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Abstract

This paper derives (1) the Chi-p distribution, i.e., the analog of Chi-square distribution
but for datasets that follow the General Gaussian distribution of shape p, and (2)
develops the statistical test for characterizing the goodness of the fitting with Lp norms.
It is shown that the statistical test has double role when the fitting method is induced
by the Lp norms: For given the shape parameter p, the test is rated based on the
estimated p-value. Then, a convenient characterization of the fitting rate is developed.
In addition, for an unknown shape parameter and if the fitting is expected to be
good, then those Lp norms that correspond to unlikely p-values are rejected
with a preference to the norms that maximized the p-value. The statistical test
methodology is followed by an illuminating application.
1. Introduction

The fitting of a given dataset f i � σ f i
� �N

i¼1 to the values V if gNi¼1 of a statistical model

V(X; α) in the domain X∈Dx⊆ℜ (McCullagh 2002; Adèr 2008), involves finding the

optimal parameter value α = α* in α ∈ Dα ⊆ℜ that minimizes the total square devia-

tions (TSD) between model and data,

TSD αð Þ2 ¼
XN
i¼1

σ−2f i f i−V xi; αð Þ½ �2; ð1Þ

where the inverse of the variance of the data measurements wi ¼ σ−2f i

n oN

i¼1
is weighting the

summation. The deviations may be also defined using the total absolute deviations (TAD),

TAD αð Þ ¼
XN
i¼1

σ−2f i f i−V xi; αð Þj j: ð2Þ

A class of generalized fitting methods has been considered by Livadiotis (2007), using
the metric induced by the p-norms Lp, p ≥ 1, that denotes a complete normalized vec-

tor space with finite Lebesgue integral. The total deviations (TD) are now defined by

TD αð Þp ¼
XN
i¼1

σ−p
f i

f i−V xi; αð Þj jp: ð3Þ

The least square method based on the Euclidean norm, p = 2, and the least absolute
deviations method based on the “Taxicab” norm, p = 1, are some cases of the general

fitting methods based on the Lp-norms (see Burden and Faires 1993; for more
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applications of the fitting methods based on Lp norms, see: Sengupta 1984; Livadiotis

and Moussas 2007; Livadiotis 2008; 2012; for fitting methods based on other effect sizes

e.g., correlation, see: Livadiotis and McComas 2013a).

The goodness of the least square fitting is typically measured using the estimated

Chi-square value, that is the least squared value, χ2est ¼ TSD α�ð Þ2 . Then, this χ2est is

compared with the Chi-square distribution, to examine whether such a value is fre-

quent or not (see next sections). However, this test can apply only to datasets

f i � σ f i
� �N

i¼1 that follow the normal distribution f ieN μf i ; σ f i

� �
. There is no similar test

for cases where the dataset follows the General Gaussian distribution of shape p,

f ieGG μf i ; σ f i ; p
� �

(see Section 2 and Appendix A). Livadiotis (2012) showed the connec-

tion between the fitting with Lp norms, as in Eq. (3), and datasets that follow the General

Gaussian distributions, f ieGG μf i ; σ f i ; p
� �

.

The purpose of this paper is to (1) construct the formulation of the Chi-p distribu-

tion, the analog of Chi-square distribution but for datasets that follow the General

Gaussian distribution of shape p, and (2) develop the statistical test for characterizing

the goodness of the fitting with Lp norms, which corresponds to datasets that follow

the General Gaussian distribution of shape p. Therefore, in Section 2, we revisit the

Chi-square derivation, and following similar steps, we construct the Chi-p distribution.

In Section 3, we develop the statistical test for characterizing the goodness of the fitting

with Lp norms, using the Chi-p distribution and the p-value. In Section 4, we provide an

application of the statistical test. Finally, in Section 5, we summarize the conclusions.

Appendix A briefly describes the General Gaussian distribution, while Appendix B shows

the mathematical derivation of the surface of the sphere of higher dimensions in Lp space.

2. Chi-p distribution
We first revisit the derivation of Chi-square distribution. This distribution is necessary to

test the goodness of fitting of measurements that follow the Gaussian distribution. This

test applies to datasets xi � σxif gNi¼1 that follow the normal distribution xieN μxi ; σxi

� �
.

