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Abstract
A modelling framework for changing Arctic sea ice extent is developed reflecting
different trends and seasonal extremes in nine Arctic sub-regions. Core sub-regions
retain partial ice cover throughout the year, and in winter show complete ice cover,
while in peripheral sub-regions, winter coverage is not complete, and there is no ice
cover at all in the summer. A generalized beta representation is developed for monthly
ice extents in core sub-regions, with inflation to model maximum winter extents. For
peripheral sub-regions, a gamma time series with excess zeroes (representing summer
sea ice absence) is developed. Different trend representations (deterministic vs.
stochastic) are compared for non-extreme observations. Other potential applications of
the generalized beta density allowing zero or maximum inflation are discussed.

Keywords: Sea ice extent; Seasonal extremes; Inflated generalized beta; Inflated
gamma; Bayesian

1 Introduction
In recent years, Arctic sea ice has been declining with wider climatic implications. The lat-
ter are multi-faceted and subject to discussion and uncertainty; see, for example, (Screen
et al. 2013). However, one implication follows from the role of sea ice in regulating the
global temperature via its ability (compared to the ocean surface) to reflect the sun’s radi-
ation. The albedo of snow-covered sea ice is 0.90, meaning it reflects 90% of the sun’s
radiation, whereas the ocean surface reflects only 10%. Less sea ice and more ocean
surface will lead to a warmer Arctic, and contribute to global warming. There is also evi-
dence that decline in Arctic sea ice is influencing atmospheric circulation (including the
jet stream) within and beyond the Arctic, with impacts including winter cold surges in
Europe and North America (Liu et al. 2012).
Satellite records of Arctic sea ice extent (available with full annual coverage since 1979)

show a downward trend, albeit with fluctuations such as unusually low points in 1990
(Serreze et al. 1995) and in 2007 (Comiso et al. 2008). For the Arctic as a whole, the rate
of decline in summer ice extent has been greater (Stroeve et al. 2012), with an 8.2% linear
rate of decline (per decade) in September ice extent between 1979 and 2011, as against a
3.9% linear rate of decline for March ice extent (see Table 1).
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Table 1 Arctic sea ice extent

(millions of km2)

March September

1979 16.4 7.2

1980 16.1 7.8

1985 16.1 6.9

1990 15.9 6.2

1995 15.3 6.1

2000 15.3 6.3

2005 14.8 5.6

2006 14.5 5.9

2007 14.7 4.3

2008 15.2 4.7

2009 15.2 5.4

2010 15.1 4.9

2011 14.3 4.6

2012 15.2 3.6

However, the Arctic extent totals in Table 1 aggregate over sub-regions with dissimi-
lar trends and seasonal extremes; for example, some sub-regions show substantial falls in
extent in both winter and summer months. The present study accordingly reviews issues
in modelling sea ice trends for Arctic sub-regions, and includes short term projections
three years beyond the range of the observed data. While a number of forecasts of sea ice
cover have been developed (e.g. Stroeve et al. 2007), these generally consider the entire
Arctic, and do not consider sub-regional differences. The observed data are monthly
NASA satellite records from 1979 to 2011 (396 observations), disaggregated to nine
Arctic sub-regions. These are the central Arctic Ocean, the Canadian Archipelago,
Hudson Bay, Sea of Okhotsk, Bering Sea, Baffin Bay, Greenland Sea, Kara-Barents Sea,
and Gulf of St. Lawrence (see Figure 1). The observed data were extracted in June 2013 at
http://neptune.gsfc.nasa.gov/csb/index.php?section=59.
There are important regional differences in trends and seasonal patterns according to

location (e.g. Arctic core vs. periphery) that are relevant to statistical analysis and fore-
casts. These include modelling seasonal extremes. For central regions there is still some
summer cover but a reversion to complete cover (maximum possible extent) in winter
months. To represent this pattern, a generalized beta representation is applied, including
“maximum inflation” to account for winter total coverage.
By contrast, in some non-core regions such as the Sea of Okhotsk and Bering Sea, win-

ter extents do not cover the entire sea region, and there is no ice cover in the summer. For
these regions, a gamma density with excess zeroes (representing summer sea ice absence)
is developed. In both situations, regression models including trend and seasonal compo-
nents are applied to represent the change in mean sea ice extent, while a separate logit
regression is applied to the probability of inflation. Contrasting stochastic and determin-
istic trend representations are evaluated. Estimation is based on monthly observations
in the first 31 years of satellite observations (1979-2009) with cross-validation using the
remaining two years of observed data as a test sample. Bayesian estimation and inference
are implemented using the Winbugs package via Markov chain Monte Carlo (MCMC)
methods (Lunn et al. 2009).

http://neptune.gsfc.nasa.gov/csb/index.php?section=59


Congdon Journal of Statistical Distributions and Applications 2014, 1:3 Page 3 of 17
http://www.jsdajournal.com/content/1/1/3

Figure 1 Map of case study sub-regions (image courtesy of National Snow and Ice Data Center (2012),
University of Colorado, Boulder).

