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Abstract

In low dimensions, the relatively easily implementable acceptance-rejection method
for generating polyhedral convex contoured uniform distributions is compared to
more sophisticated particular methods from the literature, and applied to drug
combination studies. Based upon a stochastic representation, the method is extended
to the general class of polyhedral convex contoured distributions of known dimension.
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1 Introduction
The need of uniform distributions on convex polyhedra appears for various purposes
of statistical modeling. In the field of computational visualization of unstructured data,
uniform designs on convex polyhedra are used as space filling designs to create three
dimensional pictures on the computer, see e.g. (Cutler et al. 2004; Rocchini and Cignoni
2000). The simulation of uniform distributions on convex polyhedra applies in the field
of drug combination studies as described in (Fang and Yang 2000; Tan et al. 2003; Tian
et al. 2009) which is of special interest in this paper. In (Richter and Schicker 2014) the
simulation of a uniform distribution on a tetrahedron is used to detect optimal production
schedules.
(Tian et al. 2009) consider a combination study of two drugs with linear dose-response

curves. These curves represent the low dose for agents like ionizing radiation, enzyme
inhibitions or mutagens. If xi denotes the dose of drug Ai, i = 1, 2 then the single dose-
response curves of A1 and A2 are assumed to be represented by

f1(x1) = α1 + β1x1 and f2(x2) = α2 + β2x2 = α1 + β2

(
x2 − α1 − α2

β2

)
,

where αi ∈ R and βi ∈ R, i = 1, 2 denote regression coefficients. If x∗
2 = x2−(α1−α2)/β2

then the domain for dose ranges of interest is assumed to be
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P(a0, b0) = {(x1, x∗
2)

T ∈ R : a0 ≤ α1 + β1x1 + β2x∗
2 ≤ b0, x1 > 0, x∗

2 > 0} (1)

which is an irregular tetragon in R
2. The constants a0 and b0 are pre-specified constants,

chosen by pharmacological experts. For further details, we refer to (Tian et al. 2009).
Since in (Tan et al. 2003) it is proved that a uniform design on P(a0, b0) maximizes the
minimum power of the F-test to detect significant deviations from additive actions of the
drugs, it is of importance to be able to effectively simulate the uniform distribution on
general tetragons P(a0, b0).
In (Tian et al. 2009) several algorithms for the simulation of uniformly distributed

random points on convex polyhedra are presented for particular two, three, and n-
dimensional cases. The presented algorithms require a pool of analytical as well as
probabilistic methods, in dimensions n > 2 also numerical methods especially for
integration and root computation. They give challenging and individual solutions for
the simulation of uniformly distributed random points on special subclasses of convex
polyhedra.
In this paper, we present a rather simple but general simulation algorithm using basic
geometric-analytical properties of the class of convex polyhedra as well as basic prob-
abilistic simulation methods. This algorithm reduces the mathematical complexity and,
since numerical methods for integration and root computation are not necessary, the
computational complexity, too. Furthermore, the structure of this algorithm will be the
same for every convex polyhedron in R

n which makes the algorithm flexible to use. Its
basic idea is to effectively construct theMinkowski functional of a convex polyhedron and
then to apply a fast and simple acceptance-rejection method.
It turns out that this idea simply extends to simulate both distributions from much

more general classes of probability distributions and probabilities of rather arbitrary ran-
dom events measured with respect to any of these distributions. The construction and
simulation of multivariate probability distributions and their event probabilities is one of
the current challenges in probability theory and statistics. It is possible to characterize a
multivariate density by the geometry of its density level sets. For an overview about this
broad field of research, we refer to (Arnold et al. 2008; Balkema et al. 2010; Fang et al.
1990; Fernandez and Osiewalski 1995; Gupta and Song 1997; Kamiya et al. 2008; Richter
2009; 2013; 2014; 2015a; 2015b; Richter and Schicker 2017; Sarabia and Gomez-Deniz
2008). Convex polyhedral distributions are characterized by contours being the topologi-
cal boundaries of convex polyhedra and can be considered being a subclass of polyhedral
star-shaped distributions that are studied in (Richter and Schicker 2017). To simulate
them needs just the additional independent simulation of a positive random variable play-
ing the role of a certain generalized radius variable of a generalized ball. This way, we
widen the flexibility of our approach by describing how arbitrary continuous distribu-
tions, having convex polyhedral density level sets, can be constructed and simulated with
the new method.
The paper is structured as follows. We describe the main ways of describing con-

vex polyhedra and their Minkowski functionals in Section 2.1 and 2.2, respectively.
In Section 3 we present the acceptance-rejection algorithm for generating the uni-
form distribution on an arbitrary convex polyhedron in R

n. Comparisons of the general
acceptance-rejection algorithm with particular algorithms from the literature and appli-
cations to drug combination studies are given in Section 4. A general technique from
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(Richter 2014, 2015a; Richter and Schicker 2017) is summarized in Section 5.1 to
construct the general class of polyhedral convex contoured distributions from the par-
ticular polyhedral convex contoured uniform distribution. Sections 5.2 and 5.3 deal with
applications of the presented geometric and stochastic representations to simulating
probabilities of random events and to linear transformations, respectively. A final discus-
sion including some remarks on the closely related recent paper (Nolan 2016) and several
examples are presented in Section 6 and the Appendix, respectively.

