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Abstract

A flexible class of multivariate generalized spherical distributions with star-shaped level
sets is developed. To work in dimension above two requires tools from computational
geometry and multivariate numerical integration. An algorithm to approximately
simulate from these star-shaped distributions is developed; it also works for simulating
from more general tessellations. These techniques are implemented in the R package
gensphere.
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1 Introduction
There is a need for tractable models for multivariate data with nonstandard dependence
structures. Our motivation here was to be able to flexibly model distributions with star-
shaped level sets. The R package gensphere has been developed that allows one to work
with these classes of distributions: specifying flexible shapes for the level sets, comput-
ing densities, and simulating. A deliberate goal in this process is to have methods and
programs that work in dimension d > 2, and this requires some methods from compu-
tational geometry. While the original intent focused on star-shaped regions, some of the
tools developed here are useful for other problems, e.g. sampling from more general sets.
Ferndndez et al. (1995) proposed defining multivariate distributions for which the level
sets are scaled versions of a contour C (a simple closed curve/surface in RY). We will
specify a contour by a function ¢ : S —[0, 00):

C={c(s)s : s S}

Here S = {s eRY: |s| = 1} is the unit sphere in the Euclidean norm | - |, a (d —
1)-dimensional surface. We assume throughout that c(s) is a piecewise continuous func-
tion, so measurability issues are automatically satisfied. Figure 1 shows a 2-dimensional
example and Fig. 4 shows a 3-dimensional example of such contours.

A motivating example for this work is to model fragment dispersion from an explosion.
In such problems, the fragments disperse in three dimensions in patterns like those of
Fig. 4. The ability to easily specify different contour functions by adding together multiple
terms as in Section 2.1 is of practical importance for describing different types of explosive
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Fig. 1 Constructing a 2-dimensional contour. The top left plot shows a base of type 1, a circle of radius 1. The
top right shows the base with one Gaussian bump of type 3 in direction (ﬁ/z ﬁ/Z), the bottom left
shows the final contour with another Gaussian bump in direction (-1,0). The bottom right plot shows a sample
of size n = 1000 from this contour using the method described in Section 3

devices. The goal of this modeling is to design better body and vehicle armor to protect
people.
Let g :[0,00) —[0, 00) be a nonnegative function and define

o
fw = {g(«xux)) x>0 )
g0 X| =0

Under integrability conditions discussed below, this will give a probability density func-
tion on R%, and the level sets of such a distribution are scalar multiples of C. Such
distributions are also called homothetic, see Balkema and Nolde (2010), Section 3.1 or
Simon and Blume (1994), Section 20.4. We will call ¢(-) the contour function and g(-) the
radial decay function of the distribution.

Our approach differs from Fernindez et al. (1995) where they start with a function
v: R4 [0, 00) that is homogeneous: v(ax) = |a|v(x). Such functions are called gauge
functions or Minkowski functionals, and are well studied in convex analysis and functional
analysis. The relationship between their v function and our contour function is v(x) =
|x|/c(x/|x|). If c(s) = 1, then C is the unit sphere and v(x) = |x|, so the resulting classes of
distributions are the spherical/isotropic distributions. If v(-) is convex, then v(-) is a norm
on R? and C is the unit sphere in that norm, hence the name v-spherical distributions.
When v(-) is not convex, e.g. the £, quasi-norm with p < 1, v(x) does not give a norm,
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so C is not strictly speaking a unit sphere, but we will still call the resulting distributions
v-spherical.

The purpose of this paper is to describe a method of defining a flexible class of gen-
eralized spherical distributions in any dimension d > 2, and to describe an R package
gensphere that implements this method. The package gives the ability to

Define a flexible set of contours

Carefully tessellate a contour

Sample from a tessellation

Use a contour and a radial function g(-) to define a generalized spherical distribution
Compute the density f(-) given by (1)

S o

Approximately simulate from a distribution with density f(-)

The third step above also provides a way to simulate from paths and surfaces unrelated
to generalized spherical laws, giving new classes of probability distributions on paths and
surfaces.

