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Abstract
The maximum likelihood estimator (MLE) of Gini-Simpson’s diversity index (GS) is
widely used but suffers from large bias when the number of species is large or infinite.
We propose a new estimator of the GS index and show its unbiasedness. Asymptotic
normality of the proposed estimator is established when the number of species in the
population is finite and known, finite but unknown, and infinite. Simulations
demonstrate advantages of our estimator over the MLE, and a real example for the
extinction of dinosaurs endorses the use of our approach. Mathematics Subject
Classification (MSC) codes is 60E05, which refers to distributions: general theory.
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Introduction
Diversity indices are quantitative measures for both richness, the number of categories,
and the degree of the evenness of their relative abundances. See Rao (1982), Ludwig and
Reynolds (1988), and Patil and Taillie (1979) for further information. It is important to
measure the diversity index of a population. For example, in ecology, a decline in diversity
over time may indicate a gradual extinction of an ecosystem, while a rapid decline may
indicate an extinction due to some sudden impacts. Based on this, scientists argued that
the extinction of the dinosaur is due to a large asteroid impact roughly contemporane-
ous with the end of the Cretaceous. Gini-Simpson’s index (GS), together with Shannon’s
entropy, are the two best known diversity measures. They are widely used in modern
sciences such as ecology, demography, anthropology, information theory, and so on. See
Hurlbert (1971), Peet (1974), Hunter and Gaston (1988), and Rogers and Hsu (2001).
Consider a population with K species for which pi denotes the relative abundance of

species i (i = 1, . . . ,K) such that
K∑

i=1
pi = 1. Simpson (1949) proposed the index

λ =
K∑

i=1
p2i (1)

to measure the degree of concentration for the population. Gini-Simpson’s index is
defined as

GS =
K∑

i=1
pi(1 − pi) = 1 − λ. (2)

There are also many other indices in literature. See Shannon (1948), Good (1953), Renyi
(1961), and Hill (1973) among others. In the literature of biodiversity, according to Ricotta
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(2005), there are a “jungle" of biological measures of diversity. For a comprehensive dis-
cussion on the various relationships among these indices, one may refer to Rennolls and
Laumonier (2006) and Mao (2007).
Let {Xi}ni=1 be an iid sample from the population {pk ; k = 1, . . . ,K}, and fk the observed

frequency of the kth category. Let p̂k = fk
n and P̂ = {p̂k ; k = 1, . . . ,K}. The most

important estimator of GS is the MLE

ĜS = 1 −
K∑

k=1
p̂2k . (3)

When K is finite, MLE is asymptotically normal if the underlying distribution is inho-
mogeneous and is asymptotically distributed as Chi-square if the underlying distribution
is homogeneous. Another closed related estimator is given by

n
n − 1

[

1 −
K∑

k=1
p̂2k

]

= n
n − 1

[

1 −
∑

k=1

(
fk
n

)2
]

. (4)

Bhargava and Uppulurif (1977) showed that it is unbiased and established its asymptotic
distribution.
Although the MLE is asymptotically efficient when K is not large relative to the sam-

ple size, it does not work well for large K, especially when K is large or infinite. This is
easy to understand, since there are only about n/K observations on average for estimat-
ing each parameter, and hence the MLE is inefficient when n/K is small. In fact, ĜS is
inconsistent in the case of K = ∞ or K = Kn converging to ∞ too fast, and further-
more one cannot use the modern penalized estimation, for example lasso, to estimate
pk , since there is no sparsity structure here. As it will be shown in this paper, MLE also
works for the case K = ∞ but under some restrictions. Most of the existing methodolo-
gies take some adjustment to deal with this problem but result in very complicated forms
with less tractable distributional characteristics. Practical techniques include jackknife
and bootstrap, see Fritsch andHsu (1999). Zhang and Zhou (2010) studied a group of esti-
mators for ζu,v . Due to these problems, little is known about the asymptotic distributional
characteristics except in a naive approach. This motivates us to propose a new approach
to estimating the GS index. Our new estimator is unbiased, asymptotically normal and
efficient for all the cases about the number of species K.
The remainder of the paper is organized as follows. In “A general birthday problem”

section, the birthday problem is generalized to cases with unequal probabilities and infi-
nite categories, and the connection between the generalized birthday problem and the GS
index is established. In “The estimator” section, based on the relationship between the
generalized birthday problem and the GS index, an unbiased estimator of the GS index is
proposed and the asymptotic normality is derived under all the three cases with respect to
the number of species in the population. In “Asymptotic properties” section, an empirical
study about dinosaur extinction data and a simulation study are employed to demonstrate
the performance of our estimator.

