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Abstract
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of indivisibles in a non-Euclidean sense) a geometric disintegration method is
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constructing non-concentric elliptically contoured and generalized von Mises
distributions are presented.
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1 Introduction

The needs of statistical practice and challenging probabilistic questions in the interplay
of measure theory and several other mathematical disciplines stimulate the development
of statistical distribution theory. In part, well established mathematical strategies are fol-
lowed to enlarge known families of distributions, and partly new types of distributions
are derived by new methods.

Numerous studies on multivariate probability distributions with a view towards their
statistical applications are closely connected with notions like decomposition or disin-
tegration of probability laws, invariant measures on groups and related manifolds, and
cross sections. Among the basic references in this field, we refer to (Barndorff-Nielsen
et al. 1989; Eaton 1983, 1989; Farrell 1976, 1985; Koehn 1970; Muirhead 1982; Nachbin
1976; Wijsman 1967, 1986, 1990). In the spirit of those works, generalizations of ellipti-
cally contoured distributions where the contours are described by a positive function that
is positive homogeneous or are arbitrary cross sections are discussed in (Balkema and
Nolde 2010; Fernandez et al. 1995) and in (Kamiya et al. 2008; Takemura and Kuriki 1996)
respectively.

Zonoid trimming for multivariate distributions is considered in (Koshevoy and Mosler
1997; Mosler 2002). In (Balkema et al. 2010; Balkema and Nolde 2010; Joenssen and Vogel
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2012; Kinoshita and Resnick 1991; Mosler 2013; Nolde 2014) the authors describe the
way in which star-shaped sets and, correspondingly, star-shaped distributions occur in
limit set theory, in meta density analysis, power studies for goodness-of-fit tests, depth
analysis and analysis of residual dependence between extreme values in the presence
of asymptotic independence, respectively. Norm-contoured sets and related estima-
tion problems of identifying structures in high-dimensional data sets are dealt with in
(Scholz 2002).

The authors in (Fang et al. 1990; Kallenberg 2005; Schindler 2003) present studies of
symmetric laws from different points of view. The class of /,, ,-symmetric distributions,
neN=1{L2,...}, p > 1, was introduced in (Osiewalski and Steel 1993) and studied in
(Gupta and Song 1997; Song and Gupta 1997; Schechtman and Zinn 1990; Rachev and
Riischendorf 1991; Szablowski 1998). Applications of these distributions are discussed in
(Nardon and Pianca 2009; Pogény and Nadarajah 2010).

Geometric measure representations for [, ,-symmetric distributions, » € N, p > 0,
and for heteroscedastic Gaussian distributions were derived in (Richter 2009, 2013),
respectively.

An extension of the class of [, ,-symmetric distributions to the class of skewed [, ,-
symmetric distributions has been derived in (Arellano-Valle and Richter 2012). A general
approach to geometric representations of skewed [, 2-symmetric distributions can be
found for n = 2 in (Giinzel et al. 2012) and for arbitrary # in (Richter and Venz 2014).
Another definition of power exponential distributions than the one used here was given
in (Gémez et al. 1998), where a special case of elliptically contoured distributions is dealt
with. Densities of p-generalized elliptically contoured distributions and of more general
star-shaped distributions have been considered in (Balkema and Nolde 2010; Fernandez
et al. 1995).

In the present paper, geometric and stochastic representations are derived for the big
class of p-generalized elliptically contoured distributions. Generalizing CavalieriXs and
TorricelliXs method of indivisibles in a non-Euclidean sense, a geometric disintegration
method is established for deriving even more general star-shaped distributions. Basic
properties of these distributions are studied, applications of the new representations to
constructing non-concentric elliptically contoured distributions and to generalizing the
von Mises distribution are discussed, and the necessary background from non-Euclidean
metric geometry is developed.

