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Abstract
Poisson-Tweedie mixtures are the Poisson mixtures for which the mixing measure is
generated by those members of the family of Tweedie distributions whose support is
non-negative. This class of non-negative integer-valued distributions is comprised of
Neyman type A, back-shifted negative binomial, compound Poisson-negative binomial,
discrete stable and exponentially tilted discrete stable laws. For a specific value of the
“power” parameter associated with the corresponding Tweedie distributions, such
mixtures comprise an additive exponential dispersion model. We derive closed-form
expressions for the related variance functions in terms of the exponential tilting
invariants and particular special functions. We compare specific Poisson-Tweedie
models with the corresponding Hinde-Demétrio exponential dispersion models which
possess a comparable unit variance function. We construct numerous local
approximations for specific subclasses of Poisson-Tweedie mixtures and identify Lévy
measure for all the members of this three-parameter family.
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1 Introduction
In this paper, we establish new results of distribution theory and prove new limit theorems
of probability theory. Specifically, we investigate and establish numerous properties of the
three-parameter family of non-negative integer-valued random variables (or r.v.’s) which
are hereinafter referred to as the Poisson-Tweedie mixtures. This family was considered,
among many others, by Kokonendji et al. (2004, Section 3), Jørgensen and Kokonendji
(2016), and Bonat et al. (2017). The Poisson-Tweedie mixtures are rigorously introduced
by formula (3).
We concentrate on the derivation of local limit theorems, which is customary in the case

where one deals with integer-valued r.v.’s, since in view of the jumps of their cumulative
distribution functions, the integral limit theorems for such r.v.’s are usually less accurate,
which is due to discontinuities to be taken care of. Moreover, local limit theorems often
provide a more detailed picture of the convergence mechanism than their integral coun-
terparts by pointing out at potential singularities. For instance, Remark 4 to Theorems 7
and 8 addresses the singularity at the origin for the local versions of the (integral) theorem
on weak convergence for Poisson-Tweedie mixtures given by formula (50) – the fact that
can only be revealed through the microscope of local behavior.
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Members of the Poisson-Tweedie family defined by formula (3) are often used for mod-
eling overdispersed count data, since the variance of a generic member of this class is
greater than its mean (compare to formula (4)). At the same time, the simulation stud-
ies presented in Bonat et al. (2017, Section 4) pertain to fitting extended Poisson-Tweedie
regression models to overdispersed and underdispersed data. In turn, a growing inter-
est to this family within the statistics community along with a close connection of the
probability function of a general member of this class to theWright special function (pre-
sented by formula (30)) motivated us to consider subtle mathematical properties of the
Poisson-Tweedie mixtures. Thus, we concentrate on the theoretical aspects rather than
applications of the Poisson-Tweedie mixtures and rely on the above-quoted papers for
the raison d’être. In many cases, the relationship (30) between Poisson-Tweedie mixtures
and Wright function (6) makes it possible to derive the leading error term of our local
approximations whose role in applications is yet to be determined.
Next, similar to Kokonendji et al. (2004) we denote this class of Poisson-Tweedie mix-

tures by {PTp,μ,λ}, although a different notation, namely, {PTp(θ , λ)}, is employed by
Kokonendji et al. (2004, Section 3). This is because we construct the class of Poisson-
Tweedie mixtures by virtue of formula (3) starting from the corresponding members
of the reproductive Tweedie exponential dispersion models (or EDM’s) for which the
variance-to-mean relationship is given by formula (2). In contrast, Kokonendji et al. (2004,
formula (9)) derived the probability law of a generic member PTp(θ , λ) of the Poisson-
Tweedie class starting from the corresponding representative of a specific additive
Tweedie EDM. See Jørgensen (1997, Chapters 3 and 4) respectively, for discussion on
these forms of EDM’s in the general setting and in the context of Tweedie EDM’s. Our
notation is more convenient for the derivation of limit theorems.
Each Poisson-Tweedie r.v. PTp,μ,λ is a particular Poisson mixture for which the mixing

measure of the randomized Poisson parameter follows Tweedie distribution Twp(μ, λ)

with the same values of the “power” parameter p ≥ 1, the scaling parameter λ ∈ R1+ :=
(0,∞), and the location parameter μ. The domain �p of the location parameter μ is as
follows:

�p :=
{
R1+ if p ∈[ 1, 2] ;
(0,∞] if p > 2.

(1)

Given p ≥ 1 and λ ∈ R1+, the one-parameter class {Twp(μ, λ),μ ∈ �p} comprises a
natural exponential family (or NEF) of non-negative distributions which is characterized
by the variance function of a power type. In particular,

ETwp(μ, λ) = μ, and VarTwp(μ, λ) = μp/λ. (2)

See Jørgensen (1997, Chapters 2 and 4) for more details on NEF’s and Tweedie distri-
butions, respectively. (In this paper, we should exclude the case of negative values of the
power parameter which correspond to Tweedie laws taking values in the entire real axis
R1, since it is customary to employ non-negative probability laws only for constructing
Poisson mixtures, compare to formula (3).) Also, the variance-to-mean relationship (2)
justifies referring to the totality of Tweedie distributions as the power-variance family or
the PVF (compare to Vinogradov et al. (2012, 2013)).
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Subsequently, for arbitrary fixed p ≥ 1, λ ∈ R1+ and μ ∈ �p, the probability law of the
Poisson-Tweedie mixture {PTp,μ,λ} on Z+ := {0, 1, 2, . . .} is such that

P
{
PTp,μ,λ = k

} =
∫ ∞

0
e−u · u

k

k!
· Twp(μ, λ)(du) where k ∈ Z+. (3)

A combination of (2)–(3) yields that E(PTp,μ,λ) = μ.
Next, let us discuss overdispersion of the Poisson-Tweedie family. To this end, we point

out that Kokonendji et al. (2004, Proposition 2) provides the following unit variance func-
tion (or u.v.f.) of the additive Poisson-Tweedie EDM constructed starting from its member
PTp(θ , 1), which stipulates the corresponding variance-to-mean relationship:

VPT
p (μ) = μ + μp · exp{(2 − p) · �p(μ)} > μ, where μ > 0. (4)

Since by (4) the variance is greater than the mean, all the Poisson-Tweedie mixtures
are overdispersed. Also, note that Kokonendji et al. (2004, Proposition 2) states that the
increasing function �p(μ) is “generally implicit” being the inverse of function K ′(μ)

which they defined by formula (10) therein.
In contrast, our Theorem 1 provides several closed-form expressions which specify

the variance-to-mean relationship for all the members of the Poisson-Tweedie family{
PTp,μ,λ, p ≥ 1,μ ∈ �p, λ ∈ R1+

}
introduced by formula (3). The representations given

in that theorem involve the invariants (20) of the exponential tilting transformation and
particular special functions. This approach employs the fact that indexing a specific
variance function by invariant(s) of the exponential tilting transformation for a fixed
p provides a convenient decomposition of the corresponding two-parameter class of
the Poisson-Tweedie distributions into the union of non-overlapping NEF’s, with each
specific NEF corresponding to its own value of the invariant. We defer the considera-
tion of a few special cases and a detailed comparison of Theorem 1 with some related
work to Section 4. For instance, Remark 5 addresses a comparison our closed-form
representations (37)–(39) with “generally implicit” formula (4) and some other related
results.
Although the expressions (37)–(39) are interesting in their own right, they can also be

used for the derivation of the exact asymptotics of the probabilities of large deviations of
partial sums of Poisson-Tweedie r.v.’s in the case where the magnitude of these deviations
is at least proportional to the growing number of the summands (compare to Paris and
Vinogradov (2015, Corollary 3.8)). See, for example, representation (40) of Theorem 2,
which can be regarded as a result of the saddlepoint approximation type. The subsequent
local limit Theorems 3 and 4 which pertain to the values of p ∈ (1, 2) and p > 2, respec-
tively, present the exact asymptotics of superlarge deviations for the corresponding partial
sums of lattice r.v.’s. Theorems 2 and 3 can be regarded as the results of Cramér’s type,
whereas the mechanisms of formation of the probabilities of large deviations in the cases
covered by Theorem 4 are qualitatively different. Specifically, representation (42), which
pertains to the lattice distributions, is of the same character as numerous results on large
deviations for non-lattice r.v.’s presented in Vinogradov (1994, Chapter 5), and (2008b,
Theorem 3.6.ii).
Theorems 5 and 6 concern local asymptotics in the case where the corresponding

