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Abstract

A new family of distributions called exponentiated Kumaraswamy-Dagum (EKD)
distribution is proposed and studied. This family includes several well known
sub-models, such as Dagum (D), Burr III (BIII), Fisk or Log-logistic (F or LLog), and new
sub-models, namely, Kumaraswamy-Dagum (KD), Kumaraswamy-Burr III (KBIII),
Kumaraswamy-Fisk or Kumaraswamy-Log-logistic (KF or KLLog), exponentiated
Kumaraswamy-Burr III (EKBIII), and exponentiated Kumaraswamy-Fisk or exponentiated
Kumaraswamy-Log-logistic (EKF or EKLLog) distributions. Statistical properties
including series representation of the probability density function, hazard and reverse
hazard functions, moments, mean and median deviations, reliability, Bonferroni and
Lorenz curves, as well as entropy measures for this class of distributions and the
sub-models are presented. Maximum likelihood estimates of the model parameters are
obtained. Simulation studies are conducted. Examples and applications as well as
comparisons of the EKD and its sub-distributions with other distributions are given.
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1 Introduction
Camilo Dagum proposed the distribution which is referred to as Dagum distribution in
1977. This proposal enable the development of statistical distributions used to fit empir-
ical income and wealth data, that could accommodate heavy tails in income and wealth
distributions. Dagum’s proposed distribution has both Type-I and Type-II specification,
where Type-I is the three parameter specification and Type-II deals with four parameter
specification. This distribution is a special case of generalized beta distribution of the sec-
ond kind (GB2), McDonald (1984), McDonald and Xu (1995), when the parameter q = 1,
where the probability density function (pdf) of the GB2 distribution is given by:

fGB2(y; a, b, p, q) = ayap−1

bapB(p, q)[1 + ( y
b
)a ]p+q , for y > 0.

See Kleiber and Kotz (2003) for details. Note that a > 0, p > 0, q > 0, are the
shape parameters and b is the scale parameter and B(p, q) = �(p)�(q)

�(p+q) is the beta func-
tion. Kleiber (2008) traced the genesis of Dagum distribution and summarized several
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statistical properties of this distribution. Domma et al. (2011) obtained themaximum like-
lihood estimates of the parameters of Dagum distribution for censored data. Domma and
Condino (2013) presented the beta-Dagum distribution. Cordeiro et al. (2013) proposed
the beta exponentiated Weibull distribution. Cordeiro et al. (2010) introduced and stud-
ied some mathematical properties of the Kumaraswamy Weibull distribution. Oluyede
and Rajasooriya (2013) developed theMc-Dagum distribution and presented its statistical
properties. See references therein for additional results.
The pdf and cumulative distribution function (cdf) of Dagum distribution are given by:

gD(x; λ,β , δ) = βλδx−δ−1 (1 + λx−δ
)−β−1 (1)

and

GD(x; λ,β , δ) = (
1 + λx−δ

)−β , (2)

for x > 0, where λ is a scale parameter, δ and β are shape parameters. Dagum (1977)
refers to his model as the generalized logistic-Burr distribution. The kth raw or non central
moments are given by

E
(
Xk

)
= βλ

k
δ B

(
β + k

δ
, 1 − k

δ

)
,

for k < δ, and λ,β > 0, where B(·, ·) is the beta function. The qth percentile is

xq = λ
1
δ

(
q− 1

β − 1
)− 1

δ .

In this paper, we present generalizations of the Dagum distribution via Kumaraswamy
distribution and its exponentiated version. This leads to the exponentiated Kumaraswamy
Dagum distribution.
The motivation for the development of this distribution is the modeling of size dis-

tribution of personal income and lifetime data with a diverse model that takes into
consideration not only shape, and scale but also skewness, kurtosis and tail variation.
Also, the EKD distribution and its sub-models has desirable features of exhibiting a
non-monotone failure rate, thereby accommodating different shapes for the hazard rate
function and should be an attractive choice for survival and reliability data analysis.
This paper is organized as follows. In section 3, we present the exponentiated

Kumaraswamy-Dagum distribution and its sub models, as well as series expansion, haz-
ard and reverse hazard functions. Moments, moment generating function, Lorenz and
Bonferroni curves, mean and median deviations, and reliability are obtained in section 4.
Section 5 contains results on the distribution of the order statistics and Renyi entropy.
Estimation of model parameters via the method of maximum likelihood is presented
in section 6. In section 7, various simulations are conducted for different sample sizes.
Section 8 contains examples and applications of the EKD distribution and its sub-models,
followed by concluding remarks.

2 Methods, results and discussions
Methods, results and discussions for the class of EKD distributions are presented in
sections 3 to 8. These sections include the sub-models, series expansion of the pdf, closed
form expressions for the hazard and reverse hazard functions, moments, moment gen-
erating function, Bonferroni and Lorenz curves, reliability, mean and median deviations,
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distribution of order statistics and entropy, as well as estimation of model parameters and
applications.

3 The exponentiated Kumaraswamy-Dagum distribution
In this section, we present the proposed distribution and its sub-models. Series expansion,
hazard and reverse hazard functions are also studied in this section.

