (CEIWPS) (Hassan et al. 2016), generalized gamma power series (GGPS)
(Silva et al. 2016), Gompertz power series (GoPS) (Jafari and Tahmasebi 2016), comple-
mentary generalized linear failure rate power series (CGLFR) (Harandi and Alamatsaz
2016), and Dagum power series (DaPS) (Oluyede et al. 2016b).

8.3 Third recent trend

Combining compound G-class with the non-compound G-class: Here, the cdf of one
compound G-class or its special model is inducted into the cdf of a non-compound G-
class, thus generating a new flexible G-class. Next, we propose two such classes.
(i) If the cdf of the GP class defined in Section 3.5 with α = 1 is inserted into the cdf

of Gamma-G class, proposed by Zografos and Balakrishnan (2009), then the cdf of new
class (GaGP) is obtained as

FGaGP(y) = 1 − 1
�(a)

�
(
a,− ln ḠGP(y)

)
,

where �(a) = ∫∞
0 ta−1 e−t dt and �(a, z) = ∫∞

z ta−1 e−t dt are the gamma and upper
incomplete gamma functions, respectively, and ḠGP(y) = 1 − GGP(y).
One special model of the GaGP class, that is, the gamma-Weibull-Poisson (GaWP) was

studied by Percontini et al. (2014), whose cdf is given by

FGaWP(y) = 1 − 1
�(a)

�

(
a, ln

[
1 − eλ

1 − eλḠ(x)

])
.

(ii) The cdf of the new Kumaraswamy-GP (KGP) class can be obtained by inducting the
cdf of the CGPmodel given in Section 4.5 with α = 1 into the cdf of the Kumaraswamy-G
class, pioneered by Cordeiro and de-Castro (2011), as

FKwGP(y) = 1 − [1 − Ga
GP(x)

]b = 1 −
[

1 −
(
1 − eλG(x)

1 − eλ

)a]b
.

Pararai et al. (2015a) obtained the cdf of a special KwGPmodel called the Kumaraswamy
Lindley-Poisson (KwLP) distribution.

8.4 Fourth recent trend

Combining transmuted G-class with well-known compound distributions: After
receiving increased attention in the last decade, more than 50 transmuted distributions
have been reported in the literature. Due to wide acceptability of transmuted G-class, a
new trend has now begun by inserting the cdf of the compound G-class or distribution in
the transmuted G-class cdf. Some models are given below:
(i) Transmuted Weibull-geometric (TWG). Merovci and Elbatal (2014b) extended the

WG model introduced by Barreto-Souza et al. (2011) (given in Section 5) with the
transmuted-G family and defined the cdf of the TWGmodel by

FTWG(y; p, a, b, η) = 1 − e−(b y)a

1 − p e−(b y)a

[

1 + η − η

(
1 − e−(b y)a

1 − p e−(b y)a

)]

.

(ii) Exponentiated transmuted-Weibull geometric (ETWG) model. If X ∼ Weibull(a, b)
have cdf G(x; a, b) = 1 − e−(x/b)a , Aryal and Tsokos (2011) defined the cdf of the
transmuted-Weibull distribution as

GTW (x; a, b, η) =
(
1 − e−(x/b)a

) (
1 + η e−(x/b)a

)
.
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The cdf of the ETWG model proposed by Al-Zahrani et al. (2015) can follow from the
EGG cdf defined in Section 3.1 as

FETWG(y; p, a, b, η) =
(
1 − e−(y/b)a)α (1 + η e−(y/b)a)α

1 − p + p
(
1 − e−(y/b)a)α (1 + η e−(y/b)a)α .

(iii) Transmuted complementary Weibull-geometric (TCWG) model. Afify et al. (2014)
applied the LA1 class to the cdf of the Tojeiro et al.’s CWG model given in Section 5, and
obtained the cdf of the TCWGmodel as

FTCWG(z; p, a, b, η) = p
(
1 − e−(b z)a)

p + (1 − p)e−(b z)a

[

1 + η − η

(
p
(
1 − e−(b z)a)

p + (1 − p)e−(b z)a

)]

.

(iv) Transmuted complementary exponentiated Weibull-geometric (TCEWG) model. If
X ∼ ExpWeibull(a, b,α) have cdf G(x;β) = (

1 − e−(b x)a)α , Saboor et al. (2016) used the
CEWG cdf given in Section 5 and obtained the cdf of the TCEWGmodel as

FTCEWG(z; p, a, b,α, η) = (1 − p)(1 − e−(b z)a)α

1 − p
[
1 − e−(b z)a]α

×
[

1 + η − η

(
(1 − p)(1 − e−(b z)a)α

1 − p
[
1 − e−(b z)a]α

)]

.