Many authors use iterated integration in distribution theory by first integrating
with respect to (w.r.t.) a radius variable and then w.rt. certain directional coordi-
nates. In the present paper, we shall use basically the inverse order of integration.
This way, we shall make use of the star-sphere intersection-proportion function (ipf)
of a given set. The ipf is essentially based upon a suitably defined non-Euclidean sur-
face content on a star sphere. The latter notion needs therefore the most effort in
the present work. Areas from probability theory and mathematical statistics where
the ipf successfully applies are surveyed in (Richter 2012). Applying this function
allows to study the contours of mass concentration of a probability distribution inde-
pendently from the tail behavior of the distribution, and often leads to a numerical
stabilization of the evaluation of probability integrals. Further, the ipf allows a non-
Euclidean surface measure interpretation of certain sector measures considered in the
literature.
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The paper is organized as follows. After quoting some preliminary facts in Section 2,
we deal with the notion of a star-generalized surface content in Section 3. This notion will
be studied both based upon a local definition and in terms of an integral in Section 3.1.
The latter definition makes use of a preliminary system of coordinates which moreover
enables a generalization of the method of indivisibles. Then Section 3.2. deals exclu-
sively with the new surface measure on p-generalized ellipsoids. After much technical
work, Theorem 5 finally proves that the local approach to the star generalized surface
content results in the same quantity as a suitably defined non-Euclidean surface con-
tent in terms of an integral defined using a modified standard approach of differential
geometry. To this end, some more coordinate systems are introduced and exploited. This
includes consideration of star-generalized trigonometric functions and several Jacobians.
In Section 4, star-shaped distributions are introduced in several steps and some of their
basic properties are studied. The most explicit results are presented for the class of p-
generalized elliptically contoured distributions in Section 4.7. For this specific class, all of
the more general results of the preceding parts of Section 4, including the main results
in Theorems 7 and 8, allow an additional interpretation which in each case is based
upon a suitable non-Euclidean geometry. Moreover, the ball number function will be
extended in Section 4.5 and characteristic functions are discussed in Section 4.6. In the
two-dimensional case, some consequences from the preceding sections concerning the
new class of non-concentric elliptically contoured distributions and a star generalization
of the von Mises distribution are drawn in Sections 5.1 and 5.2, respectively. The paper
ends with some concluding remarks in Section 6, basically indicating some possible future

work.

2 Preliminaries

The main considerations of this paper are most easily understood by making use of a rela-
tively easy coordinate transformation. For showing the deeper meaning of several results
derived this way, we shall make use, however, of different rather technical systems of coor-
dinates which will be introduced in later sections. Here, we begin with some preliminary
notions, including the preliminary coordinate system mentioned in the Introduction.

Throughout this paper, K C R” denotes a star body, i.e. a nonempty star-shaped set that
is compact and is equal to the closure of its interior, having the origin 0, in its interior. Its
topological boundary will be denoted by S. The functional /ix : R” —[0, 00) defined by
hi(x) = inf{A > 0 : x € AK}, x € R” where AK = {(x1,...,Ax) T ¢ (x1,..., %) € K}
is known as the Minkowski functional of the star body K. We assume that /g is positive-
homogeneous of degree one, i.e. ig(Ax) = Ahg(x), A > 0, which is the case if, e.g., /i is
a norm or an antinorm. For the latter notion, we refer to (Moszynska and Richter 2012),
and for the role which homogeneous functionals generally play in stochastics, we refer to
(Hoffmann-Jorgensen 1994).

Let us consider K(r) = rK = {x € R” : hx(x) < r} and its boundary S(r) = rS as
the star ball and star sphere of Minkowski radius or star radius » > 0, respectively. A
countable collection § = {Ci, Cy,...} of pairwise disjoint cones C; with vertex being the
origin 0, and R” = J C; will be called a fan. By 5, we denote the Borel-o-field in R”.

j
We put §; = SN Cj, §;N B, = Bs; and Bs = 0{Bys,1, Bs,2,...}. We shall consider only
star bodies K and sets A € B satisfying the following condition.
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Assumption 1. The star body K and the set A € B are chosen such that for every j the
set

T
GANS) = {19 e R" 3y with 6 = (z?T,n> eAmsj}

is well defined and such that for every v = (91, .., DT € GA NS;) there is a uniquely
determined n > 0 satisfying hx ((191, ) SR n)T) =1

The latter quantity will be denoted by ;(¥}), j = 1,2,. . ..

For everyx € R”,x # 0 there are uniquely determined » > 0 and 0 € S such thatx = r6.
Forx € rSj, we havex = r (19 r nj(ﬁ)) T, and we will write r;(¥¥) = y;($%) . Consequently,
i) = hic(r0) = rine (07, m2) ") = 7.

Forj = 1,2,... the star spherical coordinate transformation StSphj :[0,00) x G(S)) — C;
is defined by x; = rd,i = 1,...,n — 1,x, = y;(?). The equations r = hx (x), %; = x;/r,
i=1,...,n— 1define a.e. uniquely the inverse map of StSph;.

Note that if K is convex or an axes aligned p-generalized ellipsoid, p > 0, see
Section 3.2.1, one may assume the sets SN Cj(y) to be the upper and lower hemi-spheres,
St = {9 = 01...,0,)Twith6, > (<)0}, respectively.

Lemma 1. The absolute value of the Jacobian of the star-spherical coordinate transfor-
n—1 ;
mation is J(r,9) = r”"lfj*(ﬁ),with]j*(ﬁ) = |n;(¥) — 2:1 ﬁiaimnj(ﬁﬂfor everyr > 0,0 €
=
G(Sp,j=1,2,..