A general birthday problem
The Birthday problem is an important example in standard textbooks like Feller (1971).
The problem is to find the probability that among n students in a class, no two or more
students share the same birthday under the assumption that individuals’ birthdays are
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independent and that for every individual, all 365 days of the year are equally likely as
possible birthdays. It has been generalized in many ways under the uniform probability
assumption. See Johnson and Kotz (1977) and Fang (1985) among others. Birthday prob-
lems with unequal probabilities are also studied over the years. For recent works, see
Joag-Dev and Proschan (1992) and Wagner (2002) among others.
Similar to the Bernoulli trial, we define a categorical trial X as a random experiment

with K possible outcomes (categories) with probability distribution P = {pk : k =
1, . . . ,K}, where K is finite (known or unknown) or infinite. We call it “a success of cate-
gory i” if the outcome of a categorical trial belongs to category i. Consider an independent
sequence of categorical trials {Xi; i = 1, 2, . . . } in which the probability of success of each
category keeps the same for each trial. LetHm be the number of distinct categories shown
up in the first m trials. We assume m ≥ 2 since it is trivial if m = 1. Calculating the
probability distribution of Hm is generally referred to as birthday problems with unequal
probabilities. See the references above. Let Yk be the number of successes of the kth cat-
egory in the first m trials and let Ik = 1(Yk=0) for k = 1, . . . ,K be the indicator function
with Ik = 1 if the kth category does not appear in the sample . Then

Hm =
K∑

k=1
(1 − Ik) . (5)

Theorem 1 For fixed m and finite or infinite value of K, we have

E(Hm) =
(
m
1

) K∑

k=1
pk −

(
m
2

) K∑

k=1
p2k + · · · +

(
m
m

)

(−1)m+1
K∑

k=1
pmk ,

Var(Hm) =
K∑

k=1
(1 − pk)m

[
1−(1−pk)m

]+2
∑

1≤i<j≤K

[
(1− pi − pj)m − (1 − pi)m(1 − pj)m

]
.

The proof of the theorem is given in the Appendix.

Remark 1 It is easy to see that Var(Hm) is finite for fixed m. In fact, Var(Hm) < m2.

Nowwe are ready to establish the connection between the generalized birthday problem
and the GS index. For a categorical trial with K categories and probability distribution
P = {pk : k = 1, . . . ,K}, we have a population of K species with relative abundances
{pk : k = 1, . . . ,K}. A random sample of size m from this population corresponds to
the first m trials in the independent sequence of categorical trials {Xi; i = 1, 2, . . . }. As
a result, the first m categorical trials can be equivalently viewed as a random sample of
size m from the corresponding population, and consequently Hm represents the number
of distinct species in a random sample of sizem from the corresponding population. The
following theorem shows that GS = 1 − ∑K

k=1 p2k is the same as E(H2) − 1.

Theorem 2 Consider a population with K species and relative abundances P = {pk ; k =
1, . . . ,K}. Then,

GS = E(H2) − 1, (6)

where H2 is number of distinct species in a random sample of size 2.
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The theorem is a direct result of Theorem 1 taking m = 2 and definition of
GS (Eq. (2)). The above theorem indicates that GS is an estimable parameter under
population P.

The estimator
Let {Xi}ni=1 be an iid random sample of size n from population P with finite or infinite
value of K. For any sub-sample {Xi1 , . . . ,Xim : 1 ≤ i1 < · · · < im ≤ n} from this sample,
Hm(Xi1 , . . . ,Xim) is the number of distinct species in the sub-sample. Therefore

Hm(Xi1 , . . . ,Xim) is a symmetric function. Define the following U-statistic

Zn,m =
(
n
m

)−1 ∑

c
Hm(Xi1 , . . . ,Xim), (7)

where
∑

c denotes the summation over all the
(n
m
)
combinations of m distinct elements

{i1, . . . , im} from {1, 2, . . . , n}. Then Zn,m → E(Hm) almost surely as n → ∞ based on
the asymptotic distribution of the U-statistics in DasGupta (2008). This motivates us to
estimate GS by

ĜS1 = Zn,2 − 1. (8)

It is easy to verify that ĜS1 = Zn,2 − 1 is always an unbiased estimator of GS. In fact,
H2 − 1 is an unbiased estimator of GS by Theorem 2, and Zn,2 − 1 is the average across
all combinatorial selections of size 2 from the full set of observations of H2 − 1 applied to
each sub-sample.