(v) Transmuted Lindley-geometric (TLG) model. Merovci and Elbatal (2014a) extended
the LG model (described in Section 5) by proposing the TLG cdf given by

FTLG(y; p, θ , η) =
1 −

(
1 + θ y

θ+1

)
e−θ y

1 − p
(
1 + θ y

θ+1

)
e−θ y

×
⎡

⎣1 + η − η

⎛

⎝
1 −

(
1 + θ y

θ+1

)
e−θ y

1 − p
(
1 + θ y

θ+1

)
e−θ y

⎞

⎠

⎤

⎦ , y > 0,

where η and θ > 0 are transmuted and scale parameters, respectively, and p ∈ (0, 1).
(vi) Transmuted exponential-Weibulll (TEW) model. Saboor et al. (2015) recently

extended the exponentiated-Weibull model originally proposed by Cordeiro et al. (2014c).
The TEW cdf is given by

FTLG(y; η,α,β , γ ) = (η + 1)
[
1 − e−(αx+βxγ )

]
− η

[
1 − e−(αx+βxγ )

]2
, x > 0,

where α > 0, β > 0 and γ ∈ (0,∞) \ {1}.

9 Estimation and inference
9.1 General estimation procedure

Several approaches for parameter estimation were proposed in the literature but the max-
imum likelihood method is the most commonly employed. The maximum likelihood
estimators (MLEs) enjoy desirable properties and can be used when constructing con-
fidence intervals and regions and also in test statistics. The normal approximation for
these estimators in large sample distribution theory is easily handled either analytically or
numerically. So, we consider the estimation of the unknown parameters for each model
discussed in this paper from complete or censored samples by maximum likelihood.
The log-likelihood for the model parameters can be maximized either directly by using

the R (optim function), SAS (PROC NLMIXED), Ox program (MaxBFGS sub-routine)
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or by solving the nonlinear likelihood equations obtained by differentiating the log-
likelihood. In the applications, we can also use the AdequacyModel package (version
2.0.0) available in the R programming language. It has been cited very frequently in
papers related to new lifetime distributions. The package has been continuously updated
and more information can be obtained from http://cran.rstudio.com/web/packages/
AdequacyModel/index.html. It is distributed under the terms of the GNU licenses -
GNU Project. An important observation is that it is not necessary to define the log-
likelihood function but only the pdf and cdf of the model. The package provides some
useful goodness-of-fit statistics to assess the quality of the fitted models and com-
pare them, such as the Cramér–von Mises (W ∗) and Anderson-Darling (A∗) statistics,
Akaike information criterion (AIC), consistent Akaike information criterion (CAIC),
Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC) and
Kolmogorov-Smirnov (K-S) test. It is important to emphasize that we can fit several
competitive models to a data set and select those which yield best fits by means of the
AdequacyModel package.

9.2 Cure fraction survivor models

During the last two decades, the tendency to propose probability models to deal with
survival data has increased. This increased interest has lead researchers andmedical prac-
titioners to assess correct causes and information of the disease. The survival models
which are receiving increased recognition in these days are fractional survivor models.
These models have been effectively useful in some situations of clinical, medical or bio-
logical studies, where the fractional survival (or survivor fraction) models are useful to
study a cure fraction of individuals. These models are also known as cure rate models
or long-term survival models. In these models, it is assumed that all units under study
are susceptible to an event of interest and will eventually experience it if its follow-up
is sufficiently long. However, there are situations for which a fraction of individuals is
not expected to experience the event of interest, that is, those individuals are cured or
insusceptible. For example, researchers may be interested in analyzing the recurrence of
a disease but many individuals may never have an experience or a recurrence, therefore,
a cured fraction of the population exist. In other words, the cure rate models cover the
situations where the sampling units insusceptible to the occurrence of the event are of
interest, and also extend understanding of time-to-event data by allowing the formula-
tion of more accurate and informative conclusions. If the cure fraction of the population
is ignored, then the results will match to standard survival analysis. The cure rate mod-
els have been used for modeling time-to-event data for cardiac failure and various types
of cancers including prostate, breast, leukemia, non-Hodgkin lymphoma and melanoma.
That is why, the focus of the researchers is to introduce new, extended or modified
distributions which accommodate cure fraction.
In the literature, two formulations of the cure rate models have received increased

attention, namely, the mixture cure rate model (Boag 1949; Berkson and Gage 1952) and
promotion time (or accelerated) cure rate model (Yakovlev and Tsodikov 1996; Chen et al.
1999). Perhaps, the mixture cure rate models has received increased popularity. In mix-
ture model, it is assumed that there is a fraction 1 − π0 of susceptible individuals
and, hence, a proportion π0 of cured individuals. The survivor function for the entire
population is

http://cran.rstudio.com/web/packages/AdequacyModel/index.html
http://cran.rstudio.com/web/packages/AdequacyModel/index.html
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Spop = π0 + (1 − π0) S0,

where S0 denotes the survival function for the non-cured group in the population. So,
the flexibility and performance of the population model depends on the choice of S0.
Rodrigues et al. (2009a) unified both formulations considering the negative binomial cure
rate model. The proper modeling of cure rate models reported in literature is with covari-
ates, which have been proved very useful in getting improved results for the estimated
cure rate. Some selected cure rate models are reported in Table 2. Further detail is beyond
the scope of the paper.