Proof. The formula for J(r, 9) = |%| given in the lemma can be checked immedi-

ately by determining all partial derivatives and evaluating the resulting determinant.

The coordinate system introduced here will be the basis of our considerations in
Section 3.1 dealing with a general local notion of surface content. A specific integral
notion of surface content dealt with in Section 3.2.3 will make use of another system of
coordinates which will be introduced in Section 3.2.2. For the comparison study of the
two seemingly rather different two approaches to measuring surfaces in Section 3.2.4, we
will consider again suitable coordinates.

An essential part of the message of Lemma 1 is that the Jacobian allows a factorization
into a term not depending on the radius coordinate and one that is independent of the
directional coordinates.

Later in this paper, the restriction of the star spherical coordinate transformation to the
case r = 1 will be denoted by StSph*.

3 The star-generalized surface measure

3.1 Basics

The results in (Richter 2009, 2013) reflect the basic role which a suitable notion of non-
Euclidean surface content plays for the study of non-spherical distributions. Here, we give
first formally a local definition of a generalized surface measure which allows us to derive
geometric and stochastic representations of star-shaped distributions and correspond-
ingly distributed random vectors, respectively. For a more advanced understanding of the
notions and results, we refer to Remark 6 below.
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For A € 985, we introduce the central projection cone CPC(A) = {x € R" : x/hx(x) €
A} and the star sector of star radius g, sector(A, 0) = CPC(A) N K (o). We are now ready

to introduce the first basic notion of this paper. To this end, let . be the Lebesgue measure
in R”.

Definition 1. The star-generalized surface measure is defined on o - Bs by Os(A) =
f'(0) wheref (0) = u(sector(4, 0)).

If K is the Euclidean unit ball, and thus S is the Euclidean unit sphere, then Og equals
the usual Euclidean surface content measure. The equation in Definition 1 should be well
known for this case, but, astonishing enough, numerous authors do not make this very
clear to their readers.

In contrast to the usual differential geometric definition of the notion of surface con-
tent in terms of an integral, the approach in Definition 1 is based upon a derivative. The
equation

R
u(sector(A,R)) = /Dg(rA)dr,A € Bg (1)
0

is an immediate consequence of the fundamental theorem of calculus and might seem
therefore to be of no special interest, here. If, however, non-trivial explanations for
Oy are available as in (Richter 2009, 2013) where K is an /,,,—ball or an ellipsoidal
ball, respectively, then things change noticably. In both cases, a particular non-Euclidean
geometry was identified such that the correspondingly modified integral notion of
surface content based upon this non-Euclidean geometry coincides with the locally
defined surface measure Og. This allows a non-Euclidean interpretable extension of
Cavalieri¥s and TorricelliXs method of indivisibles, see (Richter 1985, 2009). Later in
this paper, we shall observe this for a bigger class of star bodies. Moreover, we
remark that Ogs(A) = np(sector(A,1)),YA € ‘Bs, meaning much more than just
Ds(85) = nu(K).

Theorem 1. For sets A € ‘Bg satisfying Assumption 1 in Section 2, the star-generalized
surface measure allows the representation

Os(d) =) / JF(®)do.

J G(Ans)

Proof. Using star-spherical coordinates, and that G(A N §)) = StSph*~1(A N Sj), we get
according to Lemma 1

o
(sector(A, 0)) = / dx = / > / PR, 7).

sector(A,0) o / StSph*=1(ANS;)

Definition 1 applies. O
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Remark 1. (a) With the notations Os(A) = [ Og(db), and
A

> / J(9)do = /]*(z?)dz?,
J GAns)) G(A)

an alternative expression of Theorem 1 is

/Dg(de)z /]*(ﬂ)dl?.
A

G(A)

T
S (T @) )@,
G(A)
(b) The sector measure on *Bg, i.e. the measure smg(A) = W%IQ()A’D)

representation smy (A) = %,A € Bg.

If fis integrable then we write ff(@)DS(dQ) =
A

, satisfies the

(c) A class of examples where Theorem 1 applies is given by all star bodies K
corresponding to norms or antinorms for which there exist countably many pairwise
disjoint sets A; satisfying Assumption 1 and S = | J A;.

j

The following consequence of Theorem 1 follows using FubiniXs theorem and can be
read in the special case f = 1 as a disintegration formula for the Lebesgue measure. For
a certain survey of such formulas, see (Richter 2012). These representations may also
be considered as closely connected with a generalized method of indivisibles with the
latter being defined as the intersections of a Borel set B with the star spheres S(r),r > 0.
Constructions of such type are called cross sections by several authors, see (Eaton 1983;
Farrell 1976, 1985; Koehn 1970; Wijsman 1967, 1986, 1990) and (Takemura and Kuriki
1996).