The Chi-square is given by

χ2 ¼
XN
i¼1

xi−μxi
σxi

� 	2

; ð4Þ

that is the sum of squares of N independent random variables. The distribution of this

sum is given by

P X;Nð ÞdX ¼ 2−
N
2

Γ N
2ð Þe

−1
2XX

N
2−1dX; with X≡χ2: ð5Þ

The estimated value of the Chi-square for a fitting is given by the minimum at α = α* of

the function χ2(α) =TSD(α)2, as shown in Eq. (1) (least squares). Considering that the Chi-

square minimum, χ2(α*), is equivalently referred to all the M =N-1 degrees of freedom (for

N number of data), then each of them contributes to this minimum by a factor of 1
Mχ

2 α�ð Þ.
This is the estimated value of the reduced Chi-square. For multi-parametrical fitting

(Livadiotis 2007) of n free parameters, the degrees of freedom are M =N-n. In gen-

eral, the Chi-square distribution in Eq. (5) is referred to M degrees of freedom.
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For testing the goodness of fitting of measurements xi � σxif gNi¼1 that follow the General

Gaussian distribution of shape p, xi ~GG(μxi, σxi, p), we need to construct the Chi-p

distribution connected with Lp fitting methods, where the minimization of χp(α)

is given by Eq. (3). The General Gaussian distribution of shape p, f ieGG μf i ; σ f i ; p
� �

(Appendix A). This distribution is parameterized by the mean μ, the variance σ, and

the shape parameter p,

P x; μ; σ; pð Þdx ¼ Cp⋅e−ηp⋅
x−μ
σj jpd x−μ

σ

� �
; ð6Þ

where the involved coefficients are

Cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p sin π

p

� �
4π p−1ð Þ

s
; ηp ¼

sin π
p

� �
Γ 1

p

� �2

πp p−1ð Þ

" #p
2

: ð7Þ

Figure 1 depicts the distribution P z ¼ x−μ; p
� �

≡P x; μ; σ; pð Þ for various shape parameters
σ

p. Note that the normalized coefficient Cp is derived by setting
Z ∞

−∞
P x; μ; σ; pð Þdx ¼ 1 ,

while the exponential coefficient ηp is derived so that the Lp-normed variance to equal σ2.

The theory of Lp-normed mean and variance was developed by Livadiotis (2012), which

for the case of the General Gaussian distribution (6) leads to the following Propositions:

– Proposition 1: The Lp-normed mean of the distribution (6) is < x > p = μ, ∀ p ≥ 1.

– Proposition 2: The Lp-normed variance of the distribution (6) is σ2p = σ2, ∀ p ≥ 1.

The proofs of the two Propositions are shown in Appendix A.

We continue with the development of the Chi-p distribution. We start with the fol-

lowing Lemma:

– Lemma 1: The surface of the N-dimensional sphere of unit radius in Lp space is given by

Βp;N ¼ p 2
p

� 	
Γ

1
p

� 	� �N
=Γ

N
p

� 	
: ð8Þ

The proof is shown in Appendix B.
Figure 1 General Gaussian distribution P(z; p) for z = (x-μ)/σ. This is depicted for various shape
parameters p = 1, 1.5, 2, 3, and 10. The larger the value of p, the more flattened the maximum is.
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– Theorem 1:

The Chi-p is given by the sum of absolute values to the exponent p of N independent

random variables,

χp ¼
XN
i¼1

xi−μxi
σxi





 



p: ð9Þ

For M degrees of freedom (M =N-n, N number of data, n number of independent

variables), the Chi-p distribution is given by

P X;M; pð Þ ¼ ηp
M
p

Γ M
p

� �e−ηpXXM
p−1; ð10Þ

where the estimated Chi-p value X is given by the minimum at α = α* of the function

χp(α) = TD(α)p, as shown in Eq. (3) (least Lp deviations). Figure 2 plots the Chi-p distri-

bution for various values of the shape parameter p (that correspond to various Lp

norms).