Other references on generalized spherical laws are Arnold et al. (2008), Kamiya et al.
(2008), Rattihalli and Basugade (2009), Rattihalli and Patil (2010), and Balkema and Nolde
(2010). These papers develop the idea of generalized spherical distributions, but do not
provide general purpose software for working with these distributions and do not cover
techniques for working with higher dimensional models. Richter (2014) gives a rigorous
investigation of p-generalized elliptically contoured distributions, with a detailed analysis
of the surface measure and a polar disintegration of the laws.

2 Generalized spherical distributions

For (1) to be a proper density, it is required that (see equations (4) and (5) of Fernandez
et al. (1995))

kGt= / (s)ds € (0,00) (2)
S
and
/00 re(rydr = ke. (3)
0

We will assume ¢(-) is continuous on S and that ¢(s) < ¢g. This guarantees (2) is finite,
though evaluating it may be difficult, especially when d > 2. Section 3 discusses an
approach to this problem that improves the accuracy of this computation for the types
of contours considered here. Given any univariate probability density /(-) on the positive
axis, the function g(r) = ker'=4h(r) is a valid radial decay function. This is the approach
used in the rest of this paper and in the associated package.

To simulate values for a generalized spherical random vector, we are interested in a

stochastic representation of the form
X£RZ. (4)

Choosing Z uniformly distributed (proportional to surface area) on the contour does
not work in general. Richter (2014) shows this works in special circumstances, e.g. if the
contour C is an £3 ball, £1 ball, or £, ball. In Section 3 we develop a way to approximately
simulate a wider class of distributions by using a piecewise linear approach: approximate
the contour C by a simplicial tessellation and use (4) on each piece.
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2.1 Specification of a contour function
For modeling purposes, we want a flexible family of functions that can be used in a variety
of problems.

To be able to include the distributions discussed by the authors cited above, we allow
contour functions of the form

c(s) = Z Gri(8) + —————
Z] 1 c*r* (s)

where ¢; > 0, c;«k > 0, and r;(-) and r*(-) are one of the cases discussed below. N1 and N;

are non-negative integers telling how many terms of each type are used.

1. r(s) = 1, which makes C the Euclidean ball. Any isotropic/radially symmetric
distribution can be modeled by using just this term in a contour function and the
appropriate radial decay function.

2. r(s) = c(s|u,0) is a cone with peak 1 at center u € S and height 0 at the base given
by the circle {x € S: p - x = cos 6}. It is assumed that |0| < 7/2.

3. r(s) = c(s|m,0) = exp(—t(s)?/(20%)) is a Gaussian bump centered at location
I € S and “standard deviation” o > 0. Here £(s) is the distance between g and the
projection of s € S linearly onto the plane tangent to S at u.

r(s) = ||S||ep(Rd):P > 0.

5. 1r*(s) = ||Asl||gp®m), p > 0, A an (m x d) matrix. This allows a generalized
p-norm. If A is d x d and orthogonal, then the resulting contour will be a rotation
of the standard unit ball in ¢7. If A is d x d and not orthogonal, then the contour
will be sheared. If m > d, it will give the £ norm on R™ of As.

6. r*(s) = (s" As)!/2, where A is a positive definite (d x d) matrix. Then the level
curves of the distribution are ellipses. Any elliptically contoured distribution can be
modeled by using just this term in a contour function and the appropriate radial

decay function.

Sums of the first three types allow us to describe star-shaped contours, see Fig. 1.
Inverses of sums of the last three types allow us to consider contours that are familiar unit
balls, or generalized unit balls, or sums of such shapes. Specifying a radial decay function
g(-) defines a density f(x) by (1) as in Fig. 2. An implementation of this construction is
given in the R package gensphere. The R statements used in this example are given in
the Appendix.