Corollary 1. Let the star body K satisfy Assumption 1. Then

(a) For B € B, and integrable |, [fdx= [| "1 [ f0)Dsdd) |dr.
B 0 [LB]ns
o0
(b) For bounded measurable B, [dx= [ Os(BNS(r))dr.
B 0

Proof. Changing from Cartesian to star spherical coordinates yields

oo

/ f®)dx = / Py / S (StSphy(r, 9)JF (@) | dr
B

0 J G([1BIns))

= / Yy / Fr0)O5(do) | dr.
J :

J

L [7B]ns;
The rest follows with f = 1 and the notation in Remark 1 O

Corollary 1 may be rewritten using the following second basic notion of this paper.

Definition 2. The star sphere intersection-proportion function (ipf) of the set B € B, is
defined as §s(B,r) = Os ([1B] N S) /9s(S), r > 0.



Richter Journal of Statistical Distributions and Applications 2014, 1:20 Page 7 of 24
http://www.jsdajournal.com/content/1/1/20

The ipf was first introduced in (Richter 1985, 1987, 1991) for Gaussian and spherical dis-
tributions, respectively, i.e. for cases where S is the Euclidean unit sphere, and generalized
later in (Richter 2007) to the case that S is an /,, ,—sphere. Moreover, the ipf corresponding
to an asymmetric sphere S was considered for the case that K is the shifted positive part
of an [, 1 — ball, i.e. a simplex, and for the case that K is a, possibly asymmetric, polygon
or Platonic body, respectively.

Corollary 2. If the conditions of Corollary 1(b) are satisfied,

/dx:Dg(S)/ " 1%s(B, r)dr.
0

B

Proof. 1t follows from Corollary 1 that

r 1
fdx = /r”leg (|:B:| N S) dr.
r
B 0
The rest follows by Definition 2. O

Remark 2. According to Remark 1(b) and Definition 2, the ipf allows the sector measure
interpretation §s(B,r) = smy ([%B] N S) ,r>0.

Whether one prefers the interpretation of the ipf according to the definition of the
sector measure smy in terms of volumes or according to Definition 2 in terms of star-
generalized surface contents may depend on several aspects. The authors in (Barthe et al.
2003; Naor 2007; Schechtman and Zinn 1990) use the notion of cone measure in similar
situations.

As already mentioned in the first part of the present section, one is naturally inter-
ested in a fully differential geometric explanation of the star-generalized surface measure
g in terms of an integral. Such an explanation will be given in Section 3.2.3 when K is
an element of a class of generalized ellipsoids which are star-shaped but not necessarily

convex.

3.2 The star-generalized surface content of p-generalized ellipsoids

3.2.1 Volumes of p-generalized ellipsoids

Because the notion of the star-generalized surface content is derived from that of vol-
umes, we first study volumes of p-generalized ellipsoids in this section. To this end,

n
let b = {b1,...,b,} be any orthonormal basis (onb) in R” and put x = )_ &b; for
i=1

x € R”. Moreover, let a = (ay,..., an)T be an arbitrary vector having positive compo-

nents, p a positive real number, |.|,, : R” —[0,00) the function defined by |x|,, =
n 1/p

(Z|f{f|p) ,x€R"and B, , = {x eR": |¥lgp < 1} the corresponding unit ball w.r.t. b.
1 1

Its topological boundary E, , is a generalized ellipsoid having form parameter p and main

axes being aligned with the coordinate axes and having lengths 24;,i = 1,. .., n. One may

consider E,, also as a sphere w.r.t. the function |.|,, which is a norm if p > 1 and an

antinorm if 0 < p < 1.
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The b;-axis may be interpreted in the sense of main axis from principal component
analysis. For a discussion of these notions in connection with that of correlation, we refer
to (Dietrich et al. 2013). The set B, ,(R) = RB,, will be called a p-generalized ellipsoidal
ball, or simply p-generalized ellipsoid, of |.|,,-radius R, R > 0, and w.r.t. the basis b.