2 Representations of convex polyhedra
2.1 V- andH-representations of convex polyhedra

Representations of convex polyhedra are considered in the broad literature of convex
geometry, see e.g. (Böhm and Hertel 1980; Ziegler 1995). Here, we recall two standard
representations of convex polyhedra that are very fruitful for the purposes in this paper.
It is said that a convex polyhedron P, P ⊂ R

n, is defined by its vertices p1, . . . , pl ∈ R
n if

P = conv({p1, . . . , pl}), (2)

where conv(M) denotes the convex hull of the point set M. Alternatively, it is possible to
represent P as the intersection of suitably chosen closed half-spaces. In this case there
exist a matrix A ∈ R

k×n and a vector b ∈ R
k such that

P = {x ∈ R
n : Ax ≤ b}, (3)

where “≤” is interpreted componentwise. Note that (2) and (3) are equivalent and there
exists software to convert a given representation (2) into a representation (3), and vice
versa. In this regard, we refer to (Avis 2000; Fukuda and Prodon 1996). For an illustration
of the construction of (2) and (3), see Example 3 in the Appendix.

2.2 Minkowski functionals of convex polyhedra

In case one wants to decide according to an acceptance-rejection algorithm whether a
point x from a sample space Rn belongs to the Euclidean ball of radius r, or not, one can
equivalently observe whether the Euclidean norm of x is less or equal to r, ||x|| ≤ r. If B
denotes the Euclidean unit ball in R

n, and hB the Minkowski functional of B defined by
hB(z) = inf{r > 0 : z ∈ rB}, z ∈ R

n, then ||x|| ≤ r iff hB(x) ≤ r. Imagine B is replaced by a
convex polyhedron P ∈ R

n containing the origin as an inner point, 0n ∈ int(P), where we
define int(P) to be the interior of P. It is then possible to specify vector b in representation
(3) to be a vector with exclusively positive real entries, i.e. b ∈ R

k+. From this, we can
conclude that

P = {x ∈ R
n : A′x ≤ 1n},

where A = (aij)i∈{1,...,k},j∈{1,...,n} is chosen according to (3), A′ =
(A′

1, . . . ,A′
k)

T = (aij/bi)i∈{1,...,k},j∈{1,...,n} and 1n denotes the n-dimensional vector of ones.
Thus

P = {x ∈ R
n : A′

1x ≤ 1,A′
2x ≤ 1, . . . ,A′

kx ≤ 1}
= {x ∈ R

n : max{A′
1x,A′

2x, . . . ,A′
kx} ≤ 1}.
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The last equations show that it is possible to represent a convex polyhedron P ⊂ R
n

with the help of the functional max{A′
1x,A′

2x, . . . ,A′
kx} and since

inf{r > 0 : x/r ∈ P} = inf{r > 0 : max{A′
1x/r, . . . ,A′

kx/r} ≤ 1}
= inf{r > 0 : max{A′

1x, . . . ,A′
kx} ≤ r} = max{A′

1x, . . . ,A′
kx}, x ∈ R

n

we observe that the function

hP(x) = max{A′
1x, . . . ,A′

kx}, x ∈ R
n (4)

is the Minkowski functional of P. One can represent thus the polyhedron as P = {x ∈
R
n : hP(x) ≤ 1}. A particular case is dealt with in Example 4 in the Appendix.

3 A general acceptance-rejection simulation algorithm (ARSA)
In this section we introduce an algorithm to simulate uniformly distributed random
points on an arbitrarily given multivariate convex polyhedron. To this end, we combine
the representations presented in the latter section with the method of acceptance-
rejection sampling that was introduced first in (von Neumann 1951). To start with, we
assume P ⊂ R

n to be a convex polyhedron, given by representation (3), and choose a
cuboid Q containing P, Q ⊇ P. We simulate uniformly distributed random points x ∈ Q
on Q and accept them as uniformly distributed on P, if x ∈ P, i.e. Ax ≤ b according to
(3). In Algorithm 1 we summarize the algorithm generating polyhedral convex contoured
uniform distributions.

Algorithm 1: Sampling algorithm for uniform distributions on convex polyhedra.
Assumption P ⊂ R

n is a convex polyhedron, represented by P = {x ∈ R
n : Ax ≤ b};

Q ⊇ P, where Q =[ qmin,1, qmax,1]× . . . ×[ qmin,n, qmax,n]
Input: A, b, qmin,1, . . . , qmin,n, qmax,1, . . . , qmax,n
Output: X = (X1, . . . ,Xn)T uniformly distributed on P

Algorithm

1. Sample uniformly and independent X1 from [ qmin,1, qmax,1],. . . , Xn from
[ qmin,n, qmax,n] until A(X1, . . . ,Xn)T ≤ b.

Return X

The proofs of that this method stops within a finite time and that the resulting sample
points are uniformly distributed on P can be done analogously to those in Appendix 1 of
(Kalke and Richter 2013). A suitable cuboid Q can be found, applying representation (2)
of P. One can always find qmin,i and qmax,i, i = 1, . . . , n by

qmin,i = min{pj[i] , j = 1, . . . , l} and qmax,i = max{pj[ i] , j = 1, . . . , l}, i = 1, . . . , n,

where pj[i] denotes the ith component of vertex pj. Applying (3) one can numerically
solve for every i = 1, . . . , n the optimization problems: minimize qmin,i = xi (maximize
qmax,i = xi), subject to A(x1, . . . , xn)T ≤ b.
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4 Simulations in particular classes of convex polyhedra
4.1 Uniform distributions in tetragons inR

2

4.1.1 Method of Tian, Fang, Tan, Qin and Tang

In (Tian et al. 2009) a particular algorithm is presented to simulate uniformly distributed
random points on an arbitrary two dimensional tetragon that is declared by its vertices a1,
a2, a3 and a4, P(a1, a2, a3, a4) ⊂ R

2. It is shown there that a uniformly on P(a1, a2, a3, a4)
distributed random vector X allows the stochastic representation

X d= (a1, a2, a3, a4)

⎛
⎜⎜⎜⎝

(1 − Y1)(1 − Y2)
Y − 1(1 − Y2)

Y1Y2
(1 − Y1)Y2

⎞
⎟⎟⎟⎠ ,

where the random vector Y = (Y1,Y2)T follows the density function fY (y1, y2) =
d0+d1y1+d2y2
d0+0.5(d1+d2) with d0 = |a2 − a1, a4 − a1|, d1 = |a2 − a1, a3 − a4| and d2 = |a3 −
a2, a4 − a1| where |., .| denotes a determinant. The simulation of Y is realized, applying
the inverse transform sampling of the marginal distributions of Y that can be found in
(Tian et al. 2009).