It is relatively easy to add new types of terms to this list if other contours are of interest.
However this set of basic shapes can model a wide range of shapes, including contours
supported on a cone. Figure 3 shows nine examples. The top row shows ¢, balls with
p =1/2,p =1,and p = 5. The middle row starts with a contour made up of an ¢, ball
with a p = 0.3 and a copy of that rotated by 7 /4, the rotation done by using a generalized
£, norm with A a rotation matrix. The next two plots show generalized ¢, balls with
A=(1,1;1,-41,3;5,—-3) and p = 1/2 (middle) and p = 1.1 (right). The last row shows
contours supported on a cone. The left plot is the sum of three Gaussian bumps of type 3,
each centered at (cos6,sin6), 06 = n/4,7/2,37/2 and o0 = 0.3. The middle plot has two
type 2 cones, at angles —7 /6 and —x/3 with o = 0.4. The last graph also has two cones,
centered at w/6 and 7 /3, with o = 0.25. Any of the contours that have a corner or cusp on

a ray will generate a density surface with a ridge along that ray. A more complicated three
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Fig.2 On the left is a sample of size n = 1000 from the generalized spherical distribution based on the
contour in Fig. 1 and a I'(2,1) radial term. On the right, is a surface plot of the corresponding bivariate density

fox,y)

dimensional example with 11 terms in the definition of ¢(-) is given in Fig. 4: an elliptical

base of type 6 and 10 cones of type 2.

2.2 Choice of R
In general, g(r) can be any nonnegative integrable function. The radial decay of R deter-

mines the decay of f(-) on R?. In most applications one wants 0 < g(0) < oo and g(r)

*
v

Fig. 3 A selection of contours made from the different types of terms. See the text for a description
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Fig. 4 A 3D star-shaped region with one term of type 6 and 10 terms of type 2. The top plot shows the
contour, the middle shows a sample of size 2500 from the contour, the bottom shows a sample of size 10000
from the generalized spherical distribution given by this contour and a I'(3, 1) radial term R

decreasing for r > 0, but other possibilities may be of interest. If g(0) = 0, the density sur-
face given by (1) will have a “well” at the origin; if g(0) = 400, then the density blows up
at the origin. If g(-) oscillates, then the density surface will have radial “waves” emanating
out from the origin. If R has bounded support, then X will have bounded support.

The gamma distributions give a family of distributions that can be used to get gener-
alized spherical distributions with light tails. If a I"(d, 1) law is used for R, then h(r) =
[(d) 141 exp(—r), so g(r) = ker*=h(r) = (ke T(d)) exp(—r), which is finite at the
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origin and monotonically decreasing. If one wants heavy tails for X, then some possibil-
ities for R are Fréchet, Pareto and multivariate stable amplitude. (The latter is defined
in Nolan (2013) by R = |Z|, where Z is radially symmetric/isotropic «-stable in d-
dimensions. Numerical methods to calculate the density 4(r) of R and simple ways to
simulate are given in the reference).

Figure 5 shows the effect that the choice of R has. In all cases, the base contour is the
unit ball in £1, a diamond shape. At the upper left, R is a uniform r.v. on (0, 1). In this
case, g(0) = 400 and the density has a spike at the origin and bounded support on the
diamond. At the top right, R ~ I'(2,1), so g(0) = 1 and the distribution has unbounded
support with light tails. At the lower left, R is the « = 1 stable amplitude in d = 2
dimensions; here g(0) is finite and the distribution has heavy tails. The bottom right plot is
with R ~ T'(5, 1), so g(0) = 0 and the distribution has a well at the origin and unbounded
support with light tails.

3 Contours: tessellating, integrating and simulating
A large part of the technical complexity of working with generalized spherical laws is in
representing the contours and evaluating the norming constant k¢ in (2) and simulating

Fig. 5 Density surface for generalized spherical distributions with the same diamond shape contour and
different radial term R as specified in the text
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from the contour C. The gensphere package uses two other recent R packages for these
problems: SphericalCubature Nolan (2015b) and mvmesh Nolan (2015a).