Asymptotic properties
Asymptotic properties for MLE

Let’s firstly prove the asymptotic normality of ĜS when K = ∞. That is, there are
infinitely many species in the population. Assume the probability distribution is P =
{pi; i = 1, 2, . . . } with pi ≥ pi+1 for all i and

∞∑
i=1

pi = 1. And we have the corresponding

Gini-Simpson’s index GS = 1 −
∞∑
i=1

p2i = 1 − λ. We have the following result.

Theorem3 Let P = {pi; i = 1, 2, . . . } be the probability distribution of a population with
infinite species. Assume that there exits a sequence of {Nn}∞n=1 such that npNn+1,+ → 0,
then we have the following

√
n

(
ĜS − GS

)

σ̂

p→ N(0, 1)

where

σ̂ 2 = 4

⎡

⎣
Nn∑

i=i
p̂3k −

( Nn∑

i=1
p̂2i

)2⎤

⎦ . (9)

The proof is given in the Appendix.
The following theorem is implied by Bhargava and Uppulurif (1977) when K is finite,

homogeneous or inhomogeneous.
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Theorem 4 If the underlying population distribution is inhomogeneous, then
√
n

(
ĜS − GS

)

σ̂

p→ N(0, 1) (10)

where

σ̂ 2 = 4

⎡

⎣
K∑

k=1
p̂3k −

( K∑

k=1
p̂2k

)2⎤

⎦ .

If the underlying population distribution is homogeneous, we have

nK
(
ĜS − GS

) d→ −χ2
K−1. (11)

Asymptotic properties of ̂GS1
The above U-statistic construction paves the way to establish the asymptotic normal-
ity of Zn,2. For an iid random sample {Xi; i = 1, . . . , n} under the distribution P,
θ = θ(P) is an estimable parameter and h(X1, . . . ,Xm) is a symmetric kernel satisfying
EP{h(X1, . . . ,Xm)} = θ(P). Let Un = (n

m
)−1 ∑

c
h(Xi1 , . . . ,Xim) where

∑
c is the summa-

tion over the
(n
m
)
combinations of m distinct elements {i1, . . . , im} from {1, . . . , n}. Let

h1(x1) = EP{h(x1,X2, . . . ,Xm)} be the conditional expectation of h given X1 = x1, and
σ 2
1 = VarP{h1(X1)}. Then we have the following proposition by Hoeffding (1948).

Proposition 1 If EP
(
h2

)
< ∞ and σ 2

1 > 0, then
√
n (Un − θ)

d→ N
(
0,m2σ 2

1
)
.

From Remark 1, EP
(
h2

) = Var (H2(X1,X2)) + (E (H2(X1,X2)))
2 ≤ 4+GS2 < ∞. Note

that h1(x1) = EP
(
2 − IX2=x1

) = 2 − px1 . It follows that

σ 2
1 = VarP (h1(X1)) = VarP

(
2 − pX1

) = VarP
(
pX1

) =
K∑

k=1
p3k −

( K∑

k=1
p2k

)2

≥ 0. (12)

The equality holds if and only if the probability distribution {pk : k = 1, . . . ,K} is
uniform. Of course, if K = ∞, the inequality hold strictly since the distribution can never
be uniform. Therefore, we have the following theorem.

Theorem 5 If the distribution {pk : k = 1, . . . ,K} is not uniform, then
√
n

(
ĜS1 − GS

) d→ N
(
0, 4σ 2

1
)
. (13)

Remark 2 Non-uniform distribution includes two cases: non-uniform finite
distributions(K < ∞) and infinite distributions(K = ∞).