– Proof of Theorem 1. The distribution of Chi-p can be derived as follows. The

normalization of the joint distribution function of all the data is

1 ¼
Z þ∞

−∞

YN
i¼1

Cp

σxi
e−ηp

xi−μxi
σxi



 

p
dx1…dxN ; ð11Þ

where the coefficients (Livadiotis 2012) are given by Eq. (7).
Figure 2 Chi-p distribution function. This is depicted for various norms p = 1.5, 2, 3, and 4. The degrees
of freedom are M = 5. The black points correspond to the estimated values of χp for the fitting example in
Section 4. Therefore, we observe that by varying the Lp norm, both the Chi-p distribution and the estimated
χp also vary.
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By setting zi≡xi−μx
σxi

, we derive

1 ¼
Z þ∞

−∞

YN
i¼1

Cp e
−ηp zij jp dz1…dzN ¼

Z þ∞

−∞
CN

p e
−ηp

XN

i¼1
zij jp

dz1…dzN ; ð12Þ

that is

1 ¼
Z
z
→∈Βp;N

dN−1ΩN ⋅
Z þ∞

0
CN

p e
−ηp Z

p
ZN−1dZ; ð13Þ

where we denote Zp≡
XN

i¼1
zij jp , and Βp;N≡

Z
z
→∈Βp;N

dN−1ΩN is the surface of the N-

dimensional sphere of unit radius in Lp space (Lemma 1), so that

1 ¼
Z þ∞

0
CN

p Βp;N e−ηp Z
p
ZN−1dZ ¼

Z þ∞

0
CN

p
1
p
Βp;N e−ηpXX

N
p−1dX≡

Z þ∞

0
P X;N ; pð ÞdX;

where we have used the identity CN
p

1
pΒp;N ¼ η

N
p

p=Γ N
p

� �
. Hence, we find

P X;N ; pð ÞdX ¼ ηp
N
p

Γ N
p

� �e−ηpXXN
p−1dX; with X≡χp: ð14Þ

In general, for M degrees of freedom, the Chi-p distribution is given by Eq. (10).
3. Statistical test of a fitting
In order to estimate the goodness of the fitting, we minimize the Chi-p, χp,

χp ¼
XN
i¼1

σ f
−p
i f i−V xi; αð Þ½ �p; ð15Þ

similar to the minimization of the Chi-square, χ2, for the case of the Euclidean norm,

χ2 ¼
XN
i¼1

σ−2f i f i−V xi; αð Þ½ �2: ð16Þ

We begin with the established method of Chi-square, and then we will proceed to

the generalized method of Chi-p.

The goodness of a fitting can be estimated by the reduced Chi-square value, χ2red ¼ 1
M

χ2test , where M =N-1 indicates again the degrees of freedom. The meaning of χ2red is the

portion of χ2 that corresponds to each of the degrees of freedom, and this has to be ~1

for a good fitting. We can easily understand this, for example, when the given data

have equal error σf, with f i � σ f
� �N

i¼1 , i.e., σ f i ¼ σ f for all i = 1,...., N. Then, the opti-

mized model value, V(xi; α*), gives the expected value of the data point fi, so that the

variance can be approached by σ2f ¼ 1
M

XN

i¼1
f i−V xi; α

�ð �2�
(sample variance). Hence,

the derived Chi-square becomes χ2est ¼ σ−2f
XN

i¼1
f i−V xi; α

�ð Þ½ �2 ¼ M , and its reduced

value χ2red ¼ 1
Mχ

2
est ¼ 1. Therefore, a fitting can be characterized as "good" when χ2red ~1,

otherwise there is an overestimation, χ2red <1, or underestimation, χ2red >1, of the errors.

When the deviations of the data f if gNi¼1 from the model values V xi; αð Þf gNi¼1 are small,

the fitting is expected to be good. However, this characterization is meaningless if the
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errors of the data σ f i

� �N
i¼1

are either (i) quite larger than their deviations from the model

values, i.e., if σfi > > |fi −V(xi; α)|, or (ii) quite smaller, i.e., if σfi < < |fi −V(xi; α)| (e.g., see

Figure 3). Then, a perfect matching between data and model is useless when the errors of

the data are comparably large or small.

Furthermore, a better estimation of the goodness is derived from comparing the

calculated χ2 value and the Chi-square distribution, that is the distribution of all the

possible χ2 values for data with normally distributed errors (parameterized by the

degrees of freedom M),

P χ2;M
� �

dχ2 ¼ 2−
M
2

Γ M
2ð Þe

−1
2χ

2
χ2
� �M

2−1 dχ2; ð17Þ

(e.g., see Melissinos 1966). The likelihood of having an χ2 value equal to or smaller than

the estimated value χ2est, is given by the cumulative distribution

P 0≤χ2≤χ2est
� � ¼ Z χ2est

0
P χ2;M
� �

dχ2 ¼ 1−
Γ 1

2 M; 12χ
2
est

� �
Γ 1

2Mð Þ ; ð18Þ

where Γ x; bð Þ ¼
Z ∞

x
e−XXb−1dX is the incomplete Gamma function. In addition, the

likelihood of having an χ2 value equal to or larger than the estimated value χ2est, is given