2 Generalized beta time series regression
2.1 Application of the generalized beta to sea ice extents

Asmentioned above, while there is decline in Arctic sea ice overall, there are considerable
regional differences in trends and seasonal ice extent.What are here denoted “core” Arctic
sea regions (namely the central Arctic Ocean, the Canadian Archipelago, and Hudson
Bay) retain partial ice cover throughout the year, and in winter months show complete
ice cover. For example, in 2011, the central Arctic had readings of 7.158mn km2 through-
out January to March while the Canadian Archipelago had readings of 0.751 mn km2

for January through to April. Figure 2 shows monthly extent totals for the central Arctic
ocean during 2007-11 and illustrates maximum inflation in winter. The trend in these
three regions is similar to that in the Arctic ocean considered as an aggregate, namely
stronger declines in summer extent.
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Figure 2 Observedmonthly extents, millions km2, 2007-11, central Arctic ocean.

A time series representation needs to express the annual reversion to complete cover
(maximum recurrence) in winter months, together with the irregular trend for declining
extent in non-winter months. The application of a generalized form of the beta density
is motivated by the fact that the observed ice extents y can be seen as ratios r = y/d
to a maximum possible extent d, though substantive interest is in trends in extents y. It
is important that the bounded nature of the response is included in any model. Another
possibility might be some form of truncated sampling mechanism (e.g. a log-normal for
extent readings y with ceiling d) but this precludes any analysis of the factors producing
seasonal extremes.
Consider the beta distribution on (0, 1), with density function given by

f (z|a, b) = 1
B(a, b)

za−1(1 − z)b−1,

with a > 0, b > 0. An alternative representation (Ospina and Ferrari 2010) involves mean
and precision parameters (μ,φ), where a = μφ, b = (1 − μ)φ, namely

f (z|μ,φ) = 1
B(μφ,φ − φμ)

zμφ−1(1 − z)(1−μ)φ−1,

with φ > 0, and 0 < μ < 1. This form facilitates separate modelling of mean and variance
trends (Huang and Oosterlee 2008). For values (a, b) apart from a = b = 1, the Beta(a, b)
density has zero mass at the extreme values 0 and 1, and zero-inflated or one-inflated
versions of the beta need to be applied (Ospina and Ferrari 2010). Let g = 0 or 1, then
inflation at either boundary is achieved by the mechanism

f (z|αg ,μ,φ) =
{

αg , z = g
(1 − αg)f (z|μ,φ), z ∈ (0, 1),

where αg is an inflation probability.
The generalized beta is obtained by extending the support interval to an arbitrary

bounded interval (c, d) (with d > 0) via a linear transformation y = c+z(d−c) (Pham-Gia
and Duong 1989), so that

f (y|a, b, c, d) = 1
B(a, b)(d − c)a+b−1 (y − c)a−1(d − y)b−1,
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with equivalent representation

f (y|μ,φ, c, d) = 1
B(μφ,φ − φμ)(d − c)φ−1 (y − c)μφ−1(d − y)(1−μ)φ−1, (1)

with mean c + (d − c)μ, and variance (d − c)2μ(1 − μ)/(φ + 1).
For the generalized beta in (1), inflation will need to be applied for values occurring at

the boundary points, when y = c or y = d (this may be termed minimum and maximum
inflation). The maximum inflated version of the generalized beta is particularly relevant
to the sea ice application and has the form

f (y|αd,μ,φ, c, d) =
{

αd , y = d
(1 − αd)f (y|μ,φ, c, d), y ∈ (c, d).

In the generalized beta applied to core Arctic regions, c = 0 while d is the maximum
winter extent (namely d1=7.158 mn km2 for the central Arctic ocean, d2=0.751mn km2

for the Canadian Archipelago, and d3=1.233 mn km2 for Hudson Bay).
While summer minimum extents in the central Arctic and Canadian Archipelago

remain well in excess of zero, those in Hudson Bay are becoming relatively small, e.g.
y = 0.025 mn km2in September 2010. This raises the possibility of needing to represent
both maximum and minimum inflation in the generalized beta. This can be handled by
the mechanism

f (y|αc,αd,μ,φ, c, d) =

⎧⎪⎨
⎪⎩

αc, y = c
αd, y = d

(1 − αc − αd)f (y|μ,φ, c, d), y ∈ (c, d),

where the vector of probabilities (αc,αc, 1 − αc − αd) should be modelled using a
multinomial logistic.