By (7), (12), and Theorem 1, it is easy to see that

σ̂ 2
1 = Zn,3 − Z2

n,2 + Zn,2 − 1 (14)

is a consistent estimator of σ 2
1 . Hence the following corollary is established.

Corollary 1 Under the conditions of Theorem 5, we have
√
n

(
ĜS1 − GS

)

2σ̂1
d→ N(0, 1). (15)

For homogeneous distributions, we have the following result.
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Theorem 6 If the distribution {pk : k = 1, . . . ,K} is homogeneous, then

nK
(
ĜS1 − GS

) d→ χ2
K−1 − K + 1. (16)

The proof is given in Appendix. Compared with the MlE estimator, our estimator is
reaches the same effect in homogeneous situation.

Examples and simulation studies
Example 1 (Dinosaur Extinction) The cause of the extinction of dinosaurs at the end of

the Cretaceous period remains a mystery. Among all the theories, it is now widely accepted
that it is due to a large asteroid impact at the end of the cretaceous. Sheehan et al. (1991)
argued that diversity remained relatively constant throughout the Cretaceous period. The
scientists reason that if the disappearance of the dinosaurs was gradual, one should observe
a decline in diversity prior to extinction.
The data were organized by dividing the formation into three equally spaced strati-

graphic levels, each of which represented a period of approximately 730,000 years.
Fossils were cross-tabulated according to the stratigraphic level and the family to which
the dinosaur belonged. Families represented are Cerotopsidae, Hadrosauridae, Hyp-
silophodontidae, Pachycephalosauridae, Tryrannosauridae, Ornithomimidae, Sauror-
nithoididae, Dromaeosauridae. The summarized data is shown in Table 1 available in
Rogers and Hsu (2001).
Let’s denote the true value of GS indices at the Lower, Middle, and Upper level by GSL,

GSM, and GSU, respectively. It is interesting to ask if the dinosaur diversity changed.
To address the questions, we would like to present 95% simultaneous confidence intervals

for all the pairwise contrasts: GSL − GSM, GSL − GSU, and GSM − GSU.
Using expressions for ĜS1 and σ̂ 2

1 from the previous section and the normal approx-
imation in our theorems, we obtain simultaneous confidence intervals for all pairwise
contrasts. The results are provided in Table 2
Since all the confidence intervals contain zero, we may infer that all three communities

were practically equivalent with respect to the GS index. That is, there is no significant
change or decline of the diversity over time. Therefore, our study supports the theory of a
sudden extinction of dinosaurs.

Our proposed estimator has advantages over the MLE when the sample size n is not
large relative to the number of species K, especially when K = ∞. In the following we
conduct a simulation study forK = ∞. We omit simulations for other scenarios for saving
space.

Table 1 Dinosaur counts by family and stratigraphic level

Interval Counts

Upper (50, 29, 3, 0, 3, 4, 1, 0)

Middle (53, 51, 2, 0, 3, 8, 6, 0)

Lower (19, 7, 1, 0, 2, 0, 3, 0)
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Table 2 95% simultaneous confidence intervals for all pairwise contrasts

Contrast Estimate Std.Error Critical value zα/6 Lower bound Upper bound

GSL − GSM -0.0474 0.0733 2.3941 -0.2229 0.1281

GSL − GSU -0.0525 0.0774 2.3941 -0.2378 0.1328

GSM − GSU -0.0050 0.0414 2.3941 -0.1041 0.0941

Example 2 (K = ∞) Consider the population
{
pk = e−(k−1)/10 − e−k/10 : k ≥ 1

}
. It is

easy to calculate the true value of GS for this distribution:

GS = 1 −
∞∑

k=1
p2k = 0.95004.

We generate random samples of size n=10, 50, and 100, and calculate the MLE ĜS and
our proposed estimator ĜS1, together with their standard deviations( Eqs. (9’) and (14)).
The simulation is based on 500 replications and the results are obtained by averaging the
corresponding estimates in each replication . Also, since it is known that the population
distribution is not uniform, we will just apply ĜS1 due to the reason mentioned before. The
simulation results are summarized in Table 3.
From Table 3, we see that the deviations of the MLEs from the true value GS = 0.95004

are much greater than those of our proposed estimates. This is due to the facts that ĜS
has a large bias and that the sample coverage is limited when the sample size is relatively
small compared with the number of species. Our proposed estimator, instead, overcome
such obstacles since it is an unbiased estimator of GS.And it is also shown that our proposed
estimator has smaller variance.