by the complementary cumulative distribution

P χ2est≤χ
2 < ∞

� � ¼ Z ∞

χ2est

P χ2;M
� �

dχ2 ¼ Γ 1
2 M; 12χ

2
est

� �
Γ 1

2Mð Þ : ð19Þ
Figure 3 Possible values of the reduced chi-square and their meaning. (a) Seven data points are fitted
by a statistical model, here a straight line. (b) When the errors are too small (underestimation), the
calculated reduced Chi-square is χ2red > 1, and the fitted line does not pass through the data points or their
error lines. Other more complicated curve can fit better the data (dash line). (c) In the case where the errors
are similar to the deviations of the data points from the model, the reduced Chi-square is χ2rede1, and the

fitting is good. (d) Finally, when the errors are too large (overestimation), the reduced Chi-square is χ2red < 1.
In this case, the fitted line does pass through the data points or their error lines, but the curves of any other
model can also pass through these, leading to good fitting; hence, the rate of the fitting is meaningless.
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The probability of having a result χ2 larger than the estimated value χ2est , defines

the p-value that equals P χ2est≤χ
2 < ∞

� �
. The larger the p-value, the better the fitting

is (e.g., Melissinos 1966). However, the p-value test fails when p > 0.5. Indeed, p-values lar-

ger than 0.5 correspond to χ2est<M or χ2red<1. Even larger p-values, up to p = 1, correspond

to even smaller Chi-squares, down to χ2red~0. Thus, an increasing p-value above

the threshold of 0.5 cannot lead to a better fitting but to a worse, similar to the

indication χ2red<1. For this reason, we use the "p-value of the extremes". Accord-

ing to this, the probability of taking a result χ2, more extreme than the observed

value is given by the p-value that equals the minimum between P 0≤χ2≤χ2est
� �

and

P χ2est≤χ
2 < ∞

� �
, i.e.,

p−value ¼ min
Γ 1

2 M; 12χ
2
est

� �
Γ 1

2Mð Þ ; 1−
Γ 1

2 M; 12χ
2
est

� �
Γ 1

2Mð Þ
� �

; ð20Þ

(see some applications in Livadiotis and McComas 2013b; Frisch et al. 2013; Funsten

et al. 2013). Note that the maximum p-value is 0.5, and this corresponds to the esti-

mated Chi-square χ2est;1=2≅M−2
3. This is larger than the Chi-square that maximizes the

distribution, χ2est;max ¼ M−2 . Hence, χ2est;max < χ2est;1=2 , i.e., the Chi-square that corre-

sponds to p-value = 0.5, is located always at the right of the maximum.

The statistical test of the fitting for the evaluation of its goodness comes from the

null hypothesis that the given data are described by the fitted statistical model. If the

derived p-value is smaller than the significance level of ~0.05, then the hypothesis is

typically rejected, and the hypothesis that the data are described by the examined statis-

tical model is characterized as unlikely.

A convenient rate for a statistical test is to give more detailed characterization

than “likely” when p-value > 0.05, or “unlikely” when p-value < 0.05. For this rea-

son, it is necessary to ascribe an 1–1 relation between the domain of p-values

p∈ 0; 0:5½ �f g and the range of a rating values T∈ −1; 1½ �f g , with the correspond-

ence: 1) Impossible p ¼ 0↔T ¼ −1; 2) indefinite p ¼ 0:05↔T ¼ 0; 3) certain p ¼ 0:5

↔T ¼ 1. Choosing a power-law function, Tþ 1ð Þ=2 ¼ p=p0ð Þγ , we find p0 ¼ 0:5 and γ =

log 2, i.e.,

Tþ 1ð Þ=2 ¼ 2pð Þ log2: ð21Þ

We can easily now characterize the testing rates by a linear separation of the values
of T, as shown in Table 1.
Table 1 Testing rates and characterizations

p-value Rate T Characterization

p ~ 0 T ~ −1 Impossible

0 < p <0.005 −1 < T < −0.5 Highly unlikely

0.005≤ p <0.05 −0.5≤ T <0 Unlikely

0.05≤ p <0.19 0≤ T <0.5 Likely

0.19 ≤ p <0.5 0.5≤ T <1 Highly likely

p ~ 0.5 T ~ 1 Certain
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In the case of data that follow the General Gaussian distribution of shape p, the de-