The evaluation of the volume of B, ,(R) may be immediately reduced to that of an
Inp-ball having a suitable p-radius. To this end, we denote the [, ,-ball of p-radius R by
Ky p(R) = RK )y, where K, , = By p, 1 =(1,..., 1T € R”, and its topological boundary,

n
the [, ,—sphere of p-radius R, by S,,,(R) = RS,,. Moreover, we put af = [[ aj
j=Li#i
i =1,...,n and let diag (a’l‘, . .,a,’;) denote a diagonal # x n-matrix whose diagonal
entriesaredas ... dy, ...,dj ... dy_1, respectively. If b is the standard onb in R”, then

diag (a},...,a}) Bap(R) = Kyp(ay..ayR). Changing variables u = diag (a,...,a})x in
the integral 11(B,,(R)) = i dx gives
{xER™: x|, <R}
du
(@1 ...a,)" 1

p(Bap(R)) = /
Kn,p(Rﬂl--»ﬂn)

N«(Krz,p (Ray...an))
(ar..an)"1

Hence, u(B,p(R) = = a.. .anw—}’;”’R” where, in accordance with

; al (r(l)) R .
(Richter 2009), w,, = m = Opq(Snp) with ; + 2 = 1is the ,,4-surface content
of the /,, ,—unit sphere S, ,. The following theorem has thus been proved.

Theorem 2. The p-generalized ellipsoid of |.|4p-radius R has the volume

w,
1(Bap(R) = ay .. .a,,%R”.

Corollary 3. The star-generalized surface content of a p-generalized ellipsoid with axes
oflengths 2a;,i =1,...,nis Os(Eyp) = a1..0,0np.

This corollary is an immediate consequence of Definition 1.

Notice that this formula for the star-generalized surface content of E, , proves that the
parameters p and a have separate influence on the result. Moreover, it makes no use of
elliptic integrals, whereas the Euclidean surface content of E, , does.

Similarly, as Equation (1), the equation

R
1(Bap(R)) = / Os(Eap(r))dr (2)
0

where E, ,(r) = rE,,, might seem to be of no special interest, at this stage of our study.
We shall show, however, later in this paper that Og allows a non-trivial interpretation as
the surface measure w.r.t. a well defined, non-Euclidean, metric geometry. This allows us
to re-define Og in a well established differential geometric approach. This will be done in
the next but one section. We shall make use of a specific coordinate system which will be
defined in the next section.

Following the notation in (Richter 2013), we will call the star-generalized surface mea-
sure alternatively the E, ,-generalized surface measure if K is a p-generalized ellipsoid
with axes of lengths 2a;,i = 1,...,n.
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3.2.2 The p-generalized ellipsoidal coordinates
We recall that [, ,-generalized and ellipsoidal generalized trigonometric functions and
coordinates have been shown in (Richter 2007, 2009) and (Richter 2011b, 2013) to
be powerful tools for studying [, ,-symmetric and elliptically contoured distributions,
respectively. The coordinates which we define in this section are in some sense combina-
tions and generalizations of the aforementioned ones. They will be used in Section 3.2.4
for showing the equivalence of two approaches to the star-generalized surface measure
Og: the local one presented already in Definition 1, and an integral one which will be
given later.

Let us assume for a moment that # = 2 and (x, y)T = xb; + yby where {bj, by} is an onb
in R2. In the following definition, ¢ can be interpreted as the angle between pos(x, 0) and
pos(x,y) where pos(s, ) = {(v&,yn)T : v > 0}.

Definition 3. The E, j,,-generalized trigonometric functions are defined as

(cos@)/a (sing)/b

, 0,2
Nosp (@) Nopp(@) ® <1027

Cos(a,b;p) (¢) = and Sin(a,b;p) (¢) =

for positive a, b, p and where N, ;,,(¢) = (|(cos ¢)/al’ + |(sin @)/ biP)1/p.

Remark 3. These generalized trigonometric functions may be extended to functions on
the whole real line with period 2w. Basic analytical and geometric interpretations of these
functions follow from the representations

sl | COS(app) (P)] = [(cos(4,6)(9), 0)p
((w/alp + ly/blp)e’ =D 1(COS(@p) (@), Sinap) ()]

COS(q,b;p) (¢) =

and

y/b . i (0, Sin(a,b) (9)) |p
(ralp + yybpyie | Sman O = e @), sinan @)y

Sin(a,b;p) (¢) =

where |.|, = |.|1,p and sin, ) and cos, ) are defined in (Richter 2011b).
Remark 4. Euler®s formula is generalized by| cos g p,) ($) 1P + | singg pp) ()P = 1.

Remark 5. For every ¢,

Sina,b;p (@) Sina,b;p () |p—2

Cosa,b;p (¢) | Cosa,b;p (¢) |p—2
abN{, ;. (@)

DN @)

/ o !
COS (4 ) ($) = —  SIN(g ) (9) =

We assume again that x = x1b; + ... + x,b,, x € R".