4.1.2 The alternativemethod:ARSA

Our general acceptance-rejection simulation Algorithm 1 presented in Section 3 offers
an alternative method to that of the latter section and applies immediately. One has only
to calculate the matrix A and the vector b from the given vertices a1, . . . , a4 such that
(3) holds. To this, it is possible to apply the algorithms described in (Fukuda and Prodon
1996; Avis 2000). In the following, however, we present an alternative method that uses
only elementary theory from linear algebra. To this end, let the points ai = (xi, yi)T ,
i = 1, . . . , 4, be ordered anticlockwise and let (x, gai,aj(x))T denote a point from the line
through the points ai and aj, j = i + 1 if i = 1, 2, 3 and j = 1 if i = 4. Then,

gaiaj(x) − yi
yj − yi

= x − xi
xj − xi

is equivalent to

(yj − yi)x − (xj − xi)gaiaj(x) = xiyj − xjyi,

where (yj − yi,−(xj −xi))T denotes the outer normal vector of the line through the points
ai and aj. Withmi,j = xiyj − xjyi, i, j ∈ {1, . . . , 4}, i �= j,

A =

⎛
⎜⎜⎜⎝

y2 − y1 −(x2 − x1)
y3 − y2 −(x3 − x2)
y4 − y3 −(x4 − x3)
y1 − y4 −(x1 − x4)

⎞
⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎝

m1,2
m2,3
m3,4
m4,1

⎞
⎟⎟⎟⎠ ,

one gets the representation P(a1, a2, a3, a4) = {(x, y)T ∈ R
2 : A(x, y)T ≤ b}. A particular

numerical situation and a more general application to the drug combination study are
considered in Examples 5 and 6, respectively, in the Appendix.

4.2 Uniform distributions in triangular prisms inR
3

4.2.1 Method of Tian, Fang, Tan, Qin and Tang

Apart from the simulation of uniform distributions on tetragons in (Tian et al. 2009),
the presented method is transferred there to the class of triangular prisms in R

3. A
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triangular prism P(a1, a2, a3, a4, a5, a6) is defined by its six vertices a1, a2, a3, a4, a5 and
a6 ∈ R

3, where conv({a1, a2, a3}) and conv({a4, a5, a6}) each forms a triangular base of
P(a1, . . . , a6) and a1a4, a2a5 and a3a6 each forms an edge of P(a1, . . . , a6). It is shown in
(Tian et al. 2009) that a uniformly on P(a1, . . . , a6) distributed random vector X allows
the stochastic representation

X d= (a1, a2, a3, a4, a5, a6)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − Y1 − Y2)(1 − Y3)
Y1(1 − Y3)
Y2(1 − Y3)

(1 − Y1 − Y2)Y3
Y1Y2
Y2Y3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Y = (Y1,Y2,Y3)T follows the density fY (y1, y2, y3) given by (3.2)-(3.6) in (Tian et al.
2009). By deriving marginal and conditional densities of fY a conditional sampling for Y
is presented there using numerical methods.

4.2.2 ARSA for triangular prisms inR3

As in the previous section, it is again possible to apply our general Algorithm 1 by calcu-
lating the matrix A, the vector b and a cuboid Q for triangular prisms. This can be done
computationally as described in Section 2.1 or by adopting the ARSA similarly as we did
already for the simulation of uniform distributions on tetragons in Section 4.1.2.
Given the vertices aj = (aj1, aj2, aj3), j = 1, . . . , 6 of the triangular

prisma S(a1, . . . , a6), one can represent the planes of which conv({a1, a2, a3}),
conv({a1, a2, a4, a5}), conv({a2, a3, a5, a6}), conv({a1, a3, a4, a6}) and conv({a4, a5, a6}) are
subsets as {(x, y, z)T ∈ R

3 : ni · (x, y, z)T = λi}, i = 1, . . . , 5, respectively, where

n1 = (a2 − a1) × (a3 − a1), λ1 = n1a1, n2 = (a2 − a1) × (a4 − a1), λ2 = n2a1,

n3 = (a5 − a2) × (a3 − a2), λ3 = n3a2, n4 = (a1 − a3) × (a6 − a3), λ4 = n4a3,

n5 = (a5 − a4) × (a6 − a4), λ5 = n5a4,

the symbol “×” denotes the vector cross product, ni is a normal vector of the consid-
ered plane and λi is the Euclidean distance of the plane from the origin, i = 1, . . . , 5.
With A′ = (n1, n2, n3, n4, n5)T and b′ = (λ1, λ2, λ3, λ4, λ5)T one gets the representa-
tion P(a1, . . . , a6) = {(x, y, z)T ∈ R

3 : A(x, y, z)T ≤ b} by considering A′ai for every
i = 1, . . . , 6 and comparing A′ai with b′ componentwise. If a component of A′ai is greater
than the component of b′, one multiplies the considered row of A′ and the component of
b′ by −1 and continues with the next edge and the transformed A′ and b′. This method
results in matrix A and vector b and thus the desired representation of P(a1, . . . , a6), and
is summarized by Algorithm 2. A suitable cuboid Q can be chosen as

Q =[min{a11, . . . , a61}, max{a11, . . . , a61}]×
[min{a12, . . . , a62}, max{a12, . . . , a62}]×[min{a13, . . . , a63}, max{a13, . . . , a63}] .