3.1 Kumaraswamy-Dagum distribution

Kumaraswamy (1980) introduced a two-parameter distribution on (0, 1). Its cdf is given
by

G(x) = 1 − (
1 − xψ

)φ , x ∈ (0, 1),

for ψ > 0 and φ > 0.
For an arbitrary cdf F(x) with pdf f (x) = dF(x)

dx , the family of Kumaraswamy-G
distributions with cdf Gk(x) is given by

GK (x) = 1 − (
1 − Fψ(x)

)φ ,

forψ > 0 and φ > 0. By letting F(x) = GD(x), we obtain the Kumaraswamy-Dagum (KD)
distribution, with cdf

GKD(x) = 1 −
(
1 − Gψ

D(x)
)φ

.

3.2 The EKD distribution

In general, the EKD distribution is GEKD(x) = [FKD(x)]θ , where FKD(x) is a base-
line (Kum-Dagum) cdf, θ > 0, with the corresponding pdf given by gEKD(x) =
θ [FKD(x)]θ−1 fKD(x). For large values of x, and for θ > 1(< 1), the multiplicative factor
θ [FKD(x)]θ−1 > 1(< 1), respectively. The reverse statement holds for smaller values of x.
Consequently, this implies that the ordinary moments of gEKD(x) are larger (smaller) than
those of fKD(x) when θ > 1(< 1).
Replacing the dependent parameter βψ by α, the cdf and pdf of the EKD distribution

are given by

GEKD(x;α, λ, δ,φ, θ) =
{
1 −

[
1 − (

1 + λx−δ
)−α

]φ
}θ

, (3)

and

gEKD(x;α, λ, δ,φ, θ) = αλδφθx−δ−1 (1 + λx−δ
)−α−1 [1 − (

1 + λx−δ
)−α

]φ−1

×
{
1 −

[
1 − (

1 + λx−δ
)−α

]φ
}θ−1

, (4)

for α, λ, δ,φ, θ > 0, and x > 0, respectively. The quantile function of the EKD distribution
is in closed form,

G−1
EKD(q) = xq = λ

1
δ

⎧⎨⎩
[
1 −

(
1 − q

1
θ

) 1
φ

]− 1
α

− 1

⎫⎬⎭
− 1

δ

. (5)

Plots of the pdf for some combinations of values of the model parameters are given in
Figure 1. The plots indicate that the EKD pdf can be decreasing or right skewed. The EKD
distribution has a positive asymmetry.
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Figure 1 Graph of pdfs.

3.3 Some sub-models

Sub-models of EKD distribution for selected values of the parameters are presented in
this section.

1. When θ = 1, we obtain Kumaraswamy-Dagum distribution with cdf:

G(x;α, λ, δ,φ) = 1 −
[
1 − (

1 + λx−δ
)−α

]φ

,

for α, λ, δ,φ > 0 and x > 0.
2. When φ = θ = 1, we obtain Dagum distribution with cdf:

G(x;α, λ, δ) = (
1 + λx−δ

)−α ,

for α, λ, δ > 0 and x > 0.
3. When λ = 1, we obtain exponentiated Kumaraswamy-Burr III distribution with

cdf:

G(x;α, δ,φ, θ) =
{
1 −

[
1 − (

1 + x−δ
)−α

]φ
}θ

,

for α, δ,φ, θ > 0 and x > 0.
4. When λ = θ = 1, we obtain Kumaraswamy-Burr III distribution with cdf:

G(x;α, δ,φ) = 1 −
[
1 − (

1 + x−δ
)−α

]φ

,

for α, δ,φ > 0 and x > 0.
5. When λ = φ = θ = 1, we obtain Burr III distribution with cdf:

G(x;α, δ) = (
1 + x−δ

)−α ,

for α, δ > 0 and x > 0.
6. When α = 1, we obtain exponentiated Kumaraswamy-Fisk or

Kumaraswamy-Log-logistic distribution with cdf:

G(x; λ, δ,φ, θ) =
{
1 −

[
1 − (

1 + λx−δ
)−1]φ

}θ

,

for λ, δ,φ, θ > 0 and x > 0.
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7. When α = θ = 1, we obtain Kumaraswamy-Fisk or Kumaraswamy-Log-logistic
distribution with cdf:

G(x; λ, δ,φ) = 1 −
[
1 − (

1 + λx−δ
)−1]φ

,

for λ, δ,φ > 0 and x > 0.
8. When α = φ = θ = 1, we obtain Fisk or Log-logistic distribution with cdf:

G(x; λ, δ) = (
1 + λx−δ

)−1 ,

for λ, δ > 0 and x > 0.

3.4 Series expansion of EKD distribution

We apply the series expansion

(1 − z)b−1 =
∞∑
j=0

(−1)j�(b)
�(b − j)j!

zj, (6)

for b > 0 and |z| < 1, to obtain the series expansion of the EKD distribution.
By using equation (6),

gEKD(x) =
∞∑
i=0

∞∑
j=0

ω(i, j)x−δ−1 (1 + λx−δ
)−α(j+1)−1 , (7)

where ω(i, j) = αλδφθ
(−1)i+j�(θ)�(φi+φ)
�(θ−i)�(φi+φ−j)i!j! .