classes of Poisson-Tweedie mixtures converge to a Poisson limit. In this respect, observe
that Kokonendji et al. (2004, Table 2) suggests that as p → +∞, members of a certain
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subclass of the family of Poisson-Tweedie mixtures tend to a Poisson law. This is clarified
by formula (48), which easily follows from Proposition 1. A local version of this assertion
is presented as Theorem 6. See also Remark 3.ii and Conjecture 1. In particular, formulas
(82) and (84), which were checked numerically, specify the leading error term of the local
Poisson approximation applicable in the case of sufficiently large values of the “power”
parameter p.
Proposition 3 addresses the behavior of the Poisson-Tweedie mixtures around the

points p = 1 and 2, whereas Theorems 7 and 8 provide local approximations in the case
where the Poisson-Tweedie mixtures {PTp,·,·} converge to a Tweedie distribution with
the same p. Since all the Poisson-Tweedie mixtures are infinitely divisible, the above-
described limit theorems of Section 3 can be regarded as the results on local asymptotics
for the marginals of specific exponential families of (compound Poisson) integer-valued
Lévy processes.
Propositions 1 and 2 of Section 2 provide the probability-generating function (or the

p.g.f.) of all the Poisson-Tweedie mixtures and their Lévy measure, respectively.
In Section 4, we compare the Poisson-Tweedie family with a different class of the addi-

tive Hinde-Demétrio EDM’s which correspond to a simpler u.v.f. given by (61). All the
proofs are deferred to “Appendix 1” section, whereas “Appendix 2” section presents two
relevant conjectures, which are of independent interest.

2 Notation, definitions and basic properties
First, we summarize some notation and terminology that will be used in the sequel. We
follow a custom of formulating various statements of distribution theory in terms of the
properties of r.v.’s, even when such results pertain only to their distributions. In what
follows, the symbol “ d→” stands for weak convergence, whereas log denotes the natural
logarithm of the real argument. Also, N and C stand for the sets of all positive integers
and the complex plane, respectively.
We will employ the Pochhammer symbol (a)j, which is also known as the rising factorial.

It is defined for positive integer j by

(a)0 := 1, (a)j := �(a + j)
�(a)

= a · (a + 1) · (a + 2) · . . . · (a + j − 1).

In the sequel, an empty sum or product is interpreted as zero or unity, respectively.
We now introduce several special functions and polynomials.

Definition 1 (“Reduced” Wright function, compare to Paris and Vinogradov (2016, for-
mula (1.4)). Given parameters δ ∈ C and ρ ∈ (−1, 0) ∪ (0,∞), and argument z ∈ C with
|z| < ∞, set

φ(ρ, δ; z) :=
∞∑
n=0

zn

n! �(ρn + δ)
. (5)

Hereinafter, we refer to φ as the (complex-valued) “reduced” Wright function.

Definition 2 (Wright function, compare to Paris and Vinogradov (2016, formula (1.3)).
Given parameters δ ∈ C and ρ ∈ (−1, 0) ∪ (0,∞), and argument z ∈ C with |z| < ∞, set

1
1(ρ, k; ρ, δ; z) :=
∞∑
n=0

�(ρn + k)
�(ρn + δ)

zn

n!
, (6)
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where real k ≥ 0. The function 1
1 constitutes a particular case of the (complex-valued)
Wright function.

Under the restriction δ = 0, theWright function (6) admits a representation in terms of
the complete Bell polynomials, which is stipulated by Proposition 5. We introduce them
as follows:

Definition 3 (The complete Bell polynomials). Given � ∈ N, the �th complete Bell
polynomial is defined as follows:

B� (z1, z2, . . . , z�) := d�

dt�
exp

⎛
⎝ ∞∑

j=1
zj
tj

j!

⎞
⎠
∣∣∣∣∣∣
t=0

. (7)

We will also use Touchard polynomials such that for k ∈ Z+, the kth Touchard
polynomial is as follows:

Tk(x) := e−x ·
∞∑

�=0

�kx�

�!
(8)

(see, for example, Paris (2016)). It is well known that the Touchard polynomials can be
expressed in terms of the complete Bell polynomials such that for 1 ≤ j ≤ k, the argument
zj = x: Tk(x) ≡ Bk(x, x, . . . , x).

Definition 4 (The Lambert W function and its principal branch Wp, see Corless et al.
(1996)).

(i) The complex-valued Lambert functionW (z) is defined as the multi-valued inverse
of the function y(x) := x · ex. Equivalently, it can be defined as the function
satisfying the identityW (z) · eW (z) ≡ z, where z ∈ C. Its Taylor series around z = 0,

W (z) =
∞∑

�=1
w� · z�, (9)

has the radius of convergence 1/e. The coefficients w� of the Taylor series (9) are
as follows: w� = (−�)�−1/�!.

(ii) The series (9) can be extended to a holomorphic function on C with a branch cut
along (−∞,−1/e]. This function defines the principal branchWp(z) ofW (z).

In the sequel, we will need to employ specific solutions to the next two equations. First,
given real r > 0 and w > 0, there exists the unique solution greater than 1, which we
hereinafter denote by ts0(w), to the following equation:

trs · (ts − 1) = w. (10)

A modification of Paris and Vinogradov (2016, formula (4.4) and footnote 2) implies
that this solution admits the following representation in terms of the “reduced” Wright
function φ introduced by formula (5):

ts0(w) =
{
w − log

(∫ ∞

0

e−wy

y(1 + y)
φ

(
− r
r + 1

, 0;− 1 + y
yr/(r+1)

)
dy
)}1/(r+1)

. (11)

(Note that w in formulas (10)–(11) is the same as w on the right-hand side of the formula
in Paris and Vinogradov (2016, footnote 2), which is equal to 1/(ρu) on the right-hand
side of formula (4.4) of this reference). Given r > 0, it can be shown that



Vinogradov and Paris Journal of Statistical Distributions and Applications  (2017) 4:14 Page 6 of 23

ts0 ∼ w1/(1+r) as w → +∞, and ts0 → 1 as w ↓ 0. (12)

Now, consider the equation

y1+ρ = a(1 − y) (13)

when ρ ∈ (−1, 0) and real a > 0 is a constant (compare to Paris and Vinogradov (2016,
Proposition 5)). Then the unique root ys(a) on (0, 1) admits the following closed-form
representation in terms of the “reduced” Wright function φ for ρ ∈ (−1/2, 0):

ys(a) =
{
− log

(∫ ∞

0

e−ay

y(1 − y)
φ

(
−(1 + ρ), 0;

y − 1
(ay)ρ+1

)
dy
)}1/(ρ+1)

. (14)

When ρ = −1/2, it is straightforward to verify that ys(a) =
(
2a/
(
1 + √

1 + 4a2
))2

,
which is consistent with formula (14). We do not yet have a proof of (14) when ρ ∈
(−1,−1/2), although we verified the veracity of (14) numerically. Also, given ρ ∈ (−1, 0),
one ascertains that

ys ∼ a1/(1+ρ) as a ↓ 0, and ys → 1 as a ↑ +∞. (15)

Although it is natural to define Poisson-Tweedie mixtures starting from Tweedie dis-
tributions by formula (3), which in turn imposes the {p,μ, λ}-parameterization, but a
different parameterization motivated by their connection to the Wright function (6) and
stipulated by formulas (16)–(18) is more suitable for studying properties of these mix-
tures. Hence, we now consider the following closely related triplet {ρp, θp,Ap} of the
transformed parameters, but the latter two of them have additional restrictions on the
domain of p. Set

ρp := (2 − p)/(p − 1) ∈ (−1,+∞] if p ∈[ 1,+∞). (16)

Given p > 1, μ ∈ �p and λ ∈ R1+, we introduce the following “exponential tilting”
parameter:

θp(= θ(p,μ, λ)) := 1
p − 1

λμ1−p. (17)

By (1), θp > 0 if p ∈ (1, 2], and θp ≥ 0 if p > 2 (with θp = 0 corresponding to μ = ∞).
Also, for p ∈[ 1,+∞) \ {2}, set

Ap
(= Ap(μ, λ)

)
:= 1

2 − p
λμ2−p. (18)

By Vinogradov et al. (2012, formula (3.9)), the product Ap(θp)ρp does not depend on μ

such that given p ∈ (1, 2) ∪ (2,+∞),

Zp,∞ := Ap(θp)
ρp = (p − 1)(2−p)/(1−p)

2 − p
λ1/(p−1). (19)

Also, by analogy to Paris and Vinogradov (2015, formula (3.1)), set

Z (= Zp) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ap(θp/(θp + 1))ρp
if p ∈ (1,+∞) \ {2};

A1 · e−1/λ if p = 1;
λ if p = 2.