rived p-value is dependent on the shape p. Indeed, we have

P χp;M; pð Þdχp ¼ ηp
M
p

Γ M
p

� �⋅ χpð ÞM
p−1⋅e−ηpχ

p
dχp; ð22Þ

and

P 0≤χp≤χpestð Þ ¼
Z χpest

0
P χp;M; pð Þdχp ¼ 1−

Γ 1
pM; ηpχ

p
est

� �
Γ 1

pM
� � ; ð23Þ

P χpest≤χ
p < ∞ð Þ ¼

Z ∞

χpest

P χp;M; pð Þdχp ¼
Γ 1

pM; ηpχ
p
est

� �
Γ 1

pM
� � ; ð24Þ

and the p-value that equals the minimum between P 0≤χp≤χpestð Þ and P χpest≤χ
p < ∞ð Þ, i.e.,

p−value ¼ min
Γ 1

pM; ηpχ
p
est

� �
Γ 1

pM
� � ; 1−

Γ 1
pM; ηpχ

p
est

� �
Γ 1

pM
� �

24 35: ð25Þ

Note that the maximum p-value = 0.5 corresponds to the estimated Chi-square

χpest;1=2≅
1
pηp

M− 1
3ηp
. This is larger than the Chi-square that maximizes the distribution,

χpest;1=2≅
1
pηp

M− 1
ηp
. Hence, again we find χpest;max < χpest;1=2:

The statistical test has double role in the case of Lp norms. If the shape parameter p

is known, then the test can be rated by deriving the p-value and according to Table 1.

If the shape parameter is unknown and the fitting is expected to be good, then all the

shape values p that correspond to unlikely p-values can be rejected. In fact, the largest

p-value corresponds to the most-likely shape parameter p of the examined data. These

are shown in the following applications.

4. Applications
Table 2 contains a dataset of observations of the ratio of the umbral area to the whole

sunspot area, f if gNi¼1, N = 6 (Edwards 1957). Assuming that each of them follows a Gen-

eral Gaussian distribution about their mean, fi ~GG(μi, σi, p), what is the likelihood of

these measurements to represent a constant physical quantity? Let this constant be in-

dicated by μp, which can be derived from the fitting of f i � σ f i
� �N

i¼1, and thus, it is typ-

ically depended on the p-norm. However, different values of the p-norm lead to
Table 2 Testing rates and characterizations

Heliographic latitude Ratio of umbral area to whole sunspot area Standard deviation

(degrees) fi (%) σf i (%)

0-5 0.1708 0.0053

5-10 0.1677 0.0019

10-15 0.1624 0.0016

15-20 0.1610 0.0019

20-25 0.1594 0.0026

>25 0.1627 0.0040
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different estimated values of the Chi-p, χpest . Thus, the p-value of the null hypothesis

(Ho) depends also on the p-norm.

We apply a statistical test to examine whether the data of the sunspot area ratios are

dependent with heliolatitude on not. Therefore, the null hypothesis is that the dataset

is described by the statistical model of constant value, i.e., V xi; αð Þ ¼ αf gNi¼1 . We con-

struct and minimize the Chi-p, given by

χp αð Þ ¼
XN
i¼1

f i−α
σ f i





 



p; ð26Þ

so that the Lp-mean value αp = αp(p) is implicitly given by

XN
i¼1

f i−αp
σ f i





 



psign f i−αp
� � ¼ 0; ð27Þ

and the estimated Chi-p is

χp pð Þ ¼
XN
i¼1

f i−αp
σ f i





 



p: ð28Þ

Figure 4(a) shows the six data points co-plotted with four values of αp, that corres-
pond to p→ 1, p→∞, and the two shape parameter values p1, p2 for which the p-value

is equal to 0.05. The whole diagram of αp = αp(p) is shown in Figure 4(b) and the

p-value as a function of p is shown in Figure 4(c).