2.2 Generalized beta time series regression with maximum inflation for sea ice extents

Let {μt ,φt ,αdt} denote the series of parameters underlying the yt series,m = mt represent
the month that observation t corresponds to, and s = st represent the year correspond-
ing to observation t (e.g. s = 2 in 1980 for observations t = 13, .., 24 and s = 31 for
observations t = 361, .., 372). A parsimonious time series model is sought (Ledolter
and Abraham 1981), combining close fit with low predictive variability, especially for
cross-validatory and out-of-sample predictions. As discussed in Section 4, these aspects
of fit are assessed using a posterior predictive fit criterion (Laud and Ibrahim 1995). A
parsimonious model for the level of the series is expressed by a logit regression in μt ,
logit(μt) = �ms + ϑm, where �ms represents trend for each combination of month m

and year s, and ϑm represents seasonal effects.
Two options for the trend are considered. One option is a stochastic trend, with random

variation around a central linear trend. To allow for steeper declines in some months, a
discrete mixture is implemented via

�ms = ρmϕ1s + (1 − ρm)ϕ2s,

ρm ∼ Bern(πm),

ϕ0s = δ00 + δ01s + us,

ϕ1s = δ10 + δ11s + us,

us ∼ N
(
us−1, σ 2

u
)
,

(2)
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with ρm ∼ Bern(πm) being binary indicators.With the constraint δ11 < δ01, ϕ1s represents
the stronger downward trend.
The other form of trend assumption (deterministic) involves a linear trend in years st

combined with a short term AR1 lag effect in extents yt . The latter represents carry over
between successive months; for example, if September extent is relatively low in a particu-
lar year, thenOctober extentmay also be relatively low. The linear trendmay vary between
months and by broad sub-period. For example, (Comiso et al. 2008) report a stronger
decline during 1996-2007 than 1979-96. Here we consider three sub-periods p = 1, ..., 3
of 12 years, including out-of-sample years (2012-14), namely 1979-1990, 1991-2002, and
2003-2014. The trend parameter for a particular time point is chosen by a monthly spe-
cific discrete mixture between guide linear trend parameters, specific to broad period,�0p
and �1p, with �1p < �0p. The AR1 lag effect is also taken to vary by month, with normal
priors for each monthly lag parameter. Thus for monthm = mt , and year st ,

logit(μt) = �t + ϑm,

�t = γ0 + γ1mst + γ2myt−1,

where the linear trend γ1m for month m = mt in period p is chosen using a discrete
mixture

γ1m = ρm�0p + (1 − ρm)�1p; ρm ∼ Bern(πm).

Remaining aspects of the model are applicable across different representations of trend.
Seasonal (monthly) effects are represented by a Fourier series (Höhle and Paul 2008),

ϑm =
J1∑
j=1

(β2j−1 cos(ωjm) + β2j sin(ωjm)), (3)

whereω = 2π/M, withM = 12, and J1 is the number of harmonics. To allow for changing
precision it is assumed that

log(φt) = η1 + η2ms, (4)

namely a linear trend (varying by month) in year units. For example, (Stroeve et al. 2012)
find evidence of increased variability in overall Arctic sea ice extent, especially in summer
months.
To represent extreme data (complete winter coverage), a logit regression is used to

model the probabilities αdt of maximum inflation, with form

logit(αdt) = ξ0 +
J2∑
j=1

(ξ2j−1 cos(ωjmt) + ξ2j sin(ωjmt)).

A trend element in the inflation probability is not included as it would be confounded
with the trend model in the mean.