Note that in the Dagum(α, δ, λ) distribution, α and δ are shape parameters, and λ is a
scale parameter. In the Exponentiated-Kumaraswamy(ψ ,φ, θ) distribution, ψ is a skew-
ness parameter, φ is a tail variation parameter, and the parameter θ characterizes the
skewness, kurtosis, and tail of the distribution.
Consequently, for the EKD(α, λ, δ,φ, θ) distribution, α is shape and skewness parame-

ter, δ is shape parameter, λ is a scale parameter, φ is a tail variation parameter, and the
parameter θ characterizes the skewness, kurtosis, and tail of the distribution.

3.5 Hazard and reverse hazard function

The hazard function of the EKD distribution is

hEKD(x) = gEKD(x)
1 − GEKD(x)

= αλδφθx−δ−1 (1 + λx−δ
)−α−1 [1 − (

1 + λx−δ
)−α

]φ−1
(8)

× {1 −
[
1 − (

1 + λx−δ
)−α

]φ}θ−1

×
(
1 −

{
1 −

[
1 − (

1 + λx−δ
)−α

]φ
}θ
)−1

.

Plots of the hazard function are presented in Figure 2. The plots show various shapes
including monotonically decreasing, unimodal, and bathtub followed by upside down
bathtub shapes with five combinations of the values of the parameters. This attractive
flexibility makes the EKD hazard rate function useful and suitable for non-monotone
empirical hazard behaviors which are more likely to be encountered or observed in real
life situations. Unfortunately, the analytical analysis of the shape of both the density
(except for zero modal when αδ ≤ 1, and unimodal if αδ > 1, both for φ = θ = 1,) and
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Figure 2 Graphs of hazard functions.

hazard rate function seems to be very complicated. We could not determine any specific
rules for the shapes of the hazard rate function.
The reverse hazard function of the EKD distribution is

τEKD(x) = gEKD(x)
GEKD(x)

= αλδφθx−δ−1 (1 + λx−δ
)−α−1 [1 − (

1 + λx−δ
)−α

]φ−1

×
{
1 −

[
1 − (

1 + λx−δ
)−α

]φ
}−1

. (9)

4 Moments, moment generating function, Bonferroni and Lorenz curves,
mean andmedian deviations, and reliability

In this section, we present the moments, moment generating function, Bonferroni and
Lorenz curves, mean and median deviations as well as the reliability of the EKD distribu-
tion. The moments of the sub-models can be readily obtained from the general results.

4.1 Moments andmoment generating function

Let t = (1 + λx−δ)−1 in equation (7), then the sth raw moment of the EKD distribution is
given by

E(Xs) =
∫ ∞

0
xs · gEKD(x)dx

=
∞∑
i=0

∞∑
j=0

ω(i, j)λ
s
δ
−1 · 1

δ
· B

(
α(j + 1) + s

δ
, 1 − s

δ

)

=
∞∑
i=0

∞∑
j=0

ω(i, j, s)B
(

α(j + 1) + s
δ
, 1 − s

δ

)
,

(10)

where ω(i, j, s) = αλ
s
δ φθ

(−1)i+j�(θ)�(φi+φ)
�(θ−i)�(φi+φ−j)i!j! , and s < δ.
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The moment generating function of the EKD distribution is given by

M(t) =
∞∑
r=0

∞∑
i=0

∞∑
j=0

ω(i, j, r)
tr

r!
B
(

α(j + 1) + r
δ
, 1 − r

δ

)
,

for r < δ.

4.2 Bonferroni and Lorenz curves

Bonferroni and Lorenz curves are widely used tool for analyzing and visualizing income
inequality. Lorenz curve, L(p) can be regarded as the proportion of total income volume
accumulated by those units with income lower than or equal to the volume a, and Bonfer-
roni curve, B(p) is the scaled conditional mean curve, that is, ratio of group mean income
of the population. Plots of Bonferroni and Lorenz curves are given in Figure 3.
Let I(a) = ∫ a

0 x · gEKD(x)dx and μ = E(X), then Bonferroni and Lorenz curves are given
by

B(p) = I(q)
pμ

and L(p) = I(q)
μ

,

respectively, for 0 ≤ p ≤ 1, and q = G−1
EKD(p). The mean of the EKD distribution is

obtained from equation (10) with s = 1 and the quantile function is given in equation (5).
Consequently,

I(a) =
∞∑
i=0

∞∑
j=0

ω(i, j, 1)Bt(a)

(
α(j + 1) + 1

δ
, 1 − 1

δ

)
, (11)

for δ > 1, where t(a) = (1 + λa−δ)−1, and BG(x)(c, d) = ∫ G(x)
0 tc−1(1 − t)d−1dt for

|G(x)| < 1 is incomplete Beta function.

4.3 Mean andmedian deviations

If X has the EKD distribution, we can derive themean deviation about themeanμ = E(X)

and the median deviation about the medianM from

δ1 =
∫ ∞

0
|x − μ| gEKD(x)dx and δ2 =

∫ ∞

0
|x − M| gEKD(x)dx,

respectively. The mean μ is obtained from equation (10) with s = 1, and the medianM is
given by equation (5) when q = 1

2 .