For a particular numerical illustration and a more general application to the drug
combination study, see Examples 7 and 8, respectively, in the Appendix.
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Algorithm 2: Calculate representation (3) of P(a1, . . . , a6) from S(a1, . . . , a6).
Input: A′, b′, a1, a2, a3, a4, a5, a6
Output: A, b

Algorithm
A0 := A′; b0 := b′;
for i := 1 to 6 step 1 do

zi := Ai−1ai;
for j := 1 to 5 step 1 do
if zi[j]> bi−1[ j] then

Ai−1[j,] := (−1) · Ai−1[ j, ];
bi−1[j] := (−1) · bi−1[ j];

end if
end for
Ai := Ai−1; bi := bi−1;

end for
Return A := A6, b := b6

5 Polyhedral convex contoured distributions
In this section we are going beyond uniformity and show a flexible method to construct
arbitrary continuous distributions having convex polyhedra as density level sets, which we
call polyhedral convex contoured distributions. Our starting point is the consideration of
the uniform distribution on a convex polyhedron in the latter sections. In Section 5.1 we
summarize certain stochastic and geometric representations and linear transformation
methods from (Richter 2014; 2015a) and (Richter and Schicker 2017) for the particular
classes of convex polyhedra and polyhedral convex contoured distributions, respectively.
Specific applications of representations (6) and (4) below are presented in Sections 5.2
and 5.3, respectively.

5.1 Geometric and stochastic representations

Since the class of convex polyhedra is both a subclass of the class of star bodies and a
subclass of convex bodies, we can apply the stochastic and geometric representations
from these cases, to construct polyhedral convex contoured distributed random vectors.
To this end, let P ⊂ R

n be a convex polyhedron having the origin 0n in its interior, i.e.
0n ∈ int(P). Let G = (G1, . . . ,Gn)T be a random vector uniformly distributed on P, then
the random vector U = G/hP(G) is generalized uniformly distributed on the topological
boundary S = {x ∈ R

n : hP(x) = 1} of P, U ∼ ωS. The probability measure ωS is
defined for every Borel measurable set A ∈ (Bn ∩ S) by ωS(A) = OS(A)/OS(S), where
OS is called the star-generalized surface measure according to (Richter 2014). It is defined
considering the central projection cone CPC(A) = {x ∈ R

n : x/hP(x) ∈ A} and the star
sector of radius ρ > 0, sector(A, ρ) = CPC(A)∩[ ρP] for every A ∈ (Bn ∩ S), by

OS(A) = f ′(1), where f (ρ) = μ(sector(A, ρ)),A ∈ (Bn ∩ S).

While this definition deals with taking derivatives of volumes of suitably chosen sectors
of convex polyhedra, it is also possible to introduce an equivalent way of defining OS

using integration and replacing the Euclidean norm of the vector normal to the sphere in
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the defining integral of the Euclidean surface content by a suitably chosen non-Euclidean
norm. If hP denotes a norm and N(ϑ) = (∇η(ϑ),−1)T is the outer normal vector to the
norm sphere S at the point (ϑT , η(ϑ))T , then, with notations as in (4), OS satisfies the
dual norm representation

OS(A) =
∫

G(A)

max{pT1 N(ϑ), . . . , pTl N(ϑ)}dϑ , A ∈ (Bn ∩ S)+, (5)

where G(A) = {ϑ ∈ R
n−1 : ∃η = η(ϑ)with (ϑT , η)T ∈ A} and (Bn ∩ S)+ denotes

the Borel σ -field on the upper half-sphere of S. For the proof of (5) and further integral
representations of the star-generalized surfacemeasure of star-shaped polyhedra, we refer
to (Richter and Schicker 2017).
Let us recall that since 0n ∈ int(P) it is possible to calculate the Minkowski functional

hP of P as described in Section 2.2.

Let g : R+ → R+ satisfy the assumptions 0 < I(g) < ∞ where I(g) =
∞∫
0
rn−1g(r)dr.

We call g a density generating function (dgf ) and a random vector X taking values in R
n

polyhedral convex contoured distributed, if X allows the stochastic representation

X d= Rg · U , (6)

where Rg andU are stochastically independent,U ∼ ωS and Rg follows the density f (r) =
1

I(g) r
n−1g(r), r > 0. Note that the density of X can be represented as

ϕg,P(x) = C(g,P)g(hP(x)), x ∈ R
n, (7)

where C(g,P) = 1/(nμ(P)I(g)) is a normalizing constant and μ denotes the Lebesgue
measure in R

n. The probability measure having the density ϕg,P will be denoted by �g,P
and P will be called the contour defining polyhedral convex body or the contour defining
convex polyhedron. We recall the geometric measure representation formula of �g,K (B)

for every B ∈ Bn,

�g,P(B) = C(g,P)

∞∫
0

rn−1g(r)OS

([
1
r
B
]

∩ S

)
dr = 1

I(g)

∞∫
0

rn−1g(r)FS(B, r)dr (8)

where r → FS(B, r) = ωS

([ 1
r B

] ∩ S
)
denotes the star intersection-proportion function

(ipf ) of the set B. Note that ifOS satisfies the dual norm representation (5) it holds

�g,P(B) = C(g,P)

∞∫
0

∫

G
([ 1

r B
]∩S)

rn−1g(r)max
{
pT1 N(ϑ), . . . , pTl N(ϑ)

}
d ϑ dr.