SphericalCubature numerically integrates a function on a d-dimensional sphere.
Given a tessellation of the sphere in R, it uses adaptive integration to integrate over the
(d — 1)-dimensional surface to evaluate k¢. If the integrand function is smooth and the
tessellation is reasonable, then the numerical integration is accurate in modest dimen-
sions, say d = 2,3,4,5,6. However, when the integrand function has abrupt changes,
numerical techniques can miss parts of the integral. This is even a problem in dimen-
sion 2, where the integration is a one dimensional problem. One way to deal with this is
to work with tessellations that focus on the places where the integrand is not smooth. In
complete generality, this is hard to do. However, in evaluating integral (2) for one of the
contours described above, we have an implicit description of where the contour changes
abruptly.

The mvmesh package is used to define multivariate meshes, e.g. a collection of ver-
tices and grouping information that specify a list of simplices that approximate a contour.
The first place where mvmesh is used in gensphere is to give a grid on the sphere S
in d-dimensions, e.g. the top left plot in Fig. 1. mvmesh has a function UnitSphere that
computes an approximately equal surface area approximation to a hypersphere in dimen-
sion d. It takes a parameter k to say how many recursive subdivisions are used in each
octant; increasing this value will give a finer tessellation of the sphere. Then this tessella-
tion is refined by adding points to the sphere centered on the places where the contour
has bumps, e.g. the cone and Gaussian bumps (type 2 and 3). Then the new points are
combined with the original tessellation of the sphere to get a refined tessellation of the
sphere that includes these key points.

It is at this point that the SphericalCubature package is used to evaluate the inte-
gral (2). This is difficult to accurately evaluate in dimension greater than three if the
contour is not smooth. In addition to the estimate of the integral, we use an option in
the adaptive integration routine to return the partition used in the multivariate cubature,
along with the estimated integral over each simplex. The reasoning is that the integra-
tion routine is subdividing regions where the integrand is changing quickly to get a better
estimate of the integrand. This subdivision should make the tessellation more closely
approximate the contour. We now have the final tessellation of the unit sphere, an estimate
of the integral (2) over each of the simplices, and an estimate of the norming constant,
e.g. sum of these just mentioned values.

Now the tessellation of the contour is defined by deforming the tessellation of the sphere
to the contour: each partition point s € S gets mapped to c(s)s on the contour. The
grouping information from the spherical tessellation is inherited by the contour tessella-
tion. This tessellation is returned as an S3 object of class “mvmesh” This object contains
the vertices, the grouping information, and a list of all the simplices Si, S2, ..., S in the
tessellation. One advantage of this is that the plot method from the mvmesh package
can plot the contours in 2 and 3 dimensions. This process of refining the tessellation has
two purposes: (a) get a more accurate estimate of the norming constant by focusing the
numerical integration routine on regions where the integrand changes rapidly and (b) get
a more accurate tessellation of the contour. Each step of this process can add more sim-
plices, with the goal of capturing key features of the contour. For example, the contour in
Fig. 4 started with 512 simplices in the tessellation of the sphere in R? with k = 3, adding
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the points on the cones brought the number up to 888 simplices, and after the adaptive
cubature routine subdivision there were 2284 simplices.

Exact simulation from a surface is a challenging problem and general methods are diffi-
cult to apply for complicated contours like our star-shaped regions. We now describe an
approximate method based on the above tessellation. Recall that the above process gives
us a list of simplices Sy, . .., S;; and associated weights w1, . .., W, with w; an estimate of
the surface area of the contour approximated by simplex S;.

The simulation routine to sample from the tessellation is straightforward:

Select an indexj € {1,..., m} with probability proportional to w;.

2. Simulate a point u that is uniformly distributed on the unit simplex in
d-dimensions. This is standard: simulate u from a Dirichlet distribution with
parameter ¢ = (1,1,...,1),eg. let Ey,..., E; i.i.d. standard exponential random
variates and set u = (E1,...,E;)/ <Z?=1 Ei).

3. Map the point u to the simplex S; using the coordinates of u as barycentric
coordinates: Z = u'S;.

Simulate R from the radial distribution with density A(r).