Figure 3 Graphs of Bonferroni and Lorenz curves.
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The measure δ1 and δ2 can be calculated by the following relationships:

δ1 = 2μGEKD(μ) − 2μ + 2T(μ) and δ2 = 2T(M) − μ,
where T(a) = ∫∞

a x · gEKD(x)dx follows from equation (11), that is

T(a) =
∞∑
i=0

∞∑
j=0

ω(i, j, 1)
[
B
(

α(j + 1) + 1
δ
, 1 − 1

δ

)
− Bt(a)

(
α(j + 1) + 1

δ
, 1 − 1

δ

)]
.

4.4 Reliability

The reliability R = P(X1 > X2) when X1 and X2 have independent EKD(α1, λ1, δ1,φ1, θ1)
and EKD(α2, λ2, δ2,φ2, θ2) distributions is given by

R =
∫ ∞

0
g1(x)G2(x)dx

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=0

ζ(i, j, k, l)
∫ ∞

0
x−δ1−1 (1 + λ1x−δ1

)−α1(j+1)−1 (1 + λ2x−δ2
)−α2l dx,

where ζ(i, j, k, l) = α1λ1δ1φ1θ1
(−1)i+j+k+l�(θ1)�(φ1i+φ1)�(θ2+1)�(φ2k+1)

�(θ1−i)�(φ1i+φ1−j)�(θ2+1−k)�(φ2k+1−l)i!j!k!l! .
If λ = λ1 = λ2 and δ = δ1 = δ2, then reliability can be reduced to

R =
∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
l=1

ζ(i, j, k, l)
λδ[α1(j + 1) + α2l]

.

5 Order statistics and entropy
In this section, the distribution of the kth order statistic and Renyi entropy (Renyi 1960)
for the EKD distribution are presented. The entropy of a random variable is a measure of
variation of the uncertainty.

5.1 Order statistics
The pdf of the kth order statistics from a pdf f (x) is

fk:n(x) = f (x)
B(k, n − k + 1)

Fk−1(x)[1 − F(x)]n−k

= k
(
n
k

)
f (x)Fk−1(x)[1 − F(x)]n−k . (12)

Using equation (6), the pdf of the kth order statistic from EKD distribution is given by

gk:n(x) =
∞∑
i=0

∞∑
j=0

∞∑
p=0

K(i, j, p, k) · x−δ−1 (1 + λx−δ
)−α−αp−1 ,

where K(i, j, p, k) = (−1)i+j+p�(n−k+1)�(θk+θ i)�(φj+φ)

�(n−k+1−i)�(θk+θ i−j)�(φj+φ−p)i!j!p!k
(n
k
)
αλδφθ .

5.2 Entropy

Renyi entropy of a distribution with pdf f (x) is defined as

IR(τ ) = (1 − τ)−1 log
{∫

R

f τ (x)dx
}
, τ > 0, τ �= 1.

Using equation (6), Renyi entropy of EKD distribution is given by

IR(τ ) = (1 − τ)−1 log

⎡⎣ ∞∑
i=0

∞∑
j=0

(−1)i+j�(θτ − τ + 1)�(φτ − τ + φi + 1)
�(θτ − τ + 1 − i)�(φτ − τ + φi + 1 − j)i! j!

× ατλ− τ
δ
+ 1

δ δτ−1φτ θτB
(

ατ + αj + 1 − τ

δ
, τ + τ − 1

δ

)]
.

for ατ + αj + 1−τ
δ

> 0 and τ + τ−1
δ

> 0. Renyi entropy for the sub-models can be readily
obtained.
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6 Estimation of model parameters
In this section, we present estimates of the parameters of the EKD distribution via method
of maximum likelihood estimation. The elements of the score function are presented.
There are no closed form solutions to the nonlinear equations obtained by setting the
elements of the score function to zero. Thus, the estimates of the model parameters must
be obtained via numerical methods.

6.1 Maximum likelihood estimation
Let x = (x1, · · · , xn)T be a random sample of the EKD distribution with unknown
parameter vector 
 = (α, λ, δ,φ, θ)T . The log-likelihood function for 
 is

l(
) = n (lnα + ln λ + ln δ + lnφ + ln θ) − (δ + 1)
n∑

i=1
ln xi

− (α + 1)
n∑

i=1
ln
(
1 + λx−δ

i

)
+ (φ − 1)

n∑
i=1

ln
[
1 −

(
1 + λx−δ

i

)−α
]

+ (θ − 1)
n∑

i=1
ln
{
1 −

[
1 −

(
1 + λx−δ

i

)−α
]φ
}
. (13)