(20)

It can be shown that for a fixed p ≥ 1, the quantity Zp is an invariant of the exponential
tilting transformation for the corresponding class of Poisson-Tweedie mixtures with such
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p. This means that given p ≥ 1, all the members of the class of Poisson-Tweedie distribu-
tions characterized by the same value ofZ comprise their own natural exponential family
(or NEF). See Jørgensen (1997, Chapter 2) for more details on NEF’s.
It is clear that (20) yields that for arbitrary fixed μ ∈ R1+ and λ ∈ R1+,

Zp = Ap
(
θp/
(
θp + 1

))ρp → A1 · e−1/λ = Z1 as p ↓ 1. (21)

Now, for a fixed p > 2 consider the “boundary” case μ = +∞ (which pertains to the
discrete stable distributions). Then a combination of (19) with (20) yields that for arbitrary
fixed p > 2 and λ ∈ R1+,

Zp → Zp,∞ as μ → +∞. (22)

In view of (16), if p ∈ (1, 2) or p > 2 then ρp > 0 or ρp ∈ (−1, 0), respectively. For
these parameter values, the representations for the probability distributions of Tweedie
models in terms of the reduced Wright function φ(ρp, 0; ·) introduced by (5) are given in
Vinogradov et al. (2012, formulas (3.14) and (3.25)). In particular, in the case where p > 2,
the probability density function (or p.d.f.) fp,μ,λ(x) of Twp(μ, λ) is as follows:

fp,μ,λ(x) = x−1 · φ
(
ρp, 0,Zp,∞xρp

) · e−θpx−Ap if x ≥ 0. (23)

Here, the function u−1 · φ(ρ, 0,−C · uρ) is extended at zero as u ↓ 0 by continuity, where
C ∈ R1+ is a constant. For p > 2, the law of the r.v. Twp(μ, λ) is obtained from that of
stable r.v. Twp(∞, λ) by the exponential tilting transformation.
Similar to (23), in the case where p ∈ (1, 2), the density fp,μ,λ(x) of the absolutely

continuous component of compound Poisson-gamma r.v. Twp(μ, λ) admits the following
representation:

fp,μ,λ(x) = x−1 · φ
(
ρp, 0,Zp,∞xρp

) · e−θpx−Ap if x ∈ R1+.

In addition, this Poisson-gamma r.v. Twp(μ, λ) is such that

P{Twp(μ, λ) = 0} = exp{−Ap}. (24)

The subclass
{
Tw1(μ, λ),μ ∈ R1+, λ ∈ R1+

}
is comprised of the scaled Poisson laws.

Also, we parameterize the gamma family
{
Tw2(μ, λ),μ ∈ R1+, λ ∈ R1+

}
in a manner for

the p.d.f. of its member to have the following form:

f2,μ,λ(x) := (λ/μ)λ

�(λ)
· xλ−1 · exp {−(λ/μ) · x} , where x > 0. (25)

Next, we will consider the probability function for Poisson-Tweedie mixtures. It is
known that the probability function of a generic Poisson–Tweedie mixture with p = 1 is
expressed in terms of the Touchard polynomials, introduced by (8), such that for arbitrary
fixed μ ∈ R1+, λ ∈ R1+, and k ∈ Z+,

pk := P
{
PT1,μ,λ = k

} = eZ−A1

λk · k! · Tk(Z). (26)

The totality of the subclass of Poisson–Tweedie mixtures with p = 2 is the family of
negative binomial distributions which start from zero such that for arbitrary fixed μ ∈
R1+, λ ∈ R1+, and k ∈ Z+,

pk := P
{
PT2,μ,λ = k

} = (λ)k · (θ2 + 1)−k

k!
(1 − 1/(θ2 + 1))λ . (27)
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Set πη(�) := P{Poiss(η) = �} = e−ηη�/�!, where � ∈ Z+. Also, given p ∈ (1,+∞),
μ ∈ �p, and λ ∈ R1+, formula (3) implies that

P
{
PTp,μ,λ = k

} =
∫ ∞

0
πu(k) · Twp(μ, λ)(du)

=

⎧⎪⎨
⎪⎩
∫∞
0 e−u · uk

k! · fp,μ,λ(u) · du
if p ∈ (1, 2) and k ∈ N, or p ≥ 2 and k ∈ Z+;

e−Ap + ∫∞
0 e−u · fp,μ,λ(u) · du if p ∈ (1, 2) and k = 0.

(28)

Subsequently, formula (28) yields that for each p ∈ (1,+∞) \ {2},
p0 := P

{
PTp,μ,λ = 0

} = Pp,μ,λ(0) = eZ−Ap . (29)

Also, representation (28) implies that for each integer k ∈ N if p ∈ (1, 2), and each integer
k ∈ Z+ if p > 2,

pk := P
{
PTp,μ,λ = k

} = e−Ap(θp + 1)−k

k!
·

∞∑
�=0

�(ρp� + k)
�(ρp�) · �!

Z�

= e−Ap · (θp + 1)−k

k!
· 1
1(ρp, k; ρp, 0;Z).

(30)

Remark 1 Suppose that
{
PT (1)

p,μ,λ, . . . ,PT (n)
p,μ,λ

}
are the i.i.d.r.v.’s whose common distri-

butionPTp,μ,λ belongs to the family of Poisson-Tweedie mixtures. Then the nth partial sum
Sn := PT (1)

p,μ,λ + . . . + PT (n)
p,μ,λ is also a Poisson-Tweedie mixture with the same p ≥ 1. It

can be shown that for p = 1 and p > 1, quantities λ and θp, respectively, remain intact,
while for p ∈[ 1,+∞) \ {2}, Ap is to be multiplied by n. A combination of these comments
with (20) implies that for a fixed p ≥ 1, the invariantsZ of the exponential tilting transfor-
mation given by (20) and the limit in (22) are to be multiplied by n. Also, a combination of
these observations with (30) stipulates that for k ∈ N if p ∈ (1, 2), and for k ∈ Z+ if p > 2,

P
{
PT (1)

p,μ,λ + . . . + PT (n)
p,μ,λ = k

}
= e−nAp

(θp + 1)−k

k! 1
1(ρp, k; ρp, 0; nZ). (31)

Definition 5 (See Nagaev (1998, Definition 2)). A generic r.v. N which takes values on
the lattice {f + �h} (with real f ≥ 0, span h ∈ R1+, and � ∈ Z) is said to belong to class (S)

if there exists a fixed κ ∈ R1+ such that for � ∈ {f + �h}, and as � → ∞,

P{N = �} ∼ exp
{
−κ� +

∫ �

x0
g(u)du

}
.

Also, it is assumed that the function g(·) : R1+ → R1 is such that (i) there exists x0 ∈ R1+
such that ∀x ≥ x0 > 0, function g(x) > 0; (ii) g(∞) = 0; (iii) g′′(x) ↓; (iv) the product
x · g(x) → +∞ as x → +∞, and (v) ∀x ≥ x0, 0 ≤ −g′′(x)/g′(x) ≤ 2/x.

Proposition 1 The p.g.f. P(u) (= Pp,μ,λ(u)) of the Poisson-Tweedie mixture PTp,μ,λ
admits the following representations:

(i) For p ∈ (1,+∞) \ {2}, μ ∈ R1+, λ ∈ R1+, u < θp + 1 if p ∈ (1, 2), and u ≤ θp + 1 if
p > 2,

P(u) = exp
{
Ap

((
1 + 1 − u

θp

)−ρp

− 1
)}

= eZp,∞
{
(1+θp−u)−ρp−θ

−ρp
p
}
. (32)
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(ii) For p > 2, μ = +∞, λ ∈ R1+, and u ≤ 1,

P(u) = exp
{
Zp,∞(1 − u)−ρp

}
. (33)

(iii) In the case where p = 1, μ ∈ R1+, λ ∈ R1+, and for u ∈ R1,

P(u) = exp
{
A1 ·

{
eλ

−1(u−1) − 1
}}

. (34)

(iv) For p = 2, μ ∈ R1+, λ ∈ R1+, and u < θ2 + 1,

P(u) = (1 + 1/θ2 − u/θ2)
−λ. (35)

Proposition 2 (Lévy measure for Poisson-Tweedie mixtures). The Lévy representation
for the cumulant-generating function of r.v. PTp,μ,λ does not contain the drift and diffusion
components. For p ∈ (1,+∞) \ {2}, μ ∈ �p, and λ ∈ R1+, its Lévy measure νp,μ,λ(·) is
concentrated on N, where it admits the following representation:

νp,μ,λ({k}) = Zp · (θp + 1)−k · (ρp)k/k! , where k ∈ N. (36)

Remark 2 For p = 3/2, formula (36) is consistent with Vinogradov (2007, formula (3.4)).
Thus, ν3/2,μ,λ({k}) = Z3/2(θ3/2 + 1)−k for k ≥ 1.