Discussion
Birthday problem has been studied and extended in different forms and in many differ-
ent areas. The same is true for diversity measures. The connection between these two
topics is established in this paper through H2 and the mostly used Gini-Simpson’s index.
There are many other correlated diversity indices in the literature, like Shannon’s entropy,
Renyi’s index. For these indices, we can also find corresponding estimators in a similar way
through the result in Theorem 1. The advantage of our approach over the MLE is obvi-
ous when the sample size is not large relative to the number of species. There are many
other open problems built on this connection between birthday problem and diversity
measures. For example, further investigation is needed to study the estimation of mutual
information in view of generalized birthday problem. Our approach provides a framework
for solving various problems inherited from the diversity measures.

Appendix 1: Proof of Theorem 1
Theorem 1 For fixed m and finite or infinite value of K, we have

E(Hm) =
(
m
1

) K∑

k=1
pk −

(
m
2

) K∑

k=1
p2k + · · · +

(
m
m

)

(−1)m+1
K∑

k=1
pmk ,

Table 3 Estimates of GS for Example 2

K = ∞ n = 10 n = 50 n = 100

ĜS 0.8532 (std: 0.0354) 0.9317 (std: 0.0107) 0.9407 (std: 0.0068)

ĜS1 0.9480 (std: 0.0075) 0.9507 (std: 0.0061) 0.9502 (std: 0.0053)
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Var(Hm) =
K∑

k=1
(1 − pk)m

[
1 −(1 − pk)m

]+2
∑

1≤i<j≤K

[
(1 − pi − pj)m−(1 − pi)m(1 − pj)m

]
.

Proof Let’s consider the following lemma first.

Lemma 1 For the class of random variables {Ik ; k = 1, . . . ,K}, we have

E(Ik) = (1 − pk)m; (17)

Var(Ik) = (1 − pk)m − (1 − pk)2m, (18)

Cov(Ii, Ij) = (1 − pj − pk)m − (1 − pj)m(1 − pk)m, for i �= j (19)

Lemma 1 can be verified easily.
When K is finite, the following equations are easily established.

E(Hm) =
K∑

k=1
(1 − EIk)

=
K∑

k=1

(
1 − (1 − pk)m

)

=
K∑

k=1

((
m
1

)

pk −
(
m
2

)

p2k + · · · +
(
m
m

)

(−1)m+1pmk

)

=
(
m
1

) K∑

k=1
pk −

(
m
2

) K∑

k=1
p2k + · · · +

(
m
m

)

(−1)m+1
K∑

k=1
pmk , and

Var (Hm) = Var
[ K∑

k=1
(1 − Ik)

]

=
K∑

k=1
Var (1 − Ik) + 2

∑

1≤i<j≤K
Cov(1 − Ii, 1 − Ij)

=
K∑

k=1
Var (Ik) + 2

∑

1≤i<j≤K
Cov(Ii, Ij)

=
K∑

k=1
(1 − pk)m

[
1−(1−pk)m

]+2
∑

1≤i<j≤K

[
(1 − pi − pj)m − (1 − pi)m(1 − pj)m

]

When K is infinite, the above equations are guaranteed by dominated convergence
theorem. In fact, we have Hm ≤ m and H2

m ≤ m2.

Appendix 2: Proof of Theorem 3
Theorem3 Let P = {pi; i = 1, 2, . . . } be the probability distribution of a population with

infinite species. Assume that there exits a sequence of {Nn}∞n=1 such that npNn+1,+ → 0,
then we have the following

√
n

(
ĜS − GS

)

σ̂

p→ N(0, 1)
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where

σ̂ 2 = 4

⎡

⎣
Nn∑

i=i
p̂3k −

( Nn∑

i=1
p̂2i

)2⎤

⎦ . (9’)

Proof Now let’s consider a sequence of populations with probability distributions PN =
{p1, p2, . . . , pN−1,PN ,+}, where pN ,+ =

∞∑
i=N

pi. The corresponding Gini-Simpson’s index is

GSN = 1 −
(N−1∑

i=1
p2i + p2N ,+

)

= 1 − λN .