The partial derivatives of l(
) with respect to the parameters are

∂l
∂α

= n
α

−
n∑

i=1
ln
(
1 + λx−δ

i

)
+ (φ − 1)

n∑
i=1

(
1 + λx−δ

i

)−α

ln
(
1 + λx−δ

i

)
1 −

(
1 + λx−δ

i

)−α

− (θ − 1)φ
n∑

i=1

[
1 −

(
1 + λx−δ

i

)−α
]φ−1 (

1 + λx−δ
i

)−α

ln
(
1 + λx−δ

i

)
1 −

[
1 −

(
1 + λx−δ

i

)−α
]φ

,

∂l
∂λ

= n
λ

− (α + 1)
n∑

i=1

x−δ
i

1 + λx−δ
i

+ (φ − 1)α
n∑

i=1

(
1 + λx−δ

i

)−α−1
x−δ
i

1 −
(
1 + λx−δ

i

)−α

− (θ − 1)φα

n∑
i=1

[
1 −

(
1 + λx−δ

i

)−α
]φ−1 (

1 + λx−δ
i

)−α−1
x−δ
i

1 −
[
1 −

(
1 + λx−δ

i

)−α
]φ

,

∂l
∂δ

= n
δ

−
n∑

i=1
ln xi + (α + 1)λ

n∑
i=1

x−δ
i ln xi

1 + λx−δ
i

− (φ − 1)αλ

n∑
i=1

(
1 + λx−δ

i

)−α−1
x−δ
i ln xi

1 −
(
1 + λx−δ

i

)−α

+ (θ − 1)φαλ

n∑
i=1

[
1 −

(
1 + λx−δ

i

)−α
]φ−1 (

1 + λx−δ
i

)−α−1
x−δ
i ln xi

1 −
[
1 −

(
1 + λx−δ

i

)−α
]φ

,

∂l
∂φ

= n
φ

+
n∑
i
ln
[
1 −

(
1+λx−δ

i

)−α
]

− (θ−1)
n∑

i=1

[
1 −

(
1 + λx−δ

i

)−α
]φ

ln
[
1 −

(
1 + λx−δ

i

)−α
]

1 −
[
1 −

(
1 + λx−δ

i

)−α
]φ

,

and
∂l
∂θ

= n
θ

+
n∑

i=1
ln
{
1 −

[
1 −

(
1 + λx−δ

i

)−α
]φ
}
,
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respectively. The MLE of the parameters α, λ, δ,φ, and θ , say α̂, λ̂, δ̂, φ̂, and θ̂ , must be
obtained by numerical methods.

6.2 Asymptotic confidence intervals

In this section, we present the asymptotic confidence intervals for the parameters of
the EKD distribution. The expectations in the Fisher Information Matrix (FIM) can
be obtained numerically. Let 
̂ = (α̂, λ̂, δ̂, φ̂, θ̂ ) be the maximum likelihood estimate
of 
 = (α, λ, δ,φ, θ). Under the usual regularity conditions and that the parame-
ters are in the interior of the parameter space, but not on the boundary, we have:√
n(
̂ − 
)

d−→ N5(0, I−1(
)), where I(
) is the expected Fisher information matrix.
The asymptotic behavior is still valid if I(
) is replaced by the observed information
matrix evaluated at 
̂, that is J(
̂). The multivariate normal distribution N5

(
0, J(
̂)−1

)
,

where the mean vector 0 = (0, 0, 0, 0, 0)T , can be used to construct confidence intervals
and confidence regions for the individual model parameters and for the survival and
hazard rate functions.
The approximate 100(1 − η)% two-sided confidence intervals for α, λ, δ, φ and θ are

given by:

α̂ ± Z η
2

√
I−1
αα (
̂), λ̂ ± Z η

2

√
I−1
λλ (
̂), δ̂ ± Z η

2

√
I−1
δδ (
̂)

φ̂ ± Z η
2

√
I−1
φφ (
̂), θ̂ ± Z η

2

√
I−1
θθ (
̂)

respectively, where Z η
2
is the upper η

2
th percentile of a standard normal distribution.

We can use the likelihood ratio (LR) test to compare the fit of the EKD distribution with
its sub-models for a given data set. For example, to test θ = 1, the LR statistic is

ω = 2
[
ln
(
L
(
α̂, λ̂, δ̂, φ̂, θ̂

))
− ln

(
L
(
α̃, λ̃, δ̃, φ̃, 1

))]
,

where α̂, λ̂, δ̂, φ̂ and θ̂ are the unrestricted estimates, and α̃, λ̃, δ̃ and φ̃ are the restricted
estimates. The LR test rejects the null hypothesis if ω > χ2

d
, where χ2

d
denote the upper

100d% point of the χ2 distribution with 1 degrees of freedom.

7 Simulation study
In this section, we examine the performance of the EKD distribution by conducting
various simulations for different sizes (n=200, 400, 800, 1200) via the subroutine NLP in
SAS. We simulate 2000 samples for the true parameters values I : α = 2, λ = 1, δ = 3,
φ = 2, θ = 2 and II : α = 1, λ = 1, δ = 1,φ = 1, θ = 1. Table 1 lists the means MLEs of
the five model parameters along with the respective root mean squared errors (RMSE).
From the results, we can verify that as the sample size n increases, the mean estimates of
the parameters tend to be closer to the true parameter values, since RMSEs decay toward
zero.