For further specific geometric representation formulae of polyhedral star-shaped distri-
butions, having star-shaped polyhedra as contour defining polyhedron, see again (Richter
and Schicker 2017).
For the choice of a dgf g there are various possibilities. For some basic types of density
generating functions, we refer to (Fang et al. 1990; Richter and Schicker 2017). Note that
if we choose g(r) = I(0,1](r), where I(0,1] is the indicator function on the interval (0, 1], we
get the uniform distribution on P.
Finally, we want to show that in certain situations it is possible to find exact represen-

tations of FS(B, r) in Eq. (8). If we consider �g,P(B(ρ)), where B(ρ) = ρP, ρ > 0, then
FS(B(ρ), r) = I[0,ρ)(r), r > 0, and
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�g,P(B(ρ)) = 1
I(g)

ρ∫
0

rn−1g(r)dr.

Let us consider R2
g , then

d
dy

P(R2
g < y) = d

dy
�g,P(B(

√y)) = yn/2−1g(√y)
2I(g)

, y > 0.

In slightly modified notation, this function is known from (Richter 1991) as the density
of the g-generalized χ2-distribution with n degrees of freedom.

5.2 Simulating probabilities�g,P(B)

In this section we use the geometric measure representation formula (8) of multivari-
ate polyhedral convex contoured probability distributions for simulating single values of
this distribution by simulating the corresponding dgf g and the generalized uniform dis-
tribution ωS. Given a dgf g, a contour defining convex polyhedron P ⊂ R

n and a set
B ⊆ Bn we can approximate�g,P(B)with the followingmethod. Choose an integer k ∈ N,
simulate k uniformly on P distributed points X(j), j = 1, . . . , k using Algorithm 1. For
every j = 1, . . . , k generate generalized uniformly on S distributed random points Y(j) by
Y(j) = X(j)/hP(X(j)). Now, choose u ∈ R

+ as upper boundary of the integration interval
of r ∈ (0,u] and an increment 1/v, v ∈ N

+. For every t, t = 0, 1, . . . ,uv consider t/v · Y(j),
j = 1, . . . , k, count how often (t/v · Y(j)) ∈ B and store the number in p(t/v),

p(t/v) = #
{
j ∈ {1, . . . , k} : t

v
Y(j) ∈ B

}
,

where # means “number of cases”. Now approximate FS(B, t/v) by p(t/v)/k and calculate

integrand(t/v) = (t/v)n−1 · g(t/v) · p(t/v)/k.
�g,P(B) is now approximated by numerical integration of integrand(t/v) from 0 to u using
the mesh points t/v, t = 0, 1, . . . ,uv. For the numerical integration use common rules like
e.g. Simpson’s integration rule. This method is summarized in Algorithm 3.
Example 1
We consider the symmetric octagon having the vertices p1 = (1, 0)T , p2 = (3/4, 3/4)T ,

p3 = (0, 1)T , p4 = (−3/4, 3/4)T , p5 = (−1, 0)T , p6 = (−3/4,−3/4)T , p7 = (0,−1)T and
p8 = (3/4,−3/4)T as contour defining convex polyhedron P. In (Richter and Schicker
2017) it is shown that

hP(x, y) = max{|x|, |y|} + 1
3
min{|x|, |y|}, (x, y)T ∈ R

2.

We choose the multinormal-type density generator g(r) = e−r2/2 and consider the
polyhedral convex contoured density

ϕg,P(x, y) = 1
6
e−

1
2 (max{|x|,|y|}+ 1

3 min{|x|,|y|})2 , (x, y)T ∈ R
2.

For a particular illustration of ϕg,P and a simulation of a sample point cloud of the
corresponding distribution �g,P, we refer to Fig. 1.
For a concrete application of Algorithm 3 we consider now the set B = {(x, y)T ∈ R

2 :
x, y ≥ 0} and calculate�g,P(B). Because of the symmetry ofP, we can conclude in this case
that �g,P(B) = 0.25. Applying Algorithm 3, we choose v = 100 and approximate �g,P(B)

with different values of k, k ∈ {103, 104, 105}. Since Rg from (6) follows the density f (r) =
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Fig. 1 Density ϕg,P (left) and a simulated cloud of 5000 points of the distribution �g,P (right)

re−r2/2 and the 99.999 percent quantile of the distribution of Rg is 4.7985, we choose u =
5. As numerical integrationmethodwe use the Simpson rule in Algorithm 3. Note that it is
also possible to apply integrand fromAlgorithm 3 for adaptive numerical integration rules
that calculate the mesh points more flexibly than static numerical integration rules. For
a comparison we used the adaptive Simpson quadrature, the Gauss-Kronrod quadrature

Algorithm 3: Simulation of �g,P(B).
Input: g, P, hP B, k, u, v
Output: �g,P(B)

Algorithm
Initializing r and integrand are both vectors of length u∗v+1

for j := 1 to k step 1 do
Simulate X(j) with Algorithm 1;

end for
for j := 1 to k step 1 do

Y(j) = X(j)/hP(X(j));
end for
count := 1;
for i := 0 to u step 1/v do

p := 0;
for j := 1 to k step 1 do
if i · Y(j) ∈ B then

p := p + 1;
end if;

end for
r[count] := i;
integrand [count] := in−1 · g(i) · p/k;
count := count + 1;

end for
Calculate �g,P(B) using numerical integration of integrand with vector of mesh
points r;

Return �g,P(B)
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and the adaptive Lobatto quadrature. These standard routines are available for example
in MATLAB or in the package pracma of the statistic package R. The numerical results
are shown in Table 1.