9.3 Inference for cure fraction models

Suppose that the time-to-event is not completely observed and may be subject to right
censoring. Let Ci denote the censoring time. We observe that Yi = min (Ti,Ci) and δi =
I(Ti < Ci) is such that δi = 1, if Ti is a time-to-event and δi = 0, if it is right censored, i =
1, . . . , n. Let� denote the parameter vector of the distribution of the time-to-event. From
n pairs of times and censoring indicators Data = (y1, δ1), . . . , (y1, δ1), the corresponding
likelihood function under uninformative censoring is

L(Data,�) ∝ �n
i=1
[
fCRM(Data,�)

]δi [FCRM(Data,�)]1−δi ,

where fCRM(Data,�) and FCRM(Data,�) are the density and cdf of a cure rate model
(CRM), respectively.
Maximum likelihood estimation of the parameter vector � is carried out through max-

imization of the log-likelihood function �(Data,�) = log L(Data,�). Details for the
maximization methods are discussed in Section 9.1. Under suitable regularity conditions,

Table 2 Some selected cure rate survival models

S.No. Investigation Cure rate model Author(s)

1. Cutaneous melanoma COM-Poisson Rodrigues et al. (2009b)

2. Reducing drug abuse Generalized exponential Kannan et al. (2010)

3. Malignant melanoma Negative binomial Cancho et al. (2011b)

4. Malignant melanoma Geometric Birnbaum-Saunders Cancho et al. (2012)

5. Prostrate Cancer Negative binomial-beta Weibull Ortega et al. (2012)

6. Ovarian cancer PE-regression Louzada et al. (2012c)

7. Myelomatosis (bone marrow) EG Roman et al. (2012)

Leukemia (autologous marrow)

8. Gastric cancer Generalized modified Weibull Martinez et al. (2013)

9. Cutaneous melanoma Destructive negative-binomial Cancho et al. (2013a)

10. Cutaneous melanoma Power series Cancho et al. (2013b)

11. Cutaneous melanoma COM-Poisson Balakrishnan and Pal (2013a)

12. Cutaneous melanoma Negative-binomial GGa Ortega et al. (2014)

13. Breast cancer Poisson Birnbaum-Saunders Hashimoto et al. (2014)

Hemophiliacs

14. Red flour beetles log-Weibull Negative-binomial Louzada et al. (2015)

15. Melanoma Weibull Negative-binomial Yiqi et al. (2016)

16. Congenital malformations Negative binomial-Weibull Hashimoto et al. (2015)

Hemophiliacs

17. Breast carcinoma Power series BW Ortega et al. (2015)

18. First calving of cows Transmuted log-logistic Louzada and Granzotto (2015)

19. Cutaneous melanoma Destructive Negative-binomial Gallardo and Bolfarine (2016)

20. Malignant melanoma Negative binomial Birnbaum-Saunders Cordeiro et al. (2016)
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it can be shown that the asymptotic distribution of the maximum likelihood estimator
(MLE) �̂ is normal with mean vector � and covariance matrix

∑
(�̂) given by

∑̂
(�̂) =

[
− ∂2 �(Data,�)

∂� ∂�T

]−1
,

evaluated at � = �̂. The required second derivatives are computed numerically.
The EM algorithm (Dempster et al. 1977) is also a very popular maximization alter-

native used to obtain the estimates when the model has missing data. In the literature,
Balakrishnan and Pal (2012, 2013b, 2015a, 2015b), Gallardo et al. (2016), Gallardo and
Bolfarine (2016) and some others have considered estimation of parameters of cure
fraction survival models using the EM algorithm.

10 Final remarks
The need of compounding was first felt in actuarial science and later researchers of
many other fields adopted this approach for lifetime and reliability modeling. We follow
the two basic principles (the minimum and the maximum) used in series and paral-
lel structure, and report more than 30 compound G-classes. In this way, the possible
available compound G-classes are surveyed and using these basic principles nearly 25
new G-classes are proposed. The purpose of providing a variety of G-classes is to test
flexibility of the proposed compound models to cope with the data available in com-
plex situations. The parameters inducted in this way might be helpful in exploring
phenomenon generated from real-lifetime data sets. We expect that these G-classes or
generated compounded models from them will be an addition to the art of construct-
ing useful probability models. One can imagine its motivation and usefulness in the
fields which are not touched earlier. We have also briefly described the latest trends
in the development of compounding technique, which portray better exposition of the
strategies adopted for the researchers and practitioners. We hope to produce many
more new compound G-classes from the function T[G(x; τ);α] but due to space prob-
lem we did our best to explore and present the elusive task in most tenable way by
mentioning only the cumulative distributions of the classes. The remaining G-classes
will appear in another article under the same series. Lastly, we offer more choices to
the learners and practitioners of modeling to compare different models and to study
pros and cons of old and new G-classes. The possible future projects are: (i) to pro-
pose more new compound G-classes of distributions; (ii) to review and develop bivariate
compound G-classes; and (iii) to prepare a review and new developments on cure
rate survival models.
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Ristić, MM, Balakrishnan, N: The gamma-exponentiated exponential distribution. J. Stat. Comput. Simul. 82, 1191–1206

(2012)
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