It is easy to check that

λN → λ

as N → ∞.
Let {Xi}ni=1 be an iid sample from the population P. The MLE of GS is

ĜS = 1 −
∞∑

i=1
p̂2k .

For fixed N, let’s re-label the same sample {Xi}ni=1 to another sample {Yi}ni=1 as follows:

Yi = Xi if Xi < N

Yi = N if Xi ≥ N

Then {Yi}ni=1 can be regarded as a iid sample from PN with Gini-Simpson’s index GSN .
The MLE of GSN is

ĜSN = 1 −
(N−1∑

i=1
p̂2i + p̂2N ,+

)

.

It is easy to see that

ĜSN − ĜS → 0

as N → ∞. In fact,

ĜS − ĜSN = 0 (20)

if Xi ≤ N for all i = 1, 2, . . . , n.
Therefore,

√
n

(
ĜS − GS

)

= √
n

(
ĜS − ĜSN + ĜSN − λN + λN − λ

)

= √
n

(
ĜS − ĜSN

) + √
n

(
ĜSN − λN

) + √
n(λN − λ)

For any positive integer n, consider a corresponding integer Nn. The probability that all
the observations in the sample {Xi}ni=1 is less or equal to Nn is

(
1 − pNn+1,+

)n =
⎛

⎝1 −
∞∑

i=Nn+1
pi

⎞

⎠

n

.
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Therefore, if
⎛

⎝1 −
∞∑

i=Nn+1
pi

⎞

⎠

n

= (
1 − pNn+1,+

) npNn+1,+
pNn+1,+ = e−npNn+1 → 1

that is,

npNn+1,+ → 0 (21)

then all the observations in the sample {Xi}ni=1 falls into the first Nn species with
probability going to 1 as n increases. In turn,

ĜS − ĜSN

equal to zero with probability going to 1 due to Eq. (20). Therefore,
√
n

(
ĜS − ĜSN

)

converge to o with probability going to 1 as n increases.
In addition,

√
n

(
λNn − λ

) = √
n

(Nn−1∑

i=1
p2i + p2Nn,+ −

∞∑

i=1
p2i

)

= √
n

⎡

⎢
⎣

⎛

⎝
∞∑

i=Nn

pi

⎞

⎠

2

−
∞∑

i=Nn

p2i

⎤

⎥
⎦

≤ √
n

∞∑

i=Nn

p2i

≤ √
npNn,+

Therefore, if
√
npNn,+ → 0 which is a weaker condition than (21), we have

√
n

(
λNn − λ

) → 0.

Therefore, by Slutsky’s theorem, the theorem is proved.

Appendix 3: Proof of Theorem 6
Theorem 6 If the distribution {pk : k = 1, . . . ,K} is homogeneous, then

nK
(
ĜS1 − GS

) d→ χ2
K−1 − K + 1. (16’)

Proof For an iid random sample {Xi; i = 1, . . . , n} under the distribution P, θ =
θ(P) is an estimable parameter and h(X1, . . . ,Xm) is a symmetric kernel satisfying
EP{h(X1, . . . ,Xm)} = θ(P). Let Un = (n

m
)−1 ∑

c
h(Xi1 , . . . ,Xim) where

∑
c is the summa-

tion over the
(n
m
)
combinations of m distinct elements {i1, . . . , im} from {1, . . . , n}. Let

h1(x1) = EP{h(x1,X2, . . . ,Xm)} be the conditional expectation of h given X1 = x1, and
ζ1 = VarP{h1(X1)}. Also let h2(x1, x2) = EP{h(x1, x2,X3 . . . ,Xm)} be the conditional
expectation of h given X1 = x1,X2 = x2, and ζ2 = VarP{h2(X1,X2)}. Define

h̃2 = h2 − θ .

Then we have the following lemmas by Hoeffding (1948).
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Lemma 2 If EP(h2) < ∞ and ζ1 > 0, then
√
n (Un − θ)

d→ N
(
0,m2ζ1

)
.