3 Main results
The first result of this section concerns the closed-form representations for the variance
functions of specific NEF’s comprised of particular Poisson-Tweedie mixtures. Note that
by (20), Zp > 0 if p ∈[ 1, 2], whereas Zp < 0 if p > 2.

Theorem 1 Given real p ≥ 1 and an admissible value Zp of the exponential tilting
invariant, consider the NEF comprised of the Poisson-Tweedie mixtures characterized by
such values of p and Zp with domain �p of the location parameter μ. Then

(i) In the case where 1 < p < 2 and Zp > 0, the variance function of such NEF is as
follows:

VZp(μ) = μ + μ2

(2 − p)Zp · ts0(μ/(ρpZp))ρp
, (37)

where the argument μ ∈ R1+ and ts0(μ/(ρpZp)) is obtained from (10)–(11) by
setting r = ρp and w = μ/(ρpZp).

(ii) Given p > 2 and Zp < 0, the variance function of such NEF admits the following
representation:

VZp(μ) = μ + μ2

(2 − p)Zp
· ys
(
ρpZp/μ

)ρp , (38)

where the argument μ ∈ (0,+∞] and ys(ρpZp/μ) is derived from (14) by setting
ρ = ρp and a = ρpZp/μ.

(iii) For p = 1 and Z1 > 0, the variance function of such NEF comprised of specific
Neyman type A distributions is as follows:

VZ1(μ) = μ · (1 + Wp(μ/Z1)), where μ ∈ R1+. (39)

Next, we proceed with three local large deviation limit theorems for nth partial sums of
the i.i.d.r.v.’s whose common distribution belongs to the Poisson-Tweedie family. The first
of them employs the above variance function VZp(·) given by (37).
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Theorem 2 Fix p ∈ (1, 2), μ ∈ R1+, λ ∈ R1+, and real ε > 0. Suppose that the integers k
and n are such that n → +∞ and k ≥ (μ + ε) · n. Then

P
{
PT (1)

p,μ,λ + . . . + PT (n)
p,μ,λ = k

}
∼ 1√

2πk · VZp(k/n)

× exp
{

−n
∫ k/n

μ

k/n − t
VZp(t)

· dt
}
.

(40)

Theorem 3 For fixed p ∈ (1, 2), μ ∈ R1+ and λ ∈ R1+, and for integer values of k and n
such that n → +∞ and k/n → +∞,

P
{
PT (1)

p,μ,λ + . . . + PT (n)
p,μ,λ = k

}
∼ e−nAp · (θp + 1)−k√

2π(1 + ρp)k

× (ρpnZp · kρp
) 1
2(1+ρp) · exp

{1 + ρp
ρp

· (ρpnZp · kρp
)1/(1+ρp)

}
.

(41)

Theorem 4 For fixed p > 2, μ ∈ �p and λ ∈ R1+, and for integer values of k and n such
that n → +∞ and k · n1/ρp → +∞,

P
{
PT (1)

p,μ,λ + . . . + PT (n)
p,μ,λ = k

}
∼ n · e−(n−1)Ap · P {PTp,μ,λ = k

}
. (42)

Next, we will proceed with two assertions on the local asymptotics for Poisson-Tweedie
mixtures which are related to Poisson convergence. First, we derive the leading error term
for the large-λ asymptotics of these mixtures for which μ < ∞. To this end, observe that
Jørgensen (1997, Proposition 4.12) ascertains that given p ∈[ 1,+∞) and μ ∈ R1+, and as
λ → ∞,

PTp,μ,λ
d−→ Poiss(μ). (43)

The following assertion generalizes Paris and Vinogradov (2015, Theorem 3.13) and
refines the local counterpart of the Poisson convergence result (43).

Theorem 5 Fix p ∈[ 1,+∞), μ ∈ R1+, and � ∈ Z+. Then

P
{
PTp,μ,λ = �

} = πμ(�) ·
{
1 + (μ − �)2 − �

2 · λμ2−p + O(1/λ2)
}

as λ → +∞. (44)

The following result is related to Kokonendji et al. (2004, Table 2).

Theorem 6 Suppose that p → +∞, and there exists real constant Z < 0 such that the
parameters μ = μp and λ = λp vary in such a manner that the following two conditions
are met:

λ
1/(p−1)
p → |Z|, (45)

and
λp = o

(
p · μ

p−1
p
)
. (46)

Then for a fixed � ∈ Z+,
P{PTp,μp,λp = �} → π|Z|(�). (47)

Remark 3 (i) The “integral” version of Theorem 6 easily follows from (32)–(33). Thus,
one ascertains that under the fulfillment of all the assumptions of Theorem 6,

PTp,μp,λp
d−→ Poiss(|Z|). (48)
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It is easily seen that under the fulfillment of (45), the condition that μp > |Z| + ε for all
sufficiently large p is sufficient for (46), whereas the condition μp > |Z| − ε is necessary.
(Here, ε > 0 is an arbitrary small real.)
(ii) In the case of discrete stable distributions per se, i.e., when μ = μp ≡ +∞ and

condition (46) is fulfilled automatically, it is plausible to derive the leading error term in
the local Poisson convergence result (47). By (33), the discrete stable distributions with the
same fixed value of Zp,∞(= Z) < 0 converge weakly as ρp ↓ −1 to a Poisson distribution
with mean |Zp,∞|. (By convention, Poisson r.v.’s are often included to the class of discrete
stable r.v.’s.) See also Conjecture 1.

Now, fix p0 ≥ 1, μ0 ∈ �p0 , and λ0 ∈ R1+. Consider a certain subfamily of Poisson-
Tweedie mixtures PTp,μ,λ, where p ≥ 1, μ ∈ �p, and λ ∈ R1+ are such that p → p0,
μ → μ0, and λ → λ0. A subsequent combination of representations (32)–(35) with Vino-
gradov (2004, Proposition 1.1 and Theorem 2.6) and Panjer and Willmot (1992, formula
(8.2.3)) yields the continuity of the family of the Poisson-Tweedie mixtures with respect
to parameters p, μ and λ in Lévy metric such that

PTp,μ,λ
d−→ PTp0,μ0,λ0 . (49)

The next assertion can be regarded in some sense as a local counterpart of (49).

Proposition 3 (i) For arbitrary fixed μ ∈ R1+, λ ∈ R1+, k ∈ Z+, and as p ↓ 1,

P{PTp,μ,λ = k} → P{PT1,μ,λ = k}.
(ii) For arbitrary fixed μ ∈ R1+, λ ∈ R1+, k ∈ Z+, and as p → 2,

P{PTp,μ,λ = k} → P{PT2,μ,λ = k}.

We now proceed with two refined local limit theorems for Poisson-Tweedie mix-
tures when p > 1. They are related to the following result on weak convergence of
scaled Poisson-Tweedie mixtures to the corresponding Tweedie distribution which can
be derived from a combination of Kokonendji et al. (2004, Propositions 2 and 6) with
Jørgensen et al. (2009, formula (5.2)). It can be expressed as follows:

C−1 · PTp,Cμ,Cp−2λ
d−→ Twp(μ, λ) as C → +∞. (50)

The case p = 1 is to be treated separately, since by (39),VZ1(μ) ∼ μ· log μ asμ → +∞
rather than just to Const · μ (compare to formula (62)).
The following assertion, which can be regarded as a refinement of the local version of

(50) in the case where p = 2, constitutes a result of the Yaglom-theorem type on gamma
convergence (compare to Jørgensen et al. (2009, pp. 411-412)).

Theorem 7 Set D2,μ,λ(u) := θ22 · u and E2,μ,λ(u) := θ32u(3θ2u − 8). Suppose that real
u > 0 is fixed, and that u · C takes on positive integer values. Then given real μ > 0 and
λ > 0, one ascertains that as C → +∞,

P
{
PT2,Cμ,λ = uC

} = f2,μ,λ(u)

C

(
1 + D2,μ,λ(u)

2C + E2,μ,λ(u)

6C2 + O
(

1
C3
))

.