Definition 4. The p-generalized ellipsoidal coordinate transformation Tf,p = Tﬁp(n),
Tﬁp : M, — R", with M, =[0,00) x M}, M =[0,7)*"=2 x[0,27) is defined by
X1 = A1¥ COS(ay,ay;p) (¢1), %2 = aor Sin(ul,az;p) (¢1) COS(ay,a3;p) (#2), ...,

Xp—1 = Ap_17 SiN(g) 4y:p) (P1) ... SIN(G,_y a,_1;p) (Pr—2) COS(a,_1,a,p) (Pr—1),

Xp = apl’ Sin(al,az;p) (P1)... Sin(an,z,an,l;p) (Pn—2) Sin(an,l,an;p) (Pn-1).

Page 9 of 24
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Theorem 3. The map Tfp is almost one-to-one, its inverse is a.e. given by

S %j/ay ,
"= <Z< ;l ) ) 9= Arceos (a;,a;413p) ﬁ ,and, if x,—1 # 0,
1 (Z |xi/ﬂi|p)
i=f
arctan | 75| = @1 if (tu-1,%0) € Qi, =T — 1 in Q, = —T + Py in Qs,

Xn—1

and = 2w — ¢, in Qq.
Here, arccos(q;,4;, ;) denotes the function inverse to co8(a,q;, ,;p) and Qi up to Qq denote
anti-clockwise enumerated quadrants from R?.

Proof. The proof of this theorem is quite similar to that of Theorem 1 in (Richter 2007)
and is therefore omitted. O

Theorem 4. The Jacobian of the coordinate transformation Tf, s
] <T£p) (rx ¢17 cee ¢}’l—l) = rn_lj* <TaE:p) (¢17 cee ¢n—1) ’

1 ﬁ (Sin(ai,a,url;p) (¢i))n—1—i

<t ap—1

2 .
i=1 N(ﬂiﬂiﬂip) (¢)

Xi

Proof. The proof will be given in four steps. First, we change variables 2* = y;,
i=1,...,n The Jacobian of this transformation is ‘% =dai-... ay.
Next, we change variables y; = ru1,y, =7 (1 — |u1|p)1/1” 75T
- 1 1
yu1 =F (1= 1malP)? (= o) s,
Y =H(F (1= [alP) P (L= )P (1 = I ?) 77

As it was shown in the proof of Theorem 2 in the afore mentioned paper, the Jacobian of

n—1
; fon i DW1yesyn) | _ zn—1 1y, ap\(n—p=i)/p
this transformation is ‘D(?,uly---,unq) =7 il;ll (1 — |wil?) .
Third, we change variables 7 = r, u; = c0S(;,4;,1p)(¢),i = 1,...,n — 1. The Jacobian

of this transformation is

D(;:Ml:---:ﬂn—l) . ( d d
detdiag(1, — cos . ey
D(r\ 1 n1) g\l Gy OSaranp @0 Gy

It follows from the properties of the E, ;,,-generalized trigonometric functions that

COS(“n—l:“w;p) (¢Vl1)) ’ .

~ -1 . . _
‘D(}", M1s---s Mn—l) _ yi_[ SIN(a;,a,41;p) (¢l)| SN (g;,a;,1;p) (¢L)|p 2
D@1, 1) i=1 aiai+1N(2ﬂi;ﬂi+lip) (@)

On combining all three transformations, we get finally

—1 . i
R TPY (1)) Lo

. 2 A
=1 “t“l+1N(ai,ai+1;p)(¢l)

J <T£p> " P1,...,ou—1) =aj..ay - r

O
Corollary 4. If n = 2 then ](Tf,p) (r, ) m, and if n = 3 then
(a1.,a2:p)
E _ r2 sin ¢
1(TE,) 0, 6) = PR e arnt

Page 10 of 24
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For the corresponding results in the case p = 2, we refer to (Richter 2011b, 2013).

3.2.3 Integral approach to the star-generalized surface measure on p-generalized ellipsoids

Let us recall that measuring the Euclidean surface content of E, ,(R) necessarily involves
certain elliptic integrals. In this paper, however, we make use of a non-Euclidean def-
inition of surface content which avoids such integrals. To this end, we shall consider
the ellipsoid E,;,(R) as a subset of the generalized Minkowski space (]R", || L q> where

1 _ (1 1

2 a,...,an

We will introduce now the notion of the |.| L q-surface content of £, ,(R) in a similar way
as the notion of the /,, ;-surface content was introduced in (Richter 2009) for /, ,-spheres.
Notice that effects coming from scaling axes with the help of the parameter vector a and
effects being due to the form parameter p are dealt with here in a separate way when

introducing the function |.|1 "
1,

Let b be the standard onb, and let y be defined as the positive solution of ) |x;/a;|P +
n—1 B
ly/anl? = RP where Y |x;/a;lP < RP. At (xl,...,xn_l,y)T, y > 0, the vector nor-
i=1

mal to the upper half Ezp(R) of the ellipsoid E;,(R) is N(x1,...,%:—1)

n—1
(Z %ei — e,,) . Since it always will be clear how to deal with the case y < 0, we will not
=1

further mention this case.