2.3 Other generalized beta applications

While the application here focuses on sea ice extent and a time series application, the gen-
eralized inflated beta with mechanisms or regressions for both extreme and non-extreme
observations has potential applications in other settings where the observations can be
regarded as ratios ri = yi/di of actual extents to a maximum extent di, but substantive
interest is in the extents yi. The extents may be, inter alia, expressed in spatial units (e.g.
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areas in millions of square kilometres) or time units (e.g. durations in hours). As an exam-
ple with time extents, one might analyse hours with cloud cover yi in relation to daylight
hours di, while a spatial application might consider desertified extents yi in relation to
total area extents di.
Data of this form can be considered as a form of compositional data, and widely used

methods (Aitchison and Egozcue 2005, Butler and Glasbey 2008) focus on the ratios ri,
or more specifically the log ratios. Spatial applications involving compositional data and
zero inflation have been described in (Leininger et al. 2013), but also focus on the ratios.
However, for policy purposes, the interest may be in trends or patterns in the extents

themselves (i.e. the y-data), rather than in the ratios, as is the case with the sea ice
extents. Alternatively stated, “compositions provide information only about the relative
magnitudes of the compositional components and so interpretations involving absolute
values ... cannot be justified” (Aitchison and Egozcue 2005) p. 839. Thus in the case
of desertification (e.g. Zhao et al. 2010), the substantive focus may be on spreading
desertification, implying analysis of desertified extents yi. Some areas may be totally
desertified with yi = di (maximum inflation). Regression modelling of desertification
extents would then need to include a mechanism or regression describing maximum
inflation, as would spatial forecasting (or interpolation) of desertified extents in situations
where comprehensive assessment of desertification status is only available for some area
units.
The generalized beta density with maximum or zero inflation might be potentially

extended to Dirichlet density applications, and to generalized inflated Dirichlet densities
parallel to equation (1), where there are more than two categories and where extreme
observations can occur. For example, with three categories the observations would be
(y1i, y2i, y3i), with

∑
k
yki = di, and maximum inflation occurring when any yki = di. The

inflation probabilities can bemodelled using amultiple logistic. For example, in the sea ice
application, one may distinguish by sea-ice type (e.g. Fissel et al. 2011) between perennial
multi-year sea ice and first-year ice, so that sub-region observations become (y1, y2, y3) for
area covered by multi-year ice, area covered by first-year ice, and area without ice cover
respectively.

3 Inflated gamma time series regression
In what are here denoted “peripheral” Arctic regions (Sea of Okhotsk, Bering Sea, Gulf of
St. Lawrence), the winter ice extents do not provide complete ice cover of the sea region,
while in at least one peak summer month (July, August, September) there is no ice cover
at all. For example, Figure 3 shows the extent series for the Bering Sea for 2007-11. Let yt
denote the observed extents (mn km2) for these regions following a gamma density,

f (y|μ,φ) = (φ/μ)φ

�(φ)
yφ−1e(−φy/μ),

with mean μ and variance μ2/φ. A zero inflated version of the gamma is motivated by the
need to represent absence of ice cover in summer months, as in the mechanism

f (y|α0,μ,φ) =
{

α0, y = 0
(1 − α0)f (y|μ,φ), y ∈ (0,∞).
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Figure 3 Observedmonthly extents, millions km2, 2007-11, Bering sea.

Let {μt ,φt ,α0t} denote the series of parameters underlying the observations yt . The link
for μt depends on which of two options for trend is applied.
One option is a stochastic trend, with log-link

log(μt) = �ms + ϑm, (5)

where �ms is as in (2) above. The other option, a deterministic trend, combines a linear
trend in years s with a short term lag effect in the response. The linear trend may vary
between months, and also between sub-period p. As above, the trend parameter for a
particular time point is chosen according to a monthly specific discrete mixture between
guide linear trends, specific to broad period, �0p and �1p, with �1p < �0p. Lag effects
are also taken to vary by month. To avoid an explosive impact of the lag effect (Blundell
et al. 2002, Jung et al. 2006), the following link scheme provides the deterministic trend
option,

μt = exp(ζ0 + ζ1mst + ϑm) + ζ2myt−1, (6)

with the constraint ζ2m ≥ 0. For example, onemay take ζ2m to have exponential or gamma
priors.
Remaining aspects of the model are applicable across different representations of trend.

Seasonal effects ϑm are represented by a Fourier series, as in (3), and precision parameters
modelled using the regression form (4). To represent summer extremes (no ice cover at
all), a logit regression for the probability of zero inflation is used, with

logit(α0t) = ξ0 +
J2∑
j=1

(ξ2j−1 cos(ωjmt) + ξ2j sin(ωjmt)).

For the remaining three Arctic sub-regions (Baffin Sea, Greenland Sea, Kara-Barents),
the data series demonstrate neither maximum recurrence in winter, nor complete sum-
mer ice disapperance as yet. The maximum values observed for these three series (in
millions km2) are 1.766 (Baffin Sea, March 1993), 1.115 (Greenland Sea, January 1982)
and 2.168 (Kara-Barents, April 1979), whereas recent winter maxima are below these
levels. Recent summer extents might be taken to indicate incipient ice disappearance in
summer, such as a reading of 0.04 mn km2 in the Baffin Sea in August 2011. However, for
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these regions a gamma regression may be adopted, without any inflation mechanism. The
time series regression therefore involves {μt ,φt}, and stochastic and deterministic trend
options, as in (5) and (6) respectively, may be compared.