The next Theorem 8, which is of the same spirit as the above Theorem 7, general-
izes Paris and Vinogradov (2015, Theorem 3.10), where the special case p = 3/2 was
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considered. But first, we need to introduce the following function of argument u ∈ R1+,
which is expressed in terms of the “reduced” Wright function as follows:

Dp,μ,λ(u) := φ
(
ρp, 2ρp,Zp,∞uρp

)
φ
(
ρp, 0,Zp,∞uρp

) ·
(
ρpZp,∞uρp

)2
u

+ φ
(
ρp, ρp,Zp,∞uρp

)
φ
(
ρp, 0,Zp,∞uρp

) · (ρp − 1 − 2θpu
) · ρpZp,∞uρp

u
+ θ2pu.

(51)

Theorem 8 Fix p ∈ (1,+∞) \ {2}, μ ∈ �p, λ ∈ R1+, and the value of the argument
u ∈ R1+. Suppose that the real-valued parameter C is such that uC is an integer. Consider
the one-parameter family {PTp,Cμ,Cp−2λ} of the Poisson-Tweedie mixtures, which is indexed
by C. Then as C → +∞,

P
{
PTp,Cμ,Cp−2λ = u · C

}
= 1

C · fp,μ,λ(u) ·
(
1 + Dp,μ,λ(u)

2C + O
(
1/C2

))
. (52)

Remark 4 (i) Since by (29),

P
{
PTp,Cμ,Cp−2λ = 0

}
= eZ

(C)−Ap , (53)

one ascertains that in the case where p > 2 (or ρp ∈ (−1, 0)), the expression (53)
approaches 0 faster than any negative power of C. Hence, taking limit as C → +∞
eliminates the point mass at the origin in this case.
At the same time, in the case where p ∈ (1, 2) the weak-convergence result (50) implies

that the limiting Tweedie distribution Twp(μ, λ) has a positive mass exp{−Ap} at zero
(compare to (24)). Here, (53) stipulates that as C → +∞,

P
{
PTp,Cμ,Cp−2λ = 0

}
= e−Ap ·

(
1 + Zp,∞ · C−ρp + O

(
C−min(2ρp,ρp+1)

))
.

However, it appears that merging the cases of u > 0 and u = 0 into a unified assertion
only makes sense for p = 3/2, which was already dealt with in Paris and Vinogradov (2015,
Theorem 3.10). This is partly due to the fact that the behavior of the function fp,μ,λ(u)

at zero can have one of three qualitatively different types, which pertain to the values of
p ∈ (1, 3/2), p = 3/2, and p ∈ (3/2, 2) (see Vinogradov et al. (2012, formula (3.27)) for
more detail). Moreover, the behavior of function Dp,μ,λ(u) (which is defined by formula
(51)) is even more diverse. Specifically, it can be shown that as u ↓ 0,

Dp,μ,λ(u) =
(
ρ2
pZp,∞uρp−1 + ρp · (ρp − 1)/u − 2θpρp

)

× (1 + o(1)) + θ2pu →

⎧⎪⎨
⎪⎩

+∞ if p ∈ (1, 3/2);
4λ2 − 2θ3/2 if p = 3/2;
−∞ if p ∈ (3/2, 2).

Similar to the above, in the case where p = 2 we apply (27) to obtain that

P
{
PT2,Cμ,λ = 0

} ∼ θλ
2 · C−λ as C → +∞. (54)

Since the behavior of the gamma density f2,μ,λ(u) at zero is similar to that of fp,μ,λ(u) and
determined by a particular value of the shape parameter λ, we elected to exclude the value
of argument u = 0 from consideration in Theorem 7 and give it as a separate formula (54).
(ii) There exists a function {Ep,μ,λ(u), u > 0} which constitutes the next term in the

expansion (52) over negative powers of C. Similar to function Dp,μ,λ(u), it admits a rep-
resentation in terms of the “reduced” Wright function which is analogous to, but more
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complicated than, the expression that emerges on the right-hand side of formula (51).
Hence, it is too long to be included here. Compare to Paris and Vinogradov (2015, Theorem
3.10) where this function is given in the special case where p = 3/2.
(iii) The first-order error terms which emerge in Theorems 7 and 8 are consistent in the

sense thatD2,μ,λ(u) = limp→2Dp,μ,λ(u).

4 Special cases of Theorem 1, Hinde-Demétrio EDM’s and discussion
First, we will present a few special cases of Theorem 1 as well as discuss its relationship
to Kokonendji et al. (2004) and other works in a series of remarks.

Remark 5 (i) The closed-form representations (37)–(39) are consistent with formula (4)
that contains the function �p(μ) defined implicitly in Kokonendji et al. (2004, Proposition
2). For instance, in the case where p = 1, one can employ several assertions given in Koko-
nendji et al. (2004) and express the solution to equation ex +x = b in terms of the Lambert
W function (see Corless et al. (1996, p. 332)) to ascertain that the u.v.f. (4) of the addi-
tive Poisson-Tweedie EDM that is obtained starting from r.v. PT1(θ , 1) can be rewritten as
follows:

VPT
1 (μ) = μ · (1 + Wp

(
μ · e1−θ

))
. (55)

A subsequent combination of representation (20) forZ1 with Jørgensen (1997, Subsection
3.3.3) yields that representation (55) is consistent with (39). Also, representation (39) is
consistent with Vinogradov (2013, Theorem 5.1).
(ii) In the case where p = 3/2, Paris and Vinogradov (2016, formula (2.1)) yields that

formula (30) coincides with Paris and Vinogradov (2015, formulas (3.2)–(3.3)). For p =
3/2, Paris and Vinogradov (2015, formula (3.15)) implies that in this special case, our
representation (37) can be simplified as follows: VZ3/2(μ) = μ·

√
4Z−1

3/2 · μ + 1. ForZ3/2 =
4, this formula is consistent with Jørgensen (1997, p. 170).
(iii) In the case where p = 3, Paris and Vinogradov (2016, formula (2.4)) implies that

representation (30) is equivalent to Vinogradov (2008a, formula (14))), since formula (20)
stipulates that Z3 = −√2λ + λ2/μ2. A subsequent combination of this fact with (38)
yields that

VZ3(μ) = μ ·
{
1 + μ

Z2
3

·
(√

μ2 + Z2
3 + μ

)}
. (56)

In the case where Z3 = −√
2, representation (56) is consistent with Kokonendji and

Khoudar (2004, formula (3.10)).

Remark 6 (i) It follows from a combination of formulas (12), (15) and (20) that

(2 − p) · Zp · ts0
(
μ/
(
ρpZp

))ρp → λ as p ↑ 2; (57)

(2 − p)Zp · ys
(
ρpZp/μ

)−ρp → λ as p ↓ 2. (58)

Also, formulas (57)–(58) are consistent with formulas (74)–(75) of the next “Appendix 1”
section and the L2 analogue of the weak convergence result (49). In addition, the conver-
gence result

(2 − p) · Zp · ts0
(
μ/
(
ρpZp

))ρp → μ/Wp (μ/Z1) as p ↓ 1 (59)
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(which is consistent with formulas (21), (37), (39) and the L2 analogue of (49)) is equivalent
to Conjecture 2.
(ii) A combination of (12), (15) and (37)–(38) with some algebra implies that for an

arbitrary fixed p ∈ (1, 2) ∪ (2,+∞) and as μ → ∞,

VZp(μ) ∼ |p − 2|1−p · |p − 1|p−2 · |Zp|1−p · μp. (60)

A combination of (60) with Jørgensen (1997, Theorem 4.5) justifies the validity of (50).
Also, a combination of formulas (12), (15) and (37)–(39) implies that given p ∈[ 1,+∞),

VZp(μ) ∼ μ as μ ↓ 0, which is consistent with (43) (see also Jørgensen (1997, Proposition
4.12 and the last formula of Section 4.6)).

Next, let us compare the Poisson-Tweedie family with a different class of the additive
Hinde-Demétrio EDM’s which correspond to a simpler u.v.f. defined by (61). Specifically,
given p ∈ {0}∪[ 1,+∞), set

VHD
p (μ) = μ + μp (61)

(see, for example, Kokonendji et al. (2004, Theorem 5)). As per the follow-up paper by
Kokonendji et al. (2007, p. 278), “the origin of the Hinde-Demétrio family could be consid-
ered as an approximation (in terms of the unit variance function) to the Poisson-Tweedie
family.” In this respect, we should point out that in the case where p = 1, even the sim-
ilarity between their u.v.f.’s does not hold, which in turn necessitates a modification of
Kokonendji et al. (2004, Proposition 6.ii) in this particular case. See Remark 7 and formula
(62) specifically for more details.