Definition 5. Let A C EZp (RYNB,,. The integral (or |.| ;,q—) surface content of the set A is
defined by Oy p4(A) = f IN(x1,... :xn—l)ll'q dxi...dx,_1 where G(A) = { (x1,...

G(4)
xn—l)T : (xlr LR ,xn)T € A} .

Later in this paper, this definition will be called the integral approach to the notion of
star-generalized surface content. This will be justified in the next section. Let us men-
tion that if @ = 1l then the surface measure Oy, which is based upon the geometry
of the ellipsoid E 1 equals the surface measure O, in (Richter 2009) being based upon
the geometry of the /, 4-ball K, ; which is dual to K, ,. Two-dimensional special cases of
Definition 5 were dealt with, e.g., in (Richter 2011a, 2011b) for arbitrary star discs and

ellipses, respectively.

Lemma 2. The |.|1 q-surface content of the whole generalized ellipsoid E, ,(R) of |.|4p-

radius R is Oy pq (Ea,p(R)) =a;.. .anwn,pR”’l.

anlx|P~!

1 @-D/p’
@ (R,,, z <\xi/ai|>1’)

Proof. Itfollowsfrom%:— j=1,...,n—-1

and with g = p/(p — 1) that

n—1 q q
anlxj/aj|P anRP
|N(x1,...,xn,1)|§q =y — L —+al= — .
a’ .
JLRP — % |xi/ailP) R — 3 |xi/ail?

i=1 i=1

T
—) and p and q are connected with each other by the equation 1% + % =1

Page 11 of 24



Richter Journal of Statistical Distributions and Applications 2014, 1:20 Page 12 of 24
http://www.jsdajournal.com/content/1/1/20

Hence, because of symmetry,

d(x1.. 50—
Oa,p,q(Ea,p(R)) — zaan—l (xl Xn 1)

n—1 w-D/p’
G(EX,(®) (Rp - |xi/ﬂi|p)

i=1
For suitably transforming this integral, we shall introduce now another system of
coordinates. Let the p-generalized (n — 1)-dimensional standard elliptical coordinate

transformation
Tap: Mu—1 — R, M, =[0,00) x Mi_j, M;i_; =[0,7)*""3 x [0,27)
be defined by

x1 = a1r cosy(P1), X2 = aprsing(¢1) cosy(dn),. . .,
Xp—2 = Ap—27 sing(P1) . . . siny(Py—3) cosp(¢p—2),
Xp—1 = Ap—17sing(P1) . . . siny(Py—3) siny (¢n—2)
where the p-generalized trigonometric functions sin, and cos, are defined in (Richter
2007). If a = 1 € R"! then this transformation coincides with the ln—1,p-spherical
coordinate transformation SPH;"_D, the Jacobian of which is given in (Richter 2007).
If we write /(T for the Jacobian of a coordinate transformation T then J(T,,)(r,¢) =

dx1,...xn-1) | _ (n—1)
’7010,42 ,,,,, o) _al....-an,lj(spHp )(r,¢).

Moreover, let J* <SPH ;,”71)> (p) =] (SPHI(,WD> (1, ¢) be the restriction of the Jacobian

of SPHI(;'_I) to the sphere defined by » = 1.
Changing from Cartesian to p-generalized standard elliptical coordinates gives

R 2
"

— e O
Oupq(Eap(R) = 2ay ...ayR R0 — 2y P-Dip dr
0

2w

x///] SPH(” 1> (¢>1,...,¢n,2)d¢n,2...d¢1.
0 0 0

Because of

R 1

-2 -2
/ ey dr_l) =R”’1”/ " dil) _ 1R” pB(l n— 1)
) (Rv — yP)p=D/p ) (1—)e-Dir  p p P

and 1B <15 71) Wp_1p = %a)n,p, it follows that Oy 4 (Ezp(R)) = a1 ... ana)n,pR”_l O

Hence, for the specific sets E,,(R), the local and the integral approaches to the star-
generalized surface content lead to the same result. In the next section, we will generalize
this result. When doing this, we will again make use of a modified coordinate system.

3.2.4 Comparing the local and integral approaches to generalized surface measures on
p-generalized ellipsoids

In Section 3.2.3, the surface measure O,p, was used for measuring the whole p-

generalized ellipsoid E,, , following a differential geometric, or integral or global approach.