8 Application: EKD and sub-distributions
In this section, applications based on real data, as well as comparison of the EKD
distribution with its sub-models are presented.We provide examples to illustrate the flex-
ibility of the EKD distribution in contrast to other models, including the exponentiated
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Table 1Monte Carlo simulation results: mean estimates and RMSEs

I II

n Parameter Mean RMSE Mean RMSE

200 α 4.41621 3.979304324 1.7899006 1.992043574

λ 1.3580866 2.642335804 1.4287071 1.528578784

δ 3.1167852 2.601663026 1.0337146 0.5898521

φ 5.7270324 6.535452517 2.4702434 3.712081559

θ 4.5560563 4.306946865 2.8884959 3.689669972

400 α 3.5972873 3.071770841 1.5456974 1.513782811

λ 1.1196079 0.900800533 1.1382897 0.732002869

δ 2.9333424 1.821450521 1.0064105 0.377302664

φ 4.6989703 5.277876069 1.5488732 1.872088246

θ 4.1188983 3.616692978 2.4213684 2.969367761

800 α 3.1040595 2.417025941 1.4359333 1.278449373

λ 1.0626388 0.609066006 1.0432761 0.346996974

δ 2.8960167 1.36814261 1.0017278 0.250650155

φ 3.7437056 3.919777583 1.176675 0.766203302

θ 3.4890255 2.748229594 1.9733522 2.197844717

1200 α 2.8399564 2.058703427 1.3884174 1.169251427

λ 1.0429655 0.501712467 1.021836 0.258884917

δ 2.9152476 1.133666485 1.0014919 0.193825437

φ 3.1751818 3.043071803 1.083574 0.392293513

θ 3.164176 2.346236284 1.731924 1.788360814

Kumaraswamy-Weibull (EKW), and beta-Kumaraswamy-Weibull (BKW) distributions
for data modeling. The pdfs of EKW and BKW distributions are

fEKW (x) = θabcλcxc−1e−(λx)c
[
1 − e−(λx)c

]a−1 {
1 −

[
1 − e−(λx)c

]a}b−1

×
[
1 −

{
1 −

[
1 − e−(λx)c

]a}b]θ−1
,

and

fBKW (x) = 1
B(a, b)

αβcλcxc−1e−(λx)c
[
1 − e−(λx)c

]α−1

×
{
1 −

[
1 − e−(λx)c

]α}βb−1 [
1 −

{
1 −

[
1 − e−(λx)c

]α}β
]a−1

,

respectively.
The first data set consists of the number of successive failures for the air conditioning

system of each member in a fleet of 13 Boeing 720 jet airplanes (Proschan 1963). The data
is presented in Table 2. The second data set consists of the salaries of 818 professional
baseball players for the year 2009 (USA TODAY).
The third data set represents the poverty rate of 533 districts with more than 15,000

students in 2009 (Digest of Education Statistics “http://nces.ed.gov/programs/digest/
d11/tables/dt11_096.asp”). These data sets are modeled by the EKD distribution and
compared with the corresponding sub-models, the Kumaraswamy-Dagum and Dagum

http://nces.ed.gov/programs/digest/d11/tables/dt11_{0}96.asp
http://nces.ed.gov/programs/digest/d11/tables/dt11_{0}96.asp
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Table 2 Air conditioning system data

194 413 90 74 55 23 97 50 359 50 130 487 57

102 15 14 10 57 320 261 51 44 9 254 493 33

18 209 41 58 60 48 56 87 11 102 12 5 14

14 29 37 186 29 104 7 4 72 270 283 7 61

100 61 502 220 120 141 22 603 35 98 54 100 11

181 65 49 12 239 14 18 39 3 12 5 32 9

438 43 134 184 20 386 182 71 80 188 230 152 5

36 79 59 33 246 1 79 3 27 201 84 27 156

21 16 88 130 14 118 44 15 42 106 46 230 26

59 153 104 20 206 5 66 34 29 26 35 5 82

31 118 326 12 54 36 34 18 25 120 31 22 18

216 139 67 310 3 46 210 57 76 14 111 97 62

39 30 7 44 11 63 23 22 23 14 18 13 34

16 18 130 90 163 208 1 24 70 16 101 52 208

95 62 11 191 14 71

distributions, and as well as EKW, BKW distributions. Table 3 gives a descriptive sum-
mary of each sample. The air conditioning system sample has far more variability and the
baseball player salary sample has the lowest variability.
The maximum likelihood estimates (MLEs) of the parameters are computed by maxi-

mizing the objective function via the subroutine NLMIXED in SAS. The estimated values
of the parameters (standard error in parenthesis), -2 Log-likelihood statistic, Akaike
Information Criterion, AIC = 2p − 2 ln(L), Bayesian Information Criterion, BIC =
p ln(n) − 2 ln(L), and Consistent Akaike Information Criterion, AICC = AIC + 2 p(p+1)

n−p−1 ,
where L = L(
̂) is the value of the likelihood function evaluated at the parameter esti-
mates, n is the number of observations, and p is the number of estimated parameters
for the EKD distribution and its sub-distributions are tabulated. See Table 4, Table 5 and
Table 6.
Plots of the fitted EKD, KD, D and the histogram of the data are given in Figure 4. The

probability plots (Chambers et al. 1983) consists of plots of the observed probabilities,
against the probabilities predicted by the fitted model are also presented in Figure 5. For
the EKD distribution, we plotted for example,

G(x
(j) ) =

{
1 −

[
1 −

(
1 + λ̂x−δ̂

(j)

)−α̂
]φ̂
}θ̂

against j−0.375
n+0.25 , j = 1, 2, . . . , n, where x

(j) are the ordered values of the observed data. A
measure of closeness of the plot to the diagonal line given by the sum of squares

SS =
n∑

j=1

[
G(x

(j) ) −
(
j − 0.375
n + 0.25

)]2

Table 3 Descriptive statistics

Data Mean Median Mode SD Variance Skewness Kurtosis Min. Max.