Remark 7 A combination of formulas (55) and (61) with the logarithmic asymptotics
of the principal branch Wp of the Lambert function at infinity (see Corless et al. (1996))
implies that as μ → +∞,

μ · log μ ∼ VPT
1 (μ) �∼ VHD

1 (μ) = 2μ. (62)

This corrects Kokonendji et al. (2004, Proposition 2.ii) in the case where p = 1. Thus,
Kokonendji et al. (2004, Proposition 2.ii) holds for p > 1 only, in which case it is consistent
with formula (60). Moreover, although it is not stated in Kokonendji et al. (2004, Propo-
sition 2), but for a fixed p > 1 and as μ ↓ 0, the u.v.f.’s VPT

p (μ) and VHD
p (μ) are also

equivalent to each other, since they are both locally Poisson at zero.

We stress that although the u.v.f.’s for members of the Hinde-Demétrio class are simpler
than those for the Poisson-Tweedie EDM’s, the probability function for the Poisson-
Tweedie mixtures appears to have a much simpler structure for p ∈ (1, 2) ∪ (2,+∞).
Thus, even in the case where p = 3 which corresponds to the strict arcsine distri-
butions introduced by Letac and Mora (1990, Example C), for which the range is also
Z+, the probability function exhibits an unusual behavior. We clarify this by consid-
ering a subclass of the strict arcsine distributions which corresponds to the “border”
value μ = +∞ of the location parameter. (The remaining members of this class are
easily derived from them by exponential tilting). Similar to Letac and Mora (1990, for-
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mula (4.14)) or Kokonendji and Khoudar (2004, formulas (1.1)–(1.2)), given a ∈ R1+ we
introduce the strict arcsine r.v.’s SAa,∞ on Z+ as follows:

P
{
SAa,∞ = n

}
:=
⎧⎨
⎩

∏n−1
k=0(a

2+4k2)
(2n)! for even n;

a ·
∏n−1

k=0(a
2+(2k+1)2)

(2n+1)! for odd n.
(63)

Proposition 4 Given a ∈ R1+,

P{SAa,∞ = n} ∼ a · sinh(πa/2)
2
√

π
n−3/2 if even n → +∞; (64)

P{SAa,∞ = n} ∼ a · cosh(πa/2)
2
√

π
n−3/2 if odd n → +∞. (65)

A comparison of the fractions which emerge in formulas (64) and (65) stipulates that
the power decay of the probability function of r.v. SAa,∞ as n → +∞ is of order −3/2,
but with different factors of proportionality for even and odd n.
In contrast to (64)–(65), in the case whereμ=+∞ formula (77) of the next “Appendix 1”

section implies that for the corresponding Poisson-inverse Gaussian subclass of the
Poisson-Tweedie family, for which the power decay of the probability function at +∞
is also of order −3/2, the factor of proportionality is identical for both even and odd
terms. Apparently, the latter class of the Poisson-inverse Gaussian laws would hence be
a more preferred choice for fitting the data than the exponentially tilted strictly arcsine
distributions which can be generated from (63).
However, we reckon that the probability function of a general member of the Hinde-

Demétrio class (with p �= 2) still deserves being studied, since this might potentially reveal
even more surprising properties which could be of interest for probability theory. (It is
well known that the classes PT2 and HD2 coincide being comprised of negative bino-
mial laws, whereas for other values of p, even the ranges of the corresponding subclasses
of Poisson-Tweedie and Hinde-Demétrio families are different). But a comprehensive
comparison of these two classes is beyond the scope of this paper.

Appendix 1. Proofs and auxilliary analysis results
Proof of Proposition 1 is obtained by combining formula (3) with Jørgensen (1997,

formula (4.16)) and Panjer and Willmot (1992, formula (8.2.3)).

Proof of Proposition 4 Recall the well-known fact that for any fixed real a and b,

�(z + a)/�(z + b) = za−b · (1 + (a − b)(a − b + 1)/(2z) + O
(
z−2)) ∼ za−b (66)

as real z → +∞ (cf. e.g., Askey and Roy (2010, formulas (5.11.12)–(5.11.13))).
For the even terms, the expression which emerges on the right-hand side of (63) can be

rewritten as follows:

22n

(2n)!

n−1∏
k=0

(
k + 1

2
ia
)(

k − 1
2
ia
)

= 22n

(2n)!

(
1
2
ia
)
n

(
−1
2
ia
)
n

= √
π

( 1
2 ia
)
n
(− 1

2 ia
)
n

�
(
n + 1

2
)
�(n + 1)

∼
√

π

�( 12 ia)�
(− 1

2 ia
) n−3/2 = a sinh(πa/2)

2
√

π
n−3/2,
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upon application of (66). For the odd terms, a similar procedure shows that the right-hand
side of (63) becomes

22na
(2n + 1)!

(
1
2

+ 1
2
ia
)
n

(
1
2

− 1
2
ia
)
n

= a
√

π

2

( 1
2 + 1

2 ia
)
n
( 1
2 − 1

2 ia
)
n

�(n + 1)�
(
n + 3

2
)

∼ a
√

π

2�
( 1
2 + 1

2 ia
)
�
( 1
2 − 1

2 ia
) n−3/2 = a cosh (πa/2)

2
√

π
n−3/2.

Proposition 5 For arbitrary fixed ρ ∈ (−1, 0) ∪ (0,∞), z ∈ C, and � ∈ Z+,

1
1 (ρ, �; ρ, 0; z) ≡ ez · B� (z · (ρ)1, z · (ρ)2, . . . , z · (ρ)�) .

Proof of Proposition 5 Let D ≡ d/dt and a prime denote differentiation with respect to
z. For brevity we write B� ≡ B�(ρz, (ρ)2z, . . . , (ρ)�z) and ψ�(z) ≡ 1
1(ρ, �; ρ, 0; z). Our
aim is to show that, for positive integer �, z ∈ C and ρ ∈ (−1, 0) ∪ (0,∞),

ψ�(z) = ezB�. (67)

From the definition of the complete Bell polynomials in (7) we see that B1(z1) = z1 and
B2(z1, z2) = z21 + z2. From (6), we have for � = 1, 2 that

ψ1(z) = ρzez = ezB1, ψ2(z) = {(ρz)2 + ρ(ρ + 1)z}ez = ezB2.

Consequently, the result (67) is true for � = 1, 2. We now assume that (67) is true for
arbitrary positive integer � and proceed by induction.
From (6), we have for ρ ∈ (−1, 0) ∪ (0,∞)

ψ�+1(z) =
∞∑
n=1

�(� + 1 + ρn)

�(ρn)

zn

n!
=

∞∑
n=1

(� + ρn)
�(� + ρn)

�(ρn)

zn

n!

= �ψ�(z) + ρzψ ′
�(z) = ez

{
�B� + ρz

(
B� + B′

�

)}
.

From the generating function for the complete Bell polynomials in (7) we have

B� = D�ezF |t=0, and F :=
∞∑
j=1

(ρ)jtj

j!
= (1 − t)−ρ − 1 (68)

so that B′
� = D�FezF |t=0. Then

ρz(B� + B′
�) = ρzD�(1 + F)ezF |t=0 = ρzD�(1 − t)−ρezF |t=0

= zD�(1 − t)(DF)ezF |t=0 = D�(1 − t)DezF |t=0

and

�B� = �D�ezF |t=0 = �D�−1DezF |t=0 = D�tezF |t=0,

since for any function g(t) regular at the origin and with regular derivatives at t = 0 we
have D�(tg(t))|t=0 = �D�−1g(t)|t=0. Hence

ψ�+1(z) = ez{D�tDezF + D�(1 − t)DezF}|t=0 = ezD�+1ezF |t=0 = ezB�+1.

Proof of Proposition 2 It easily follows by rewriting the exponent from the middle
expression in (32) with subsequent expansion of the function (1 − u/(θp + 1))−ρp in the
Taylor series around 0 which can be easily derived from (68). Note that since the signs
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of Zp and (ρp)k (which emerge in (36)) coincide, the Lévy measure νp,μ,λ({k}) > 0 for
each k ∈ N.

Proposition 6 Fix � ∈ Z+. Then

(i) In the case where z ∈ C is fixed and as ρ → +∞,

ρ−� ·e−z ·1
1(ρ, �; ρ, 0; z) = ρ−� ·B�(z·(ρ)1, z·(ρ)2, . . . , z·(ρ)�) → T�(z). (69)

(ii) Fix C �= 0, and assume that ρ → 0. Then

1
1(ρ, �; ρ, 0; C/ρ) ∼ eC/ρ · (C)�. (70)

Proof of Proposition 6 (i) By (66), for a fixed n ∈ N and as ρ → +∞, the ratio
�(ρn + k)/�(ρn) = (ρn)k{1 + O(1/ρ)}. Hence, the sum appearing in the function
1
1(ρ, k; ρ, 0; z) reduces in this limit to

∑∞
n=1 nkzn/n!= ezTk(z).