We observe that the function αp is monotonically increasing converging to some con-

stant value for p→∞. The corresponding mean value, α∞, is given by

α∞ ¼
xmin
σxmin

þ xmax
σxmax

1
σxmin

þ 1
σxmax

≅0:166: ð29Þ
Figure 4 Statistical test for the rate of fitting based on Lp norms. (a) The dataset of Table 2 is
co-plotted with four values of αp, that correspond to p→ 1, p→∞, and the two shape parameter values
p1 ~ 1.7 and p2 ~ 2.5 for which the p-value is equal to 0.05. (b) The diagram of Lp mean values, αp = αp(p).
(c) The p-value as a function of p. We observe that for the Euclidean norm p = 2, the null hypothesis is
rejected, i.e., the sunspot area ratio data are not invariant with the heliolatitude. However, if the examined
data are expected to be invariant, and thus the null hypothesis to be accepted, then the norms between
p1 and p2 (green) are rejected because lead to p-value < 0.05.
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The p-value has a minimum value at p ~ 2.08 and increases for larger shape values

p until it reaches p ~ 5.77 where becomes p-value ~ 0.5 (not shown in the figure). If

the shape p of the dataset is known, e.g., p = 2, then the null hypothesis is rejected, i.e., the

sunspot area ratio data are dependent on the heliolatitude. On the other hand, if the data

are expected to be invariant with the heliolatitude, and thus the null hypothesis to be ac-

cepted, then all the norms between p1 ~ 1.7 and p2 ~ 2.5 are rejected, and the norm Lp

with p ~ 5.77 characterizes better these data points; the respective mean value is given by

αp(5.77)~0.164. Therefore, if we know the shape/norm p that characterizes the data, we

can proceed and rate the goodness of the fitting. However, if p is unknown, at least we

could detect those values of p for which the null hypothesis is accepted or rejected.

One of the most intriguing questions regarding the Lp-normed fitting is how can we de-

termine the characteristic p-norm of the data. This is the suitable norm that should be

used for the fitting of those data (Livadiotis 2007). The maximization of the p-value is one

promising method. We demonstrate this as follows. We construct N = 104 data, f if gNi¼1, of

a random variable that follows the General Gaussian distribution of shape p, fi ~

GG(μ = 0, σ = 1, p = 3). Figure 5(a) shows that the normalized histogram of these values

matches this General Gaussian distribution. The p-value is approximated using the asymp-

totic behavior of (complete and incomplete) Gamma functions for large degrees of freedom,

M = 9999. Hence, in order to derive the maximum p-value, it is sufficient to maximize

p−valuee e
M
pηpχ

p
est

� �M
p

e−ηpχ
p
est : ð30Þ

This is shown in Figure 5(b), where the peak is at p ≅ 2.95 ± 0.08. Therefore, the

p-value is maximized at the same value of p-norm as the shape of the General

Gaussian distribution.

5. Conclusions
This paper (1) presented the derivation of the Chi-p distribution, the analog of Chi-

square distribution but for datasets that follow the General Gaussian distribution of
Figure 5 Method for determining the characteristic p-norm of the data. (a) Normalized histogram of
N = 104 data of a random variable that follows the General Gaussian distribution of zero mean, unity variance,
and shape p = 3. (b). The fitting of the data by a line at z = 0 is characterized by a p-value that is maximized at
the p-norm p≅ 2.95 ± 0.08, that coincides with the characteristic shape parameter of the data p =3 .
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shape p, and (2) developed the statistical test for characterizing the goodness of the fit-

ting with Lp norms, which corresponds to datasets that follow the General Gaussian

distribution of shape p.

It was shown that the statistical test has double role in the case of Lp norms: (1) If the

shape parameter p is fixed and known, then the test can be rated by deriving the p-value.

A convenient characterization of the fitting rate was developed. (2) If the shape parameter

is unknown and the fitting is expected to be good for some shape parameter value p, a

method for estimating p was given by fitting a General Gaussian distribution of shape p to

the data, and then use this estimated shape parameter p to the Chi-p distribution to

characterize the goodness of fitting. In particular, all the shape values p that corres-

pond to unlikely p-values can be rejected, while the largest p-value corresponds to

the most-likely shape parameter p of the examined data. This was verified by an illu-

minating example where the method of the fitting based on Lp norms was applied.

Appendix A: General Gaussian distribution
According to the theory of Lp-normed mean and variance, developed by Livadiotis

(2012), the Lp-normed mean < x > p of the random variable X with probability distribu-

tion P(x), is implicitly defined byZ ∞

−∞
P xð Þ x− < x>p



 

p−1sign x− < x>p
� �

dx ¼ 0; ðA1Þ

where sign(u) returns the sign of u. The Lp-normed variance σ2p is given by

σ2p ¼

Z ∞

−∞
P xð Þ x− < x>p



 

p dx
p−1ð Þ

Z ∞

−∞
P xð Þ x− < x>p



 

p−2 dx : ðA2Þ

Next, we derive the Lp-normed mean and variance of the General Gaussian distribu-
tion (6), which are Propositions 1 and 2, stated in Section 2.