I 92.07 54.00 14.00 107.92 11646 2.16 5.19 1.0 603.0

II 3.26 1.15 0.40 4.36 19.05 2.10 5.13 0.4 33.0

III 17.71 16.80 9.30 8.80 77.38 0.80 0.73 2.7 53.6
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Table 4 Estimation of models for air conditioning system data

Estimates Statistics

Distribution α λ δ φ θ -2 log likelihood AIC AICC BIC SS

EKD 20.6164 4.7323 0.6192 18.1616 0.1657 2065.0 2075.0 2075.3 2091.2 0.0309

(1.2347) (0.4174) (0.0459) (5.8028) (0.0089)

KD 5.0354 4.3846 0.3762 21.7047 1 2066.9 2074.9 2075.2 2087.9 0.0368

(2.1177) (3.0727) (0.1253) (27.9167) -

D 1.2390 94.1526 1.2626 1 1 2078.4 2084.4 2084.5 2094.1 0.1344

(0.1749) (33.7549) (0.0663) - -

a b c λ θ

EKW 3.7234 0.1219 1.0595 0.0495 0.3784 2063.7 2073.7 2074.0 2089.8 0.0254

(0.8783) (0.0183) (0.1448) (0.0224) (0.1136)

a b α β c λ

BKW 1.4342 0.0830 2.0054 1.9100 0.7412 0.1809 2064.6 2076.6 2077.1 2096.1 0.0338

(1.2507) (0.0875) (1.6573) (1.9807) (0.0343) (0.0388)



H
uang

and
O
luyede

JournalofStatisticalD
istributionsand

A
pplications

2014,1:8
Page

14
of20

http
://w

w
w
.jsdajournal.com

/content/1/1/8

Table 5 Estimation of models for baseball player salary data

Estimates Statistics

Distribution α λ δ φ θ -2 log likelihood AIC AICC BIC SS

EKD 69.1586 0.000043 7.6321 0.0591 0.4075 2864.1 2874.1 2874.2 2897.7 7.8153

(0.000036) (0.0000058) (0.0557) (0.0044) (0.0327)

KD 69.0839 0.000011 7.2375 0.0996 1 2957.2 2965.2 2965.2 2984.0 7.7095

(0.000061) (0.00000133) (0.037) (0.0036) -

D 70.0780 0.0116 1.0312 1 1 3225.6 3231.6 3231.6 3245.7 6.4568

(34.4988) (0.0058) (0.0301) - -

a b c λ θ

EKW 15.0514 0.1368 0.6376 8.8903 0.5419 3209.8 3219.8 3219.9 3243.3 5.3289

(2.0692) (0.0266) (0.0756) (4.9198) (0.2098)

a b α β c λ

BKW 24.0047 0.03783 14.4799 4.6029 0.5168 32.1184 3088.4 3100.4 3100.5 3128.7 18.0516

(0.6879) (0.0039) (0.2069) (0.4549) (0.006) (2.4559)
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Table 6 Estimation of models for poverty rate data

Estimates Statistics

Distribution α λ δ φ θ -2 log likelihood AIC AICC BIC SS

EKD 75.5803 0.851500 0.8183 60.9069 0.3091 3750.7 3760.7 3760.8 3782.1 0.1305

(11.1276) (0.32) (0.0714) (29.1324) (0.02229)

KD 60.8898 0.304000 0.4666 90.2889 1 3758.9 3766.9 3767.0 3784.0 0.2604

(17.5714) (0.0963) (0.0555) (54.8283) -

D 1.7954 350.0100 2.4175 1 1 3831.8 3837.8 3837.9 3850.7 0.9210

(0.2034) (105.94) (0.0784) - -

a b c λ θ

EKW 0.1013 2.2289 2.741 0.02545 20.0336 3752.8 3762.8 3762.9 3784.2 0.1071

(0.0944) (1.8026) (2.2276) (0.0199) (30.0233)

a b α β c λ

BKW 0.9985 1.0006 1.9999 0.03989 2.0006 0.1141 4727.5 4739.5 4739.7 4765.2 80.9942

(0.0069) (0.0431) (0.0584) (0.0017) (0.2564) (0.0075)
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Figure 4 Fitted PDF for data sets.

was calculated for each plot. The plot with the smallest SS corresponds to the model with
points that are closer to the diagonal line. Plots of the empirical and estimated survival
functions for the models are also presented in Figure 6.
For the air conditioning system data, initial values α = 1, λ = 2, δ = 0.6,φ = 3, θ = 1

are used in SAS code for EKD model. The LR statistics for the test of the hypothesis
H0 : KD against Ha : EKD and H0 : D against Ha : EKD are 1.9 (p-value = 0.17) and
13.4 (p-value = 0.0012). Consequently, KD distribution is the best distribution based on
the LR statistic. The KD distribution gives smaller SS value than Dagum distribution and
slightly bigger than EKD. For the non nested models, the values of AIC and AICC for KD
and EKW models are very close, however the BIC value for KD distribution is slightly
smaller than the corresponding value for the EKW distribution. We conclude that KD
model compares favorably with the EKW distribution and thus provides a good fit for the
air conditioning system data.
For the baseball player salary data set, initial values for EKD model in SAS code are

α = 70, λ = 0.01, δ = 1.026,φ = 0.1, θ = 1. The EKD distribution is a better fit than
KD and Dagum distributions for this data, as well as the other distributions. The val-
ues of the statistics AIC, AICC and BIC for KD distribution are smaller compared to
the non nested distributions. The LR statistics for the test of the hypotheses H0 : KD
against Ha : EKD and H0 : D against Ha : EKD are 93.1 (p-value< 0.0001) and 361.5
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Figure 5 Observed probability vs predicted probability for data sets.