(ii) We apply the polynomial representation for the Wright function given in Paris and
Vinogradov (2016, formulas (2.7)–(2.8)) for k ∈ N, namely,

1
1(ρ, k; ρ, 0; z) = (ρz)kezhk−1
(
(ρz)−1) , (71)

where

hk−1(u) =
k−1∑
n=0

Dnun with Dn ≡ Dn(ρ, k) =
n∑

�=0
(−1)�ρn−�s(k−�)

k S(k−n)

k−�
. (72)

Here, s(r)k and S(r)
k are the Stirling numbers of the first and second kinds, respectively.

Then, for u ∈ R1 and as ρ → 0,

hk−1(u) ∼
k−1∑
n=0

s(k−n)

k (−u)n = (−u)k
k∑

r=1
(−u)−rs(r)k = uk

�(k + 1/u)

�(1/u)
(73)

by application of Bressoud (2010, formula (26.8.7)). A subsequent combination of (73)
with (71) implies that given k ∈ N with ρ → 0 and z ∼ C/ρ, (70) holds.

Proof of Proposition 3 It easily follows from a combination of formulas (26)–(27) and
(29)–(30) for the probability function of the corresponding Poisson-Tweedie mixtures
with Proposition 6. In particular, the expressions which emerge on the left-hand sides
of formulas (69) and (70) are closely related to the probability function of the Poisson–
Tweediemixtures with p ∈ (1, 2)∪(2,+∞), whereas their limits are employed in formulas
(26)–(27) which pertain to the cases where p = 1 and 2, respectively.

Proof of Theorem 1 First, consider a generic member Xp,μ,λ of the family of Poisson-
Tweedie mixtures. We combine the Poisson-mixture representation (28) and Panjer
and Willmot (1992, formulas (8.2.5)–(8.2.6)) with Jørgensen (1997, formula (3.15)) or
Vinogradov (2004, formula (1.6)) and recall that E(PTp,μ,λ) = μ to conclude that

Var(PTp,μ,λ) = μ + μp/λ. (74)

In particular, a combination of (20) with (74) stipulates that for p = 2,

Var(PT2,μ,λ) = μ + μ2/λ = μ + μ2/Z2. (75)
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In the remaining cases, one should solve Eq. (20) for λ given the fixed set of values of p, μ
and Zp. In the case where p = 1, the solution is found by following along the same lines
as the proof of Vinogradov (2013, Theorem 5.1).
Subsequently, the cases where 1 < p < 2 and p > 2 are reduced to solving the Eqs. (10)

and (13), respectively, and involve an application of the corresponding analytic results
established in Paris and Vinogradov (2016). The details are left to the reader.

Lemma 1 Given p ∈ (1, 2), μ ∈ �p = R1+ and λ ∈ R1+, the corresponding Poisson-
Tweedie mixtureXp,μ,λ belongs to class (S)with f = 0, h = 1, integer � ∈ Z+, and function

g(x) := Apx−1/(ρp+1) − (ρp + 2)/(2(ρp + 1)x) (76)

satisfying all the conditions (i)–(v) imposed in Definition 5.

Proof of Lemma 1 Let p ∈ (1, 2), so that ρ = ρp > 0 and Ap > 0. It is convenient to
rewrite the function g(x) introduced by formula (76) as follows:

g(x) = 1
x

(
Apxν − ρ + 2

2(ρ + 1)

)
, where ν := ρ

ρ + 1
.

Subsequently, we obtain that

g′(x) = −
(
Apxν − 1 − 1

2
ρ

)
1

(ρ + 1)x2
, g′′(x) = (Apxν − 1 − ρ

) ρ + 2
(ρ + 1)x3

.

It then follows that g(x) ≥ 0 when x ≥ x3, g′′(x) ≥ 0 when x ≥ x1 and −g′(x) ≥ 0 when
x ≥ x2, where

xν
1 = ρ + 1

Ap
, xν

2 = ρ + 2
2Ap

, xν
3 = ρ + 2

2(ρ + 1)Ap
.

Furthermore, it can be shown that g′′′(x0) = 0 and giv(x0) < 0, where xν
0 = 3(ρ +

1)2/((2ρ + 3)Ap). It is easily verified that x0 > x1 > x2 > x3.
Then for x ≥ x0, we have (i) g(x) ≥ 0, (ii) g(∞) = 0, (iii) g′′(x) ↓ and (iv) the product

x · g(x) → +∞ as x → +∞. Finally, we have

−g′′(x)
g′(x)

=
(
Apxν − 1 − ρ

)
(
Apxν − 1 − 1

2ρ
) ρ + 2

(ρ + 1)x
.

Then for x ≥ x0

(v) 0 < −g′′(x)
g′(x)

<
ρ + 2

(ρ + 1)x
=
(
1 + 1

ρ + 1

)
1
x

<
2
x
. �

Proof of Theorem 2 First, Lemma 1 justifies the applicability of Nagaev (1998, Theorem
2) on the exact asymptotics of the probabilities of large deviations. The rest follows from a
combination of representation (37) for the variance functionVZp(·)with Jørgensen (1997,
p. 50 and Exercise 2.25).
Proof of Theorem 3 The proof of the fact that the asymptotics is given by the expression

which emerges on the right-hand side of (41) then easily follows from a combination of
(31) with Paris and Vinogradov (2016, formulas (4.8)–(4.9)).

Lemma 2 Given p > 2, μ ∈ �p and λ ∈ R1+, the probability function of r.v. PTp,μ,λ
possesses the following asymptotics as integer � → +∞:

P{PTp,μ,λ = �} ∼ e−Ap · (θp + 1)−� · Z · �ρp−1/�(ρp). (77)
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Proof of Lemma 2 It involves a combination of representation (30) with Paris
and Vinogradov (2016, formula (4.14)). In addition, the proof can be derived from
Christoph and Schreiber (1998, formula (9)). Moreover, an application of Paris and Vino-
gradov (2016, formula (4.13)) or Christoph and Schreiber (1998, formula (9)) makes it
possible to construct asymptotic expansions of the probability function that emerges on
the left-hand side of formula (77).
Proof of Theorem 4 For μ = ∞, (42) follows with some effort from a combination of

Borovkov and Borovkov (2008, p. 167 and Theorem 3.7.1) with (31) and (77). For μ < ∞,
(42) is easily reduced to the “boundary” case of μ = ∞.
Proof of Theorem 5 First consider p ∈ (1, 2) ∪ (2,+∞) with � ∈ Z+ and let λ → +∞.

From (17)–(19), it follows that θp → +∞ like λ andZ → ±∞ according as p ∈ (1, 2) and
p ∈ (2,+∞), respectively. We employ representation (30) for p� and make use of Paris
and Vinogradov (2016, formula (3.1)) which stipulates that for integer � > 1

1
1 (ρ, �; ρ, 0;Z) = (ρZ)� eZ
(
1 + (ρ + 1)�(� − 1)

2ρZ + O
(
Z−2)) (Z → ±∞)

= (ρZ)�eZ
(
1 + �(� − 1)

2λμ2−p + O
(
λ−2))

since ρ = ρp is such that (ρ + 1)(p − 1) = 1, and

ρZ = ρλμ2−p

2 − p
(1 + 1/θp)−ρ = λμ2−p

p − 1
(
1 + O

(
λ−1)) .

Then, from (30),

p� = eZ−Ap

�!

(
ρZ

θp + 1

)� (
1 + �(� − 1)

2λμ2−p + O
(
λ−2)) , (78)

where Z = Ap(1 + 1/θp)−ρ = Ap

(
1 − ρ

θp
+ ρ(ρ+1)

2θ2p
+ O

(
λ−3)). With μ = ρAp/θp and

θp defined in (17), we have

eZ−Ap = e−μ

(
1 + μ2

2λμ2−p + O
(
λ−2)) , ρZ

θp + 1
= μ

(
1 − μ

λμ2−p + O
(
λ−2)) .

Substitution of these estimates in (78) finally yields the validity of (44).
When p = 2, we obtain from (27) with θ2 = μ/λ that

p� = (λ)�

�!
·
(

μ

μ + λ

)�

·
(

λ

μ + λ

)λ

= e−μμ�

�!
· λ−��(λ + �)

�(λ)
·
(
1 + μ

λ

)−� · eμ ·
(
1 + μ

λ

)−λ

.