– Proposition 1: Given the distribution (6), we have that the Lp-normed mean is

< x > p = μ, ∀ p ≥ 1.

– Proof. We haveZ ∞

−∞
e−ηp⋅ zj j

p

z− < z>p



 

p−1sign z− < z>p
� �

dz ¼ 0; ðA3Þ

for z ≡ (x − μ)/σ, < z > p ≡ (< x > p − μ)/σ. Let’s assume that < z > p = 0. Then, the left-hand

side of Eq.(A3) is

Z ∞

−∞
e−ηp⋅ zj j

p

zj jp−1sign zð Þdz ¼ 0; ðA4Þ

because the integrant is a product of symmetric and antisymmetric function. Then,

(A3) is true for < z > p = 0, and given the uniqueness of the Lp-normed mean for each p,

we end up with proposition 1. (Note that it is not surprising that the mean, < x > p = μ,
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is independent of p. Livadiotis (2012) showed that symmetric probability distributions

lead to Lp-normed means that are independent of p.)
– Proposition 2: Given the distribution (6), we have that the Lp-normed variance is

σ2p = σ2, ∀ p ≥ 1.
– Proof. We have < zj jq >¼
Z ∞

−∞
P zð Þ zj jq dz ¼ 0, i.e.,Z ∞

−∞
e−ηp⋅ zj j

p

zj jqdz ¼ 2
Z ∞

0
e−ηp⋅z

p
zqdz ¼ 2ηp

−qþ1
p

Z ∞

0
e−ww

qþ1
p −1dw

¼ 2ηp
−qþ1

p Γ
q þ 1
p

� 	
; ðA5aÞ

or,

< zq >¼ Cp
2
p
ηp

−qþ1
p Γ

q þ 1
p

� 	
: ðA5bÞ

Hence, from (A2) we obtain

σ2p ¼

Z ∞

−∞
P zð Þ zj jp dz

p−1ð Þ
Z ∞

−∞
P zð Þ zj jp−2dz

⋅σ2 ¼
ηp

−2
p Γ 1þ 1

p

� �
p−1ð ÞΓ 1−1

p

� � ⋅σ2 ¼ σ2: ðA6Þ

Appendix B: Surface of the N-dimensional sphere in Lp space, Βp,N
This appendix shows the proof of Lemma 1, stated in Section 2.

– Lemma 1: The surface of the N-dimensional sphere of unit radius in Lp space, Βp,N,

is given by Eq.(8). This is involved in the proof of Chi-p distribution (10), as

shown below.

– Proof of Lemma 1.

Let the integral

1 ¼
Z þ∞

−∞
⋯

Z þ∞

−∞
F z

→
� �

dz1… dzN ; ðB1Þ

where z
→¼ z1;…; zNð Þ, Zp≡

XN

i¼1
zij jp . The magnitude Z is the only quantity with di-

mensions the same as each of the components zi. Indeed, if we define ci ≡ zi/ζ, where

ζ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
zi
2

q
is the Euclidean magnitude of z

→
, then, Z ¼

XN

i¼1
zij jp

� �1
p ¼ ζ⋅XN

i¼1
cij jp

� �1
p

, i.e., Z and ζ have the same dimensions. (In the previous sections the
components zi were dimensionless by definition, i.e., zi≡xi−μx

σxi
. However, we can still

use this dimension analysis, since the components zi may have dimensions in the
generic case). Hence, we write Eq.(B1) as dz1… dzN = ZN − 1dZ dN − 1ΩN, i.e.,

1 ¼
Z þ∞

0

Z
z
→∈Βp;N

F Z;ΩNð ÞZN−1dZdN−1ΩN ; ðB2Þ
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where F z
→