4 Model fit and comparison
4.1 Analysis framework

To illustrate a full comparative analysis, three sub-regions are considered as representa-
tive of the three sets of regions described above: the central Arctic, the Sea of Okhotsk and
the Greenland Sea. Different models are applied to monthly observations from January
1979 to December 2009 (namely for t = 1, ..,T with T = 372), with in-sample cross-
validation for the two year period 2010-2011, namely for t = T + 1, ...,T1 with T1 = 396.
Out of sample predictions are made for a further 36 months, January 2012 to December
2014. Posterior inferences are based on the second halves of two chain runs of 50,000
iterations, with convergence assessed using Brooks-Gelman-Rubin statistics (Brooks and
Gelman 1998).

4.2 Generalized beta regression with maximum inflation

The central Arctic is one of three sea regions with recurrent winter maxima and partial
summer ice cover, and Figure 4 shows the trend in yearly averages for the central Arctic,
with the anomalous low cover years (1990, 2007) apparent. In applying the generalized
beta regression, normal priors with mean zero and variance 1000 are adopted on fixed
effect parameters {β , ξ , η,�, δ,u1, γ0, γ1}, while the lag parameters γ2m are assignedN(0,1)
priors. A gamma prior with shape 1 and scale 0.001 is adopted for the precision 1/σ 2

u ,
while Beta(1, 1) priors are adopted for the πm. The Fourier seasonal representations for
the means μt and inflation probabilities αdt have J1 = J2 = 3 harmonics, as insignificant
regression effects {β , ξ} were obtained at higher numbers of harmonics.
Predictions are obtained by generating replicate inflation indicatorsDnew,t ∼ Bern(αdt),

and replicate scaled beta values dznew,t , where znew,t ∼ Beta(μtφt ,φt −φtμt). Predictions
are then

ynew,t = Dnew,td + (1 − Dnew,t)dznew,t .
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Figure 4 Yearly averages (mn km2), observed extents 1979-2011, central Arctic.
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LetMnew,t and Vnew,t be the posterior means and variances of ynew,t . In-sample predictive
fit (within the training dataset from January 1979 through to the end of 2009) is based on
the L-criterion (Laud and Ibrahim 1995), namely the square root of

L2 =
T∑
t=1

Vnew,t +
T∑
t=1

(Mnew,t − yt)2.

Cross-validatory predictions beyond T = 372 (for the 24 months in 2010 and
2011) are made by treating {yT+1, ..., yT1} as missing data, and generating predictions
{ynew,T+1, ..., ynew,T1}. These can be compared with observed test data yobs,t for 2010 and
2011. Cross validatory fit using the L criterion, denoted CV-L, is based on

CV-L2 =
T+24∑
t=T+1

Vnew,t +
T+24∑
t=T+1

(
Mnew,t − yobs,t

)2 = P1 + P2,

which will reflect the precision of future predictions (P1) as well as the fit (P2). To further
assess predictive performance, a check is made whether observed extents are within 95%
intervals of ynew. In a model that effectively reproduces the data, predictive coverage is at
or above 95% (Gelfand 1996, p. 158).
Table 2 shows posterior means and variances during the cross-validation period, while

Table 3 summarises the L-criteria for both cross-validation periods (test data) and the
in-sample estimation (training data). It is apparent that the deterministic trend has a bet-
ter cross-validation performance but a worse in-sample performance. In particular, the
deterministic trend is less adaptable to anomalous observations such as occurred during
the summers of 1990 and 2007. Both models are effective in reproducing the original data
satisfactorily in terms of coverage obtained by ynew,t .
The better out-of-sample cross validation under the deterministic trend is due to lower

predictive variability (P1 = 2.06 under the deterministic trend, whereas P1 = 6.13 under
the stochastic trend); pure fit is broadly similar between the two options (P2 = 0.41
under deterministic trend, as against P2 = 0.34 under stochastic trend). Figure 5 shows
observations and predictions for 2010-11, as well as out-of-sample predictions through
to December 2014, under the deterministic trend option. Posterior mean predictions
for September extent in 2012, 2013 and 2014 are respectively 3.88, 3.78 and 3.68mn
km2. Table 4 summarizes selected parameters from the deterministic trend model. The
strongest downward trends in mean extent, as represented by the guide parameters �0p
and �1p, are for 1979-90 and for the partially observed third period (2003-14), with esti-
mates based on observations for 2003-09. Parameters η2m for trends in precision are
nonsignificant in summer months (i.e the 95% credible intervals straddle zero), though
the 95% credible intervals for η2m in July and August are biased to negative values, namely
(-0.052,0.009) and (-0.058,0.009).