5.3 Linear transformations

For another application of the construction method from Section 5.1 it is assumed that
the contour defining convex polyhedron P contains 0n in its interior. In this section, we
will show how to apply this method for arbitrarily chosen convex polyhedra. Let P ⊂ R

n

be an arbitrary convex polyhedron in the n-dimensional space and let c ∈ int(P) be an
arbitrary element of the interior of P. The shifted set P − c will be denoted by Pc, thus
0n ∈ int(Pc). Applying now Section 2.2, we can determine hPc and can stochastically
represent a random vector Xc by applying (6). It follows

Xc
d= Rg · Uc, whereUc ∼ ωSc

and Sc is the boundary of Pc. Furthermore, the density of Xc is

ϕg,Pc(x) = C(g,Pc)g(hPc(x)), x ∈ R
n.

The class of convex polyhedral distributions �g,Pc is a subclass of the class of polyhe-
dral star-shaped distributions that is considered in (Richter and Schicker 2017). Specific
properties, simulation methods as well as examples of application of convex polyhedral
distributions are studied in the current article. According to (Richter and Schicker 2017)
we can transform Xc linearly to construct a convex polyhedral distributed random vector
Y that follows a density with density level sets being located where we chose the contour
defining convex polyhedron P. Doing this, it is proven in Theorem 7.1 of (Richter and
Schicker 2017) that Y d= Xc + c satisfies the desired properties and follows the density

ϕg,Pc+c(y) = C(g,Pc)g(hPc(y − c)), y ∈ R
n.

Example 2 We consider the trapezoid P having vertices p1 = (4, 4)T , p2 = (7, 4)T ,
p3 = (6, 6)T and p4 = (5, 6)T as contour defining convex polygon, and choose c = (5, 5)T

to shift P by c, see Fig. 2.
Now, Pc can be represented by (3) as

Pc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
x
y

)
∈ R

2 :

⎛
⎜⎜⎜⎝

0 −3
2 1
0 1

−2 1

⎞
⎟⎟⎟⎠

(
x
y

)
≤

⎛
⎜⎜⎜⎝

3
3
1
1

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and thus, according to Section 2.2,

hPc(x, y) = max{−y, 2/3x + y/3, y,−2x + y}, (x, y)T ∈ R
2.

Table 1 Numerical evaluations of �g,P(B)

Method k: 103 104 105

Simpson rule 0.2359971 0.247997 0.249377

Adaptive Simpson rule 0.2359991 0.2479991 0.2493791

Gauss-Kronrod quadrature 0.2359991 0.2479991 0.2493791

Adaptive Lobatto quadrature 0.2359993 0.2479992 0.2493792
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Fig. 2 Contour defining trapezoid P and the shifted set Pc from Example 2

Hence,

ϕg,Pc(x, y) = 1
8I(g)

g(max{−y, 2/3x + y/3, y,−2x + y}), (x, y)T ∈ R
2

and

ϕg,Pc+c(x, y) = 1
8I(g)

g(max{−(y − c), 2/3(x − c) + (y − c)/3, y − c,

− 2(x − c) + (y − c)}), (x, y)T ∈ R
2.

If we choose, e.g., the density generating function of the uniform distribution, g1(r) =
I[0,1](r), then I(g1) = 1/2,

ϕg1,Pc(x, y) = 1
4
I[0,1](max{−y, 2/3x + y/3, y,−2x + y}), (x, y)T ∈ R

2

and

ϕg1,Pc+c(x, y) = 1
4
I[0,1](max{−(y − c), 2/3(x − c) + (y − c)/3, y − c,

− 2(x − c) + (y − c)}), (x, y)T ∈ R
2.

If we choose alternatively the Kotz-type dgf g2(r) = r18e−20r2 , then I(g2) = (10)/(2 ·
2010),

ϕg2,Pc(x, y) = 2010

4(10)
(hPc(x, y))18e−20(hPc (x,y))2 , (x, y)T ∈ R

2

and

ϕg2,Pc+c(x, y) = 2010

4(10)
(hPc(x − c, y − c))18e−20(hPc (x−c,y−c))2 , (x, y)T ∈ R

2.

For an illustration of ϕg1,Pc , ϕg1,Pc+c, ϕg2,Pc and ϕg2,Pc+c, see Figs. 3, 4 and 5.

6 Discussion
(Tian et al. 2009) presented a method for simulating uniform distributions on polyhedral
regions which always needs challenging case sensitive representations when it is applied



Richter and Schicker Journal of Statistical Distributions and Applications  (2017) 4:1 Page 13 of 19