Lemma 3 If EP(h2) < ∞ and ζ1 = 0 < ζ2, then n (Un − θ)
d→ m(m−1)

2 Y , where Y is a
random variable of the form

Y =
∑

j
λj

(
χ2
1j − 1

)
,

where χ11,χ12, . . . are independent χ2
1 variates and λjs are the eigenvalues of the following

operator on the function space L2(R,P):

Ag(x) =
∫ ∞

−∞
h̃2(x, y)g(y)dP(y), x ∈ R, g ∈ L2. (22)

For our case, we have θ = GS + 1 and the kernal function given as

h(x1, x2) = V (x1, x2) = 2 − Ix1=x2 . (23)

That is,

GS + 1 = EP{h(X1,X2)}

for given population distribution P.
Under the assumption of homogeneous population distribution, ζ1 = 0. Since

h(X1,X2) = 2 − IX1=X2 =
{
1 if X1 = X2
2 if X1 �= X2

We have

ζ2 = Var (h(X1,X2))

= E
(
h2(X1,X2)

) − (E(h(X1,X2))
2

= 1 · P(X1 = X2) + 4P(X1 �= X2) − (P(X1 = X2) + 2P(X1 �= X2))
2

= P(X1 = X2)+4P(X1 �= X2)−P2(X1=X2)−4P(X1=X2)P(X1 �=X2)−4P2(X1 �=X2)

= P(X1 = X2)(1 − P(X1 = X2)) + 4P(X1 �= X2) [1 − P(X1 = X2) − P(X1 �= X2)]

= P(X1 = X2)P(X1 �= X2)

=
K∑

i=1
p2i

(

1 −
K∑

i=1
p2i

)

> 0

Also

θ = GS + 1 = 2 −
K∑

i=1

1
K2 = 2 − 1

K
.
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Now let’s find the eigenvalues of operator A under the homogeneous distribution. We
have h̃2(x, y) = 2 − Ix=y − θ = 1

K − Ix=y. And

Ag(x) =
∫ ∞

−∞
h̃2g(y)dP(y)

=
∫ ∞

−∞

(
1
K

− Ix=y

)

g(y)dP(y)

= 1
K2

K∑

i=1
g(i) − 1

K
g(x)

= 1
K2

∑

i�=x
g(i) +

(
1
K2 − 1

K

)

g(x)

Since g : {1, 2, . . . ,K} → R, it can be viewed as a vector from RK . And A is a linear
operator on RK . And the matrix representation of A is

A	g = T	g

where T is a K × K matrix with T(i, i) = 1
K2 − 1

K and T(i, j) = 1
K2 for i �= j. The matrix T

has two eigenvalues λ = 0 with multiplicity one and λ = − 1
K with multiplicity K − 1.

Therefore due to Lemma 3 and properties of independent Chi-square distributions,
theorem is proved

Appendix 4: About the variances of ̂GS and ̂GS1
From section of Asymptotic behaviour for homogeneous case, we get that

ζ1 =
K∑

i=1
p3i −

( K∑

i=1
p2i

)2

and

ζ2 =
K∑

i=1
p2i

(

1 −
K∑

i=1
p2i

)

.

By the following lemma by Hoeffding (1948):

Lemma 4 The variance of Un is given by

VarF(Un) =
(
n
m

)−1 m∑

c=1

(
m
c

)(
n − m
m − c

)

ζc (24)

Therefore,

Var
(
ĜS1

) =
(
n
2

)−1
(2(n − 2)ζ1 + ζ2)

= 2
n(n − 1)

⎡

⎣2(n − 2)

⎛

⎝
K∑

i=1
p3i −

( K∑

i=1
p2i

)2⎞

⎠ +
K∑

i=1
p2i −

( K∑

i=1
p2i

)2⎤

⎦

= 2
n(n − 1)

⎡

⎣2(n − 2)
K∑

i=1
p3i − (2n − 3)

( K∑

i=1
p2i

)2

+
K∑

i=1
p2i

⎤

⎦
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From Bhargava and Uppuluri (1977), we have

Var
(
ĜS

) = (n − 1)2

n2
2

n(n − 1)

⎡

⎣2(n − 2)
K∑

i=1
p3i − (2n − 3)

( K∑

i=1
p2i

)2

+
K∑

i=1
p2i

⎤

⎦

Therefore, we have the following theorem.

Theorem 7 When K is finite, we have

Var
(
ĜS

) = (n − 1)2

n2
Var

(
ĜS1

)
.
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