4.3 Gamma regression time series

The Sea of Okhotsk is one of three regions with recurrent summer disappearance of ice
cover. Table 5 shows that unlike the trend for the whole Arctic as an aggregate (e.g. see
Table 1), the most pronounced declines in average extent in the Sea of Okhotsk have been
in the first quarter months (January, February, March). In applying gamma time series
regression with zero inflation, priors are as in Section 4.2, except that exponential E(1)
priors are adopted for the lag parameters ζ2m, in order to ensure that μt is positive - see



Congdon Journal of Statistical Distributions and Applications 2014, 1:3 Page 11 of 17
http://www.jsdajournal.com/content/1/1/3

Table 2 In-sample cross validation (for 2010 and 2011)

Stochastic trend Deterministic trend

Month Actual Posterior Posterior Posterior Posterior Posterior Posterior
(Test data) mean median variance mean median variance

Jan-2010 7.145 7.148 7.158 0.0004 7.148 7.158 0.0004

Feb-2010 7.154 7.154 7.158 0.0001 7.151 7.158 0.0006

Mar-2010 7.158 7.157 7.158 0.0000 7.157 7.158 0.0000

Apr-2010 7.157 7.155 7.158 0.0001 7.155 7.158 0.0000

May-2010 7.130 7.112 7.119 0.0013 7.120 7.122 0.0003

Jun-2010 6.814 6.823 6.865 0.0419 6.881 6.901 0.0173

Jul-2010 6.192 6.077 6.147 0.2322 6.206 6.234 0.1054

Aug-2010 5.061 4.886 4.944 0.5817 4.923 4.917 0.2896

Sep-2010 4.181 4.174 4.200 0.7522 4.072 4.074 0.2886

Oct-2010 5.555 5.586 5.667 0.4638 5.248 5.278 0.2480

Nov-2010 6.864 6.808 6.863 0.0693 6.828 6.863 0.0406

Dec-2010 7.137 7.108 7.138 0.0061 7.127 7.144 0.0022

Jan-2011 7.158 7.145 7.158 0.0007 7.148 7.158 0.0004

Feb-2011 7.158 7.153 7.158 0.0001 7.151 7.158 0.0003

Mar-2011 7.158 7.157 7.158 0.0000 7.157 7.158 0.0000

Apr-2011 7.157 7.154 7.158 0.0001 7.155 7.158 0.0000

May-2011 7.126 7.105 7.118 0.0029 7.119 7.121 0.0003

Jun-2011 6.786 6.777 6.856 0.0962 6.872 6.889 0.0173

Jul-2011 5.758 5.983 6.140 0.4925 6.185 6.208 0.1069

Aug-2011 4.587 4.792 4.907 1.0733 4.872 4.867 0.3136

Sep-2011 3.911 4.091 4.130 1.3271 3.984 3.981 0.3035

Oct-2011 5.082 5.479 5.628 0.8492 5.150 5.181 0.2711

Nov-2011 6.819 6.756 6.848 0.1338 6.808 6.845 0.0478

Dec-2011 7.155 7.100 7.139 0.0097 7.124 7.142 0.0024

equation (6). The Fourier seasonal effects series included in representations for μt and
the inflation probabilities α0t have J1 = J2 = 3 harmonics. Predictions are obtained by
generating replicate inflation indicators Dnew,t ∼ Bern(α0t), and replicate gamma values
wnew,t ∼ Gamma(φt ,φt/μt). Predictions are then obtained as

ynew,t = 0 × Dnew,t + (1 − Dnew,t)wnew,t .