Fig. 3 ϕg1,Pc (left) and ϕg1,Pc+c (right) from Example 2

to drug combination study. These preparations include the derivation of sophisticated
stochastic representations of the uniformly distributed random vectors as presented in
Sections 4.1.1 and 4.2.1 as well as non-trivial distributional considerations for the repre-
senting random variables sketched also there. Here we establish an alternative approach
based upon an acceptance-rejection algorithm which may relatively easily and flexibly be
adopted to rather different situations. It will also allow to consider in the future dose-
response curves and domains for dose ranges different from that introduced according
to (Tian et al. 2009) in Section 1. Moreover, our method allows simulating general poly-
hedral convex contoured distributions �g,P and any particular probability �g,P(B) where
the density generating function g allows modeling both heavy and light distribution tails
and centers and P is an arbitrary convex polyhedron. Note, however, that if the probabil-
ity �g,P(B) is small which is, e.g., the case if B is a “thin” set or has large distance from
the center of the distribution �g,P then relatively large sample sizes are needed for good
approximations via simulation. In such and related cases it may be a useful alternative
to try a direct numerical approximation of �g,P(B) using the geometric measure repre-
sentation (8) as indicated in Example 1. Fields of successful applications of this type are
surveyed, e.g., in (Richter 2014; 2015a; 2015b). The reader is encouraged to find other
applications.
Now that the reader has become familiar with the role the stochastic and geometric

representations (6) and (8) may play in simulation it is about time to shortly compare

Fig. 4 ϕg2,Pc (left), and its density level sets (right) from Example 2
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Fig. 5 ϕg2,Pc+c (left), and its density level sets (right) from Example 2

the approaches presented here and in (Nolan 2016) with each other. The latter one also
refers to a stochastic representation like (6) and exploits it in three particular cases for
exact simulation. Note that probability models were studied for these particular cases
to a certain extent already in (Henschel and Richter 2002) and Richter (2009). In other
cases, the stochastic representation is taken in (Nolan 2016) to motivate an approximative
simulation method. It would be an interesting aspect of future work to study the resulting
approximation accuracy in this approach.
From a purely descriptive point of view, i.e. if we are just given data, visualized by

clouds of points, the methods presented here and in (Nolan 2016) may be considered
to be attractive alternatives for modeling polyhedral contoured data clouds. But notice
that the approach in (Nolan 2016) allows for approximative consideration of much more
generalized spherical and related distributions, assuming however an explicit representa-
tion of their gauge function is given. It is another aspect of future work to develop exact
simulation methods for broader distribution classes.

Appendix
Example 3 Consider triangle P in Fig. 6. Since P has vertices p1 = (1,−2), p2 = (2, 1) and
p3 = (−2, 2), it can be represented according to (2) as P = conv({p1, p2, p3}). Choosing
the closed half-spacesH1 = {(x, y) ∈ R

2 : 3x−y ≤ 5},H2 = {(x, y) ∈ R
2 : x+4y ≤ 6} and

H3 = {(x, y) ∈ R
2 : −4x − 3y ≤ 2}, triangle P can be equivalently represented according

to (3) as intersection of these half-spaces,

P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
x
y

)
∈ R

2 :

⎛
⎜⎝

3 −1
1 4

−4 −3

⎞
⎟⎠

︸ ︷︷ ︸
=A

(
x
y

)
≤

⎛
⎜⎝

5
6
2

⎞
⎟⎠

︸ ︷︷ ︸
=b

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

Example 4 This example is a continuation of the previous one. We consider
again triangle P in Fig. 6. Using representation (3) of P from Example 3, it follows
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Fig. 6 Triangle P defined by its vertices (left) and by suitably chosen closed half-spaces (right)

A′
1 = (3/5,−1/5),A′

2 = (1/6, 2/3),A′
3 = (−2,−3/2), and according to (4) theMinkowski

functional hP can be represented as

hP(x, y) = max{3/5x − 1/5y, 1/6x + 2/3y,−2x − 3/2y}, (x, y)T ∈ R
2.

Example 5 Here we illustrate our consideration in Section 4.1.2. To this end, let
P(a1, a2, a3, a4) be the square with vertices a1 = (1, 1)T , a2 = (2, 1)T , a3 = (2, 2)T and
a4 = (1, 2)T . Then

A =

⎛
⎜⎜⎜⎝

0 −1
1 0
0 1

−1 0

⎞
⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎝

−1
2
2

−1

⎞
⎟⎟⎟⎠ .

Example 6 Here we apply ARSA to the drug combination study in (Tian et al. 2009)
using the method of Section 4.1.2. In the Introduction we mentioned that the simulation
of uniformly distributed random points on the tetragon P(a1, a2, a3, a4) is of particular
interest for the consideration of the combination study of two drugs with linear dose-
response curves. Consider again the tetragonal domain P(a0, b0) in (1), the matrix A and
vector b from (3) can be determined from the representation

P(a0, b0) = {(x1, x∗
2)

T ∈ R
2 : −β1x1 − β2x∗

2 ≤ α1 − a0,β1x1 + β2x∗
2 ≤ b0 − α1,

− x1 ≤ 0,−x∗
2 ≤ 0}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x1
x∗
2

)
∈ R

2 :

⎛
⎜⎜⎜⎝

−β1 −β2
β1 β2
−1 0
0 −1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=A

(
x1
x∗
2

)
≤

⎛
⎜⎜⎜⎝

α1 − a0
b0 − α1

0
0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (9)

Now, our Algorithm 1 applies.
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For a numerical illustration we consider LY − 168 from (Tian et al. 2009) which is said
to be a potential anti melanoma agent and has the single dose-response curve f1(x1) =
101.91−31.17x1. LY−168 will be considered with Sorafenib which ismarketed as Nevaxar
by Bayer for the treatment of advanced renal cell cancer and also of advanced thyroid
cancer in the USA. Its dose-response curve is given by f (x2) = 111.85−9.56x2 = 101.91−
9.56(x2 − 1.04). If the chosen dose ranges from 20% to 80% and x∗

2 = x2 − 1.04, the
experimental domain is given by

P(20, 80) =
{(

x1
x∗
2

)
∈ R

2 : 20 ≤ 101.91 − 31.17x1 − 9.56x∗
2 ≤ 80, x1 ≥ 0, x∗

2 ≥ 0
}

=
(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x1
x∗
2

)
∈ R

2 :