By formula (66), λ−��(λ + �)/�(λ) = 1 + �(� − 1)/(2λ) + O
(
λ−2) as λ → +∞.

Subsequently, some routine algebra yields that

p� = e−μμ�

�!

{(
1 + �(� − 1

2λ

)(
1 − μ�

λ

)(
1 + μ2

2λ

)
+ O

(
λ−2)}

= e−μμ�

�!

{
1 + (μ − �)2 − �

2λ
+ O

(
λ−2)} .

Finally, when p = 1 we use (26) withA1 = μλ and Z = μλe−1/λ given by (20) to find

p� = eμλ(e−1/λ−1)

λ��!
T�

(
μλe−1/λ) e−μ

λ��!

(
1 + μ

2λ
+ O

(
λ−2)) T�

(
μλ − μ + O

(
λ−2)) .
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From Paris (2016, formula (1.4)), the expansion of the �th Touchard polynomial for large
values of x is T�(x) = x�

{
1 + �(� − 1)/(2x) + O

(
x−2)} as x → +∞, whence

p� = e−μμ�

�!

{(
1 + μ

2λ

)(
1 − �

λ

)(
1 + �(� − 1)

2μλ

)
+ O

(
λ−2)}

= e−μμ�

�!

{
1 + (μ − �)2 − �

2μλ
+ O

(
λ−2)} .

The above arguments complete the proof of the validity of (44).
Proof of Theorem 6We combine formulas (17)–(20), (30) and (45)–(46) to ascertain that

θp → 0,Ap → 0, Zp → Z and hence, that

P{PTp,μp,λp = �} ∼ 1
�!

· 1
1(ρp, �, ρp, 0;Z). (79)

The rest follows from a combination of (79) with formulas (71)–(72) which stipulate that
given � ∈ Z+ and Z ∈ R1 \ {0},

1
1(ρ, �, ρ, 0;Z) → (−Z)� · eZ as ρ (= ρp) ↓ −1. � (80)

Proof of Theorem 7 The first step involves a combination of formulas (25) and (28) with
subsequent derivation of an integral representation for the probability of interest, where
the integral over R1+ is similar to those considered in Vinogradov (2008a, formulas (27)
and (32)) and Paris and Vinogradov (2015, formula (3.31)).
The second step relies on an application of Paris (2011, p. 14, formula (1.2.22)) for

the derivation of an asymptotic expansion of such an integral. This is carried out by a
refinement of the Laplace method and is parallel to Paris and Vinogradov (2015, Proof of
Theorem 3.10). The details are left to the reader.
Proof of Theorem 8 First, it follows from the fact that μC := Cμ and λC := Cp−2λ that

Ap(C) ≡ Ap(1) = Ap, and θp(C) ≡ θp(1)/C = θp/C. Hence, the probability function of
r.v.PTp,Cμ,Cp−2λ admits representation (30) with the same value ofAp(= Ap(C)), the value
θp/C of the exponential tilting parameter, and the following value Z(C) of the invariant of
the exponential tilting transformation:

Z(C) := Ap · (θp(C)/(θp(C) + 1)
)ρp = Ap · (C−1 · θp/

(
θp/C + 1

))ρp
= Zp,∞ · (θp + C

)−ρp .
(81)

In particular, (81) yields that as C → +∞,

Z(C) ∼ Zp,∞ · C−ρp

{
↓ 0 if ρp > 0;
→ −∞ if ρp ∈ (−1, 0).

Next, combine the Poisson-mixture representation (28) with Paris and Vinogradov (2016,
formula (1.5)). The asymptotics of the integral over R1+ which will emerge as a result of an
application of the latter structural relationship given by Paris and Vinogradov (2016, for-
mula (1.5)) is evaluated by following along the same lines as Paris and Vinogradov (2015,
Proof of Theorem 3.10), where the special case of p = 3/2 was considered. Again, it relies
on a refinement of the Laplace method described in Paris (2011, p. 14, formula (1.2.22)).
The details are left to the reader.
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Appendix 2. Relevant conjectures and their numerical verification
In this section, we will present two conjectures pertaining to the behavior of the Wright
function 1
1(ρ, �, ρ, 0; ·) and “reduced” Wright function φ(ρ, 0; ·) in the cases where the
parameter ρ approaches −1 and +∞, respectively.
First, consider the following function Gx(k), k ∈ Z+, with fixed x ∈ R1 \ {0}:

Gx(k) :=
{
0 if k = 0;∑k

�=1 x−� · k(k−1)...(k−�)
�(�+1) − k if k ≥ 1.

(82)

Also, set

λp = λZ ,p := |Z|p−1(p − 1) · (1 − 1/(p − 1))p−1. (83)

Clearly, λp ∼ e−1 · (p − 1) · |Z|p−1 as p → +∞.
The following conjecture can be regarded as a prospective refinement of the local limit

Theorem 6 on Poisson convergence.

Conjecture 1 Given k ∈ Z+ and real Z < 0,

P
{
PTp,∞,λp = k

} = π|Z|(k) · (1 + G|Z|(k)/p
)+ O(1/p2) as p → +∞. (84)

By (83), formula (84) follows from the next analysis conjecture which would refine (80):
given � ∈ Z+ and real Z �= 0, there exists constant K ∈ R1+ such that

|1
1 (ρ, �, ρ, 0;Z) /
(
(−Z)�eZ

)
−1−G−Z(�)(1+ρ)|/(1+ρ)2 → K as ρ ↓ −1. (85)

The veracity of (85) was checked numerically with the help of Mathematica. For
simplicity, set Z = −3 and � = 5 (with ε := 1 + ρ approaching 0).
The computations summarized in Table 1 suggest that for the above Z and �, the value

of constant K is approximately 3.6419.
The next (previously unknown) hypothesis relates the “reduced” Wright function

φ(ρ, 0; ·) with ρ → +∞ to the principal branchWp of the LambertW function.

Conjecture 2 Fix z ∈ R1+ and assume that real κ ↓ −1. Then

log
{ ∫ ∞

0

e((1+κ)/κ)zy

y(1 + y)
· φ(κ , 0;−(1 + y)yκ)dy

}
= − z

Wp(z)
+ z(1 + κ) + o(1 + κ) → − z

Wp(z)
,

(86)

where functions φ andWp are introduced in Definitions 1 and 4, respectively.
As of now, we only have some “probabilistic” arguments in support of the validity of

(86), which are given below Table 2. Observe that both the “probabilistic” arguments and

Table 1 The accuracy of the “leading error term”
approximation for 1
1(ρ , 5, ρ , 0;−3) as ρ ↓ −1

ε = 1 + ρ Left-hand side of (85)

10−1 3.254222

10−2 3.601987

10−3 3.637964

10−4 3.641574

10−5 3.641935

10−6 3.641971
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Table 2 The absolute relative error (88) for the
approximation (87) in the case where z = 1

ρ Error (88) ρ Error (88)

20 8.96 × 10−3 500 3.62 × 10−4

50 3.61 × 10−3 1500 1.21 × 10−4

100 1.80 × 10−3 2000 9.04 × 10−5

the numerical verification of (86) given in Table 2 involve rewriting the integral from (86)
in terms of the specific solution to equation (10). Namely, that integral coincides with the
integral which emerges on the right-hand side of (11), such that r := 1/(1 + κ) − 1 ↑
+∞ and w = 1/(r · z). Also, it can be shown that (86) is equivalent to the fact that given
z > 0,

log ts0(z/ρ) ∼ Wp(z)/ρ as ρ ↑ +∞. (87)

Now, we address the veracity of approximation (87). For z = 1, Table 2 gives the
following absolute relative error for various values of ρ:

|log ts0(z/ρ) − Wp(z)/ρ|/(Wp(z)/ρ). (88)

The computations summarized in Table 2 suggest that the error (88) decreases to 0 as ρ

increases to +∞.
We now provide the “probabilistic” arguments in support of (86). First, it can be shown

that Conjecture 2 is equivalent to (59). Then in view of continuity of the Poisson-Tweedie
family in Lévy metric with respect to p (see (49)), it is plausible that their variance func-
tions also converge pointwise as p ↓ 1. Recall that in the cases where p ∈ (1, 2) and
p = 1, parts (i) and (iii) of Theorem 1 yield that they are expressed in terms of functions
φ and Wp, respectively. A subsequent combination of representations (37) and (39) with
the anticipated pointwise convergence of the variance functions as p ↓ 1, (21) and some
algebra suggests the validity of (59).
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