Table 6 summarises the L-criteria for the cross-validation period (when predictions are
compared to test data) and for the in-sample estimation period (when predictions com-
pared to training data). The deterministic trend has better performance (see Figure 6 for

Table 3 Predictive fit (L-criterion) and predictive checks, sea ice extent models, central
Arctic ocean

Trendmodel

Stochastic Deterministic

In-sample fit (1979-2009) 2.77 3.96

Stochastic Deterministic

Cross validation fit (2010-11) 2.54 1.57

%of observations within 95% credible intervals of posterior predictions

Stochastic Deterministic

In-sample period 97.8 97.6

Cross-validation period 100.0 100.0
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Figure 5 Central Arctic (mn km2), cross-validation period (2010-11) actual vs fitted, and
out-of-sample predictions to end 2014.

actual and fitted series). March extents (in mn km2) are predicted to fall to 0.895 in 2012,
0.889 in 2013 and 0.879 in 2014 as compared to 0.964 in 2011. The strongest downward
trend in mean extent as shown by the deterministic trend guide parameters {�0p,�1p}
is actually in the first sub-period (1979-1990). It may be noted that the actual data for
the Sea of Okhotsk show a fall in annual average extent (mn km2) from 0.58 in 1979 to
0.37 in 1990. The posterior means (sd’s) for �1p are respectively −0.016 (0.010), −0.0085
(0.0044), and −0.014 (0.005).
For the three remaining sea regions (e.g. the Greenland Sea) with partial summer cover

and no winter maximum recurrence, a gamma regression may be applied. In fact, like the
Sea of Okhotsk, the Greenland Sea has declines in extent across both winter and summer
months. For example, the average March extent (in mn km2) fell from 0.98 in 1979-89 to
0.82 in 1990-2000 and 0.78 in 2001-11, while the average September extent fell from 0.37
(1979-89) to 0.34 (1990-2000) and 0.25 (2001-11). For this sub-region, a deterministic
trend model has better in-sample fit and cross-validatory fit (see Figure 7). March extents
are predicted as 0.767 in 2012, 0.766 in 2013 and 0.762 in 2014 as compared to 0.752 in
2011, and 0.764 in 2010. September extents are predicted as 0.294 in 2012, 0.290 in 2013
and 0.290 in 2014 as compared to 0.332 in 2011, and 0.264 in 2010.

4.4 Implications for prediction over entire Arctic

It is relevant to assess how far aggregated predictions (totalling over models for each of
the nine regions) compare with predictions from a single model applied to the extent time
series for the entire Arctic sea (i.e. to the data summarised in Table 1). The aggregated
predictions are based on training data for 1979-2009 and combine
a) generalized beta regressions (with maximum inflation) applied to extent data for the

Central Arctic, Canadian Archipelago, and Hudson Bay;
b) zero inflated gamma regressions applied to extent data for the Sea of Okhotsk, Bering

Sea, and Gulf of St.Lawrence;
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Table 4 Deterministic trend parameters

Posterior summary

Short term lag parameters Mean 2.5% 97.5%

γ21 -0.475 -1.971 0.833

γ22 -0.455 -2.074 0.960

γ23 0.344 -0.310 0.947

γ24 0.166 -0.227 0.668

γ25 0.823 0.305 1.303

γ26 0.516 0.191 0.939

γ27 0.907 0.348 1.821

γ28 2.004 1.453 2.431

γ29 3.222 2.580 3.926

γ2,10 2.999 1.552 4.394

γ2,11 1.110 -0.186 2.390

γ2,12 0.545 -1.110 1.875

Linear trend guide parameters by period Mean 2.5% 97.5%

�11 -0.028 -0.048 -0.007

�12 -0.019 -0.029 -0.008

�13 -0.028 -0.036 -0.019

�21 -0.037 -0.061 -0.017

�22 -0.025 -0.036 -0.016

�23 -0.034 -0.043 -0.026

Precision trends η2m Mean 2.5% 97.5%

η21 0.028 -0.024 0.072

η22 0.092 0.033 0.134

η23 0.233 0.122 0.308

η24 0.068 0.011 0.113

η25 0.064 0.030 0.097

η26 0.000 -0.034 0.031

η27 -0.021 -0.052 0.009

η28 -0.023 -0.058 0.009

η29 0.005 -0.035 0.041

η2,10 -0.017 -0.059 0.016

η2,11 -0.026 -0.060 0.005

η2,12 0.001 -0.033 0.031

Table 5 Trends in extent bymonth, sea of Okhotsk

Period

Month 1979-89 1990-2000 2001-2011

January 0.91 0.73 0.73

February 1.22 1.03 1.05

March 1.24 1.10 1.06

April 0.91 0.73 0.71

May 0.34 0.27 0.29

June 0.11 0.11 0.10

July 0 0 0

August 0 0 0

September 0 0 0

October 0.05 0.05 0.04

November 0.08 0.08 0.06

December 0.35 0.36 0.30

All Year 0.44 0.37 0.36
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Table 6 Posterior predictive loss, sea ice extent model, sea of Okhotsk