5.  Return the value X = RZ.

This method works in any dimension and the first three steps are adaptable to a wide
variety of shapes, more than just the contours described above. This gives a way to define
distributions on paths and surfaces. Figure 6 illustrates some examples with different
shapes and weights. In all cases the points Z are sampled from the approximating simplex
faces; to work well the tessellation should be fine enough to closely approximate the shape
of the surface of interest. This is controlled by the parameter k described above. The tre-
foil knot in the upper left plot is approximated by 101 line segments; for simulation, a line

Fig. 6 Approximate simulation from general sets; details are given in the text. At top left is a trefoil knot with
points sampled uniformly from the path. Top right has the letters JSDA constructed from line segments, then
embedded in R?. Points are then sampled uniformly according to lengths of the line segments. Bottom left
has points sampled on the unit simplex according to a density exp (—20[x — (3, 1, 1) |?). The last plot

3
shows points sampled uniformly from a hollow tube
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segment is sampled uniformly (w; = 1/101) and then a point is picked randomly along
that segment. In the second plot, the letters JSDA are constructed out of straight line seg-
ments, then embedded in R3. A line segment is selected with weight proportional to the
lengths of the line segments making up the letters, and then a point is sampled uniformly
along that segment. The bottom left plot subdivides the unit simplex x; + x2 + x3 = 1,
x1 > 0,%2 > 0,x3 > 0 into 100 triangles of equal area (a k = 10 edge subdivision) and
weights are assigned to each triangle with weights proportional to w; = average of the
density exp (—20|x — (%, %, %) |2) at the vertices of simplex j. The last plot shows a hollow
tube approximated by 160 rectangles (5 subdivisions along the axis and 32 subdivisions
around the cylinder) with rectangles sampled uniformly and points sampled uniformly
from that rectangle.

The subdivision process, including the numerical cubature is the slowest part of the
process. This is done in the R function cfunc . finish, which finishes the definition of
a contour by performing the above calculations and saving the results in an object of class
“contour.function” For the example the 3-dimensional example in Fig. 4 took about half
an hour! to complete the construction.

In contrast, once the tessellation is produced, density calculations and simulations are
quite fast: to evaluate a density at 10,000 points takes less than a second and to simulate
100,000 random vectors takes less than a second for this example.

In principle, the methods described here work in any dimension; in practice the numer-
ical challenges, particularly evaluating the integral in (2) and the time needed to work
limit us as the dimension increases. At the current time, these methods are useful for low
dimension d =2, 3, or 4.

Endnote
I Times are for an Intel i5-4460 CPU at 3.20 GHz.

Appendix
Here are the R statements used to produce Figs. 1 and 2 from the R package gensphere.

# define a new contour function (cfunc)

cfunc <- cfunc.new(d=2)

cfunc <- cfunc.add.term( cfunc,
cfunc <- cfunc.add.term( cfunc,

k=c( 1, sqgrt(2)/2,
cfunc <- cfunc.add.term( cfunc,
k=c( 1, -1,0, 0.1)

cfunc <- cfunc.finish( cfunc,

"constant",k=1)

"proj.normal",
sqrt(2)/2, 0.1) )

"proj.normal",

)

nsubdiv=4 )

# simulate from the tessellation of the contour
x <- rmvmesh( n=500, cfuncS$tessellation,

cfunc$tessellation.weights )
dev.new (height=4,width=8) ;

plot (cfunc); plot (x)

par (mfrow=c(1,2))

# define a generalized spherical distribution with
# the above contour and a gamma radial component
rradial <- function( n ){ rgamma( n, shape=2 ) }

{ dgamma ( x, shape=2 ) }

dradial <- function( x )

Page 10 of 11
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dist <- gensphere( cfunc, dradial, rradial, g0=1 )

# simulate from the generalized spherical distribution
X <- rgensphere( 1000, dist )
plot (t (x))

# compute the density
XX <- matrix(1l:8,nrow=2)
dgensphere ( xx, dist )
Additional file 1 contains the R commands to generate the other figures in this paper.

Additional file

Additional file 1: R commands to generate Figs. 3,4,5and 6. (R 11.2 kb)
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