� �
¼ F Z;ΩNð Þ ; ΩN symbolizes all the angular dependence, and dN − 1ΩN de-

notes the angular infinitesimal. Since F(Z;ΩN) = F(Z), we have Βp;N≡
Z
z
→∈Βp;N

dN−1ΩN , or

1 ¼
Z
z
→∈Βp;N

dN−1ΩN ⋅
Z þ∞

0
F Zð ÞZN−1dZ ¼ Βp;N ⋅

Z þ∞

0
F Zð ÞZN−1dZ

¼ CN
p
1
p
Βp;N ⋅

Z þ∞

0
F X

1
p

� �
X

N
p−1dX;

where F Zð Þ ¼ CN
p e

−ηp Z
p
, F X

1
p

� � ¼ CN
p e

−ηp X . Therefore,

1 ¼
Z þ∞

0
CN

p
1
p
Βp;N e−ηpXX

N
p−1dX≡

Z þ∞

0
P X;N ; pð ÞdX;

or,

P X;N ; pð Þ ¼ CN
p
1
p
Βp;N e−ηpXX

N
p−1: ðB3Þ

The normalization
Z þ∞

0
P X;N ; pð ÞdX ¼ 1 gives CN

p
1
pΒp;N ¼ ηp

N
p=Γ N

p

� �
, or

Βp;N ¼ pηp
N
p= CN

p Γ
N
p

� 	� �
¼ p 2

p

� 	
Γ

1
p

� 	� �N
=Γ

N
p

� 	
: ðB4Þ

Another way to show Eq.(B4) is through the integration of all the components,Z þ∞

−∞
⋯

Z þ∞

−∞
F z

→
� �

dz1… dzN ¼ 2N ⋅
Z þ∞

0
⋯

Z þ∞

0
F z

→
� �

dz1… dzN

¼ 2N ⋅
Z þ∞

0
F Zð Þ

Z
z
→ ∈Βp;N

zi≥0

Zp−zp2−z
p
3…−zpN

� �1
p−1Zp−1 dZdz2…dzN;

by substituting F z
→

� �
¼ F Zð Þ and z1 ¼ Zp−zp2−z

p
3…−zpN

� �1
p (for zi ≥ 0). The integration

range z
→ ∈Βp;N , zi ≥ 0, means 0≤zi≤ Zp−

XN

iþ1
zpj …−zpN

� �1
p

for i = 1,…, N-1, and 0 ≤ zN ≤ Z.
Similar, we haveZ

z
→ ∈Βp;N

zi≥0

Zp−z p2 −z
p
3…−zpN

� �1
p−1 dz2…dzN ¼ a1;p

Z
z
→ ∈Βp;N

zi≥0

Zp−zp3…−zpN
� �2

p−1 dz3…dzN

¼ a1;pa2;p

Z
z
→ ∈Βp;N

zi≥0

Zp−zp4…−zpN
� �3

p−1 dz4…dzN ¼
YN−2

i¼1

ai;p⋅
Z

z
→ ∈Βp;N

zi≥0

Zp−zpN
� �N−1

p −1
dzN

¼
YN−1

i¼1

ai;p⋅ZN−p;

where

ai;p≡
Z 1

0
1−tpð Þ i

p−1 dt: ðB5Þ
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Hence, we deriveZ þ∞

−∞
⋯

Z þ∞

−∞
F z

→
� �

dz1… dzN ¼ 2N ⋅
YN
i¼1

ai;p⋅
Z þ∞

0
F Zð ÞZN−1 dZ; ðB6Þ

while, on the other hand, we haveZ þ∞

−∞
⋯

Z þ∞

−∞
F z

→
� �

dz1… dzN ¼
Z
z
→∈Βp;N

dN−1ΩN ⋅
Z þ∞

0
F Zð ÞZN−1dZ

¼ Βp;N ⋅
Z þ∞

0
F Zð ÞZN−1dZ; ðB7Þ

thus,

Βp;N ¼ 2N ⋅
YN−1

i¼1

ai;p: ðB8Þ

We easily find that
ai;p ¼ 1
p

Z 1

0
y

1
p−1 1−yð Þ i

p−1 dy ¼ 1
p
B 1

p
;
i
p

� 	
; ðB9Þ

where B(x, y) ≡ Γ(x)Γ(y)/Γ(x + y) is the Beta function. Hence, we have

Βp;N ¼ p 2
p

� 	N

Γ
1
p

� 	N−1

⋅
YN−1

i¼1

Γ
i
p

� 	
=Γ

iþ 1
p

� 	
: ðB10Þ

Since,
YN−1

i¼1
Γ

i
p

� 	
=Γ

iþ 1
p

� 	
¼ Γ 1

p

� �
=Γ N

p

� �
, finally, we end up with Eq.(B4).
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