(p-value < 0.0001). Consequently, we reject the null hypothesis in favor of the EKD dis-
tribution and conclude that the EKD distribution is significantly better than the KD and
Dagum distributions based on the LR statistic. The value of AIC, AICC and BIC statistics
are lower for the EKD distribution when compared to those for the EKW and BKW
distributions.
For poverty rate data, initial values for EKD model are α = 73, λ = 0.1, δ = 0.15,φ =

60, θ = 0.33. The LR statistic for the test of the hypotheses H0 : KD against Ha : EKD and
H0 : D against Ha : EKD are 8.2 (p-value = 0.0042) and 81.1 (p-value < 0.0001), respec-
tively. The values of AIC, AICC and BIC statistics shows EKD distributions is a better
model and the SS value of EKD model is comparatively smaller than the corresponding
values for the KD and D distributions. Consequently, we conclude that EKD distribution
is the best fit for the poverty rate data.

9 Conclusions
We have proposed and presented results on a new class of distributions called the EKD
distribution. This class of distributions have applications in income and lifetime data anal-
ysis. Properties of this class of distributions including the series expansion of pdfs, cdfs,
moments, hazard function, reverse hazard function, income inequality measures such as
Lorenz and Bonferroni curves are derived. Renyi entropy, order statistics, reliability, mean
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Figure 6 Empirical survival function for data sets.

and median deviations are presented. Estimation of the parameters of the models and
applications are also given. Future work include MCMCmethods with censored data and
regression problems with concomitant information.

Appendix
R Codes

install.packages(’stats4’)

install.packages(’bbmle’)

library(stats4)

library(bbmle)

library(stats)

# Define Function

# define EKD pdf

g=function(alpha,lambda,delta,phi,theta,x){

y=alpha*lambda*delta*phi*theta*((x)ˆ(-delta-1))*((1+lambda*(xˆ(-delta)))ˆ(-alpha-1))*((1-((1+lambda*(xˆ(-delta)))ˆ(-

alpha)))ˆ(phi-1))*((1-((1-((1+lambda*(xˆ(-delta)))ˆ(-alpha)))ˆ(phi)))ˆ(theta-1))

return(y)

}

# define EKD cdf
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G=function(alpha,lambda,delta,phi,theta,x){

y=(1-((1-((1+lambda*(xˆ(-delta)))ˆ(-alpha)))ˆ(phi)))ˆ(theta)

return(y)

}

# define EKD hazard

h=function(alpha,lambda,delta,phi,theta,x){

y=g(alpha,lambda,delta,phi,theta,x)/(1-G(alpha,lambda,delta,phi,theta,x))

return(y)

}

# define EKD quantile

quantile=function(alpha,lambda,delta,phi,theta,q){

((lambda)ˆ(1/delta))*((((1-((1-((q)ˆ(1/theta)))ˆ(1/phi)))ˆ(-1/alpha))-1)ˆ(-1/delta))

}

# define EKD moments.

# note: k<delta

moments=function(alpha,lambda,delta,phi,theta,k){

f=function(alpha,lambda,delta,phi,theta,k,x){(xˆk)*(g(alpha,lambda,delta,phi,theta,x))}

y=integrate(f,lower=0,upper=Inf,subdivisions=100000,alpha=alpha,lambda=lambda,delta=delta,phi=phi,theta=theta,k=k)

return(y)

}

# define EKD I(a)

Ia=function(alpha,lambda,delta,phi,theta,a){

n=length(a)

y=0

for(i in 1:n){

y[i]=integrate(function(alpha,lambda,delta,phi,theta,x){x*g(alpha,lambda,delta,phi,theta,x)},lower=0,upper=a[i],

subdivisions=100000,alpha=alpha,lambda=lambda,delta=delta,phi=phi,theta=theta)$value

}

return(y)

}

# define EKD bonferroni

# note: p is between (0,1)

bonferroni=function(alpha,lambda,delta,phi,theta,p){

q=quantile(alpha,lambda,delta,phi,theta,p)

mu=moments(alpha,lambda,delta,phi,theta,1)$value

y=(Ia(alpha,lambda,delta,phi,theta,q))/(p*mu)

return(y)

}

# define EKD lorenz

# note: p is between (0,1)

lorenz=function(alpha,lambda,delta,phi,theta,p){

q=quantile(alpha,lambda,delta,phi,theta,p)

mu=moments(alpha,lambda,delta,phi,theta,1)$value

y=(Ia(alpha,lambda,delta,phi,theta,q))/(mu)

return(y)

}
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