⎛
⎜⎜⎜⎝

31.17 9.56
−31.17 −9.56

−1 0
0 −1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=A

(
x1
x∗
2

)
≤

⎛
⎜⎜⎜⎝

81.91
−21.91

0
0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Since P(20, 80) has vertices a1 = (0.7029195, 0)T , a2 = (2.627847, 0)T , a3 =
(0, 8.567992)T and a4 = (0, 2.291841)T , we can choose Q =[0, 2.627847]×[0, 8.567992]
and apply Algorithm 1 with input A, b, 0, 0, 2.627847, 8.567992. Figure 7 shows the
result of an acceptance-rejection simulation of uniformly distributed random points on
P(20, 80) with acceptance rates of about 46 percent.
Example 7 Let P(a1, a2, a3, a4, a5, a6) be the triangular prism with vertices a1 =

(1, 1, 0)T , a2 = (4, 1, 0)T , a3 = (5, 3, 0)T , a4 = (3, 1, 3)T , a5 = (4, 1, 1)T and a6 =
(13/3, 5/3, 3)T . For an illustration of the triangular prism, see Fig. 8.
Here,

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 6
0 −9 0

−2 1 0
−6 12 4
4/3 −8/3 2/3

⎞
⎟⎟⎟⎟⎟⎟⎠
and b′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−9
−7
6

10/3

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Fig. 7 20 (left), 200 (middle) and 1000 (right) uniformly distributed points on P(20, 80)
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Fig. 8 Triangular prism P(a1, . . . , a6) in Example 7

Applying Algorithm 2, it follows that

z1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−9
−1
6

−4/3

⎞
⎟⎟⎟⎟⎟⎟⎠
, thus A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 6
0 −9 0
2 −1 0

−6 12 4
4/3 −8/3 2/3

⎞
⎟⎟⎟⎟⎟⎟⎠
and b1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−9
7
6

10/3

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Moreover, z2 = (0,−9, 7,−12, 8/3)T , A2 = A1 and b2 = b1,
z3 = (0,−27, 7, 6,−4/3)T , A3 = A2 and b3 = b2,

z4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

18
−9
5
6

10/3

⎞
⎟⎟⎟⎟⎟⎟⎠
,A4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −6
0 −9 0
2 −1 0

−6 12 4
4/3 −8/3 2/3

⎞
⎟⎟⎟⎟⎟⎟⎠
and b4 = b3,

z5 = (−6,−9, 7,−8, 10/3)T , A5 = A4 and b5 = b4, z6 = (−18,−15, 7, 6, 10/3)T , A6 = A5
and b6 = b5. Finally it follows, with A = A6 and b = b6, that P(a1, . . . , a6) = {(x, y, z)T ∈
R
3 : A(x, y, z)T ≤ b}.
Example 8 Here we apply ARSA to the drug combination study in (Tian et al. 2009)

using the method of Section 4.2.2. The simulation of uniform distributions in triangular
prisms in R

3 is required in experimental designs for the combination study of three drugs
with log-linear-dose-response curves that are, according to (Berenbaum 1989) and (Tian
et al. 2009), found in a wide variety of systems such as antibiotics, narcotics, cromoglycate
and others. The single dose-response curves for drugs Ai, i = 1, 2, 3 are assumed to be
fi(xi) = αi + β log(xi), i = 1, 2, 3. According to (Berenbaum 1989; Tan et al. 2003; Tian et
al. 2009) the additive model at the combination dose (x1, x2, x3) is

y(x1, x2, x3) = α1 + β

(
log(z1) + log((1 − ρ0)z2 + ρ0)+

log
((

1 − ρ1
ρ0

)
(1 − z3) + ρ1

ρ0

))
,
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Fig. 9 Simulation of 103 (left) and 104 (right) uniformly distributed random points on P(2, 5)

where ρ0 = e(α2−α1)/β , ρ1 = e(α3−α1)/β , z1 = x1 + x2 + x3, z2 = x1/(x1 + x2 + ρ1x3/ρ0)
and z3 = x3/(x1 + x2 + x3). It is also shown there that experimental points (z1, z2, z3)
maximizing the statistical power in detecting synergy should be uniformly scattered in
the domain

P(zl, zu) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

z1
z2
z3

⎞
⎟⎠ ∈ R

3 : zl < z1 < zu, 0 < z2, 0 < z3, 0 < z2 + z3 < 1

⎫⎪⎬
⎪⎭ . (10)

Since P(zl, zu) is a triangular prism, the methods described in Sections 4.2.1 and 4.2.2
apply to simulating uniformly distributed random points on P(zl, zu). Alternatively, we
can use representation (10) to calculate A, b and Q for the application of Algorithm 1,
since

P(zl, zu) =
{⎛
⎜⎝

z1
z2
z3

⎞
⎟⎠ ∈ R

3 : z1 < zu,−z1 < −zl,−z2 < 0,−z3 < 0, z2 + z3 < 1,

− z2 − z3 < 0
}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

z1
z2
z3

⎞
⎟⎠ ∈ R

3 :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−1 0 0
0 −1 0
0 0 −1
0 1 1
0 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=A

·
⎛
⎜⎝

z1
z2
z3

⎞
⎟⎠ <

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

zu
−zl
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Furthermore, the boundaries of P(zl, zu) can be read out off representation (10). Thus
Q can be chosen as Q =[zl, zu]×[0, 1]×[0, 1]. For an illustration, we refer to Fig. 9, where
1000 and 10000 uniformly distributed random points are simulated on P(2, 5).
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