Trendmodel

Stochastic Deterministic

In-sample fit (1979-2009) 2.95 2.43

Stochastic Deterministic

Cross validation fit (2010-11) 1.11 0.68

%of observations within 95% credible intervals of posterior predictions

Stochastic Deterministic

In-sample period 97.6 97.6

Cross-validation period 100.0 95.8

c) gamma regressions without inflation applied to extent data for the Baffin Sea,
Greenland Sea, and Kara-Barents.
The deterministic trend model is adopted, and MCMC iterations 25,000-26,000 are

cumulated over the nine models, providing posterior summary statistics (mean, variance,
2.5% percentile, 97.5% percentile) for cross-validatory predicted extents in 2010-11 across
the entire Arctic region. By contrast, the single region approach (applied to the extent
series for 1979-2009 encompassing the entire Arctic region) involves a gamma regression
with deterministic trend - since the stochastic trend option provided much less precise
predictions to 2010-11.
The comparative L-criteria for cross-validatory fit (over the 24 months in 2010-11)

are 2.43 (aggregated predictions over sub-regions) and 3.70 (single region approach).
Figure 8 shows the cross-validatory predictions (2010-11) and out-of-sample predictions
(2012-14) for the combined forecast aggregating over sub-region models. March extents
(in mn km2) are predicted as 14.42 in 2012, 14.35 in 2013 and 14.31 in 2014, as compared
to actual extents of 14.34 in 2011, and 14.88 in 2010. September extents (in mn km2) are
predicted as 4.97 in 2012, 4.84 in 2013 and 4.71 in 2014, as compared to actual totals of
4.60 in 2011, and 4.90 in 2010.
Although sub-region data are not (at the time of writing) available beyond 2011,

totals for the entire Arctic are available from ftp://sidads.colorado.edu/DATASETS/
NOAA/G02135/. (Note that the latter differ slightly before 2012 from entire Arctic
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Figure 6 Sea of Okhotsk (mn km2), cross-validation period (2010-11) actual vs fitted, and
out-of-sample predictions to end 2014.
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Figure 7 Greenland Sea (mn km2), cross-validation period (2010-11) actual vs fitted, and
out-of-sample predictions to end 2014.

extents based on totalling the sub-regional series at http://neptune.gsfc.nasa.gov/csb/
index.php?section=59). In fact, the March 2012 figure of 15.21 mn km2 (NSIDC, 2012)
was the highest March average ice extent since 2008. By contrast, the September 2012
figure was anomalously low at 3.61 mn km2.

5 Summary and conclusions
This paper has considered sub-regional aspects of the observed downward trend in Arctic
ice sea cover. Arctic sub-regions differ in observed trends and also in seasonal extremes.
Thus some regions still have total winter cover but partial summer cover, while other
regions have partial winter cover and no ice cover in summer. While downward trends
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Figure 8 Entire Arctic combined forest (mn km2), cross-validation period (2010-11) actual vs fitted,
and out-of-sample predictions to end 2014.
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in sea ice extent across the Arctic as a whole show a stronger summer decline, this is not
necessarily the case when sub-regions are considered.
These differences are important for choosing the appropriate distribution, and inflation

mechanism. Sub-regional differences in ice loss may also be important for assessing rel-
atively localized impacts on climate or economic activities (e.g. Fissel et al. 2011). There
may also be benefits in prediction (see Section 4.4) through considering such sub-regional
differences and in aggregating over region-specific models.
Here generalized beta densities (with maximum inflation) and gamma regression (with

zero inflation) have been used to represent recurrent winter maxima and summer ice
disappearance respectively. Other applications of this methodology may be envisaged,
outside time series applications. Possible applications of the generalized inflated beta den-
sity are discussed in Section 2.3. It may be noted that transformations of ice extent such as
wt = log(1 + yt) might be envisaged as ways of avoiding beta or gamma regressions, and
instead leading possibly to modelling using normal or skewnormal likelihoods. However,
the problem of seasonal extreme inflation at particular values remains, and the method-
ology proposed in the paper provides a suitable representation for such extremes or for
explaining them.
Another approach, as in compositional data analysis, is to focus on the ratios rt = yt/dt

to the maximum, in the case when the data has two categories (e.g. area covered by sea
ice yt , remaining area dt − yt). Generally compositional data analysis involves Gaussian
likelihoods applied to log-transformed ratios. This method can adjust for zero inflation
(e.g. Butler and Glasbey, 2008), but does not generate direct inferences or out-of-sample
predictions for the extent data themselves.
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