In the present section, however, we compare it for arbitrary A € %ip = B" N E,, with

the alternative local approach which makes use of derivatives and which was introduced

in Definition 1. In this sense, we continue to follow the general method of analyzing
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the non-Euclidean geometry underlying a multivariate probability distribution which was
developed in (Richter 2009, 2013). The following theorem says that the star-generalized
surface measure coincides with the integral surface measure. For a comparison of these
surface measures, it is sufficient to consider them for sets A € SBf,p.

Theorem 5. With S = Ep and 1/p +1/q = 1, O5(A) = Ogp4(A),VA € B,

Proof. Wlo.g., we restrict our consideration to sets A € E;,p NB" and start from a slight
generalization of the first result in the proof of Lemma 2,

d(xl’ e ;xn—l)
n—1 -D/p’
G (1 -2 Ixi/dil”)
i=1

We change from Cartesian to p-generalized ellipsoidal coordinates in (n — 1) dimensions,

Oa,p,q A) =ay

n—1
Tf,p(n —1: (1, .. %0-1) —> (1, ¢1,...,9u_2) . Because of Zl lxi/ail? = r?
=
,,.n72
Oa,p,q(A) =dapn / W]* ar, é1,. .., Pu-2),

(7£,0-1) " Gty

—1—
(Sinasar ) (@)

ﬂz+1N(a“al+l,p) (¢

=T (TE,01=1) @1, bu2) = 1]"[

n—1 1p
IfAZA(Vl,Vz,M*) = Y- Yn—1s (1_ Z |xi/ai|p>
i=1

01 )T = TE, 01 = D[, r2) x MY
with M* = (@1, n2) : i < $i < Piuri = L,...,n —2)
c[0,m)*"3x[0,27) = M},

= 2
then Oupg(A) = ana,_ 1f7(1 = 7 ar

< [ (L5 = D) GG )

In what follows, we use the coordinate transformation 7, p: Rrd) = zZ[Rr,¢], ¢ =
(¢1,. .. Pn—2) defined by

Z1 = a1Rr cOS(qy,ay,p) (91), 22 = A2R7 sin(g) 4y:p) (D1) COS(ay,a5:p) (P2)s - . -,

Zp—2 = an—2Rr Sin(al,az;p) (P1) - oo Sin(an_g,an_g;p) (Pn—3) COS(a,_9,an-1;p) (Pn—2)

Zp—1 = An—1Rr sin(g, 4y (1) - won v SiN(a,_3,a,_2;p) (Pn—3) SiN(a,_y,a,_1;p) (Pr—2),

zy = ayR(1 — rP)V/P,

This transformation allows the representations

A(ry, ro, M*) = Ta,p 1, [r1,r0), M*) = {z[R,r,¢]: R=1,r € [r1,r2),¢ € M*} and

sector(A(r1, 12, M*), p) = Tup([0, p)x [r1,72) x M*)

={z[R,1,¢]: 0 <R < p,r €[r1,12),¢p € M*}.
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The volume

w(sector(A(ry,ra, M*), p)) = / dz
sector(A(r1,r2,M*),p)
may therefore be written as
ry
u(sector(A(ry, ra, M*), p)) = / / / J(Tap) (R, 1, ¢)dRdrdg.
R=0r=r1 peM*

Here, J( Tﬂ,p)(R, o) = m can be evaluated as in (Richter 2013) where the

case p = 2 was dealt with:
J(Tap) R, 7, ¢) = |zZuran—1(rR"“2* r — zyray—1(rR)"~*J* R

anRrP~1 _ -
= ‘(—W(ﬂo" 2r—an(1 = ")YPGR)" ZR)]* an-1

n—2
= an1)” (Tgp (1 = DR T

It follows that
p 2
rn—Z
A(sector (A (r1,r2, M*), p)) = an-1an O/R”IdR/mdrM/ J* (ij(n - 1)) ()de.
1 *

We consider now the local approach to the non-Euclidean surface content,
r
d 7'”_2 E
i ector (A, 12, M), p)) o1 = an 1 / N / T (1,01 = 1) (9)de,
r M*

and observe that Og(A(r1, 72, M*)) = Oy p4(A(r1, 12, M¥)).
The measures Og and Oy, coincide on the semi-algebra which is generated by the
sets of the type A(ry, r2, M*). It follows from the measure extension theorem that these

measures coincide on the whole Borel-o -field %f'p on E, p, too. O

Remark 6. Reformulating the results of Section 3.1

In the special case that K = By, S = E,p, just considered here, all the statements of
Equations (1) and (2), Theorem 1, Corollaries 1-3 and Remarks 1 and 2 remain valid if the
integral surface measure Oy 4 is used instead of the star-generalized surface measure Os.
The same is true for all those statements quoted below which are using the local notions of
Section 2.

4 Star-shaped distributions and geometric disintegration
4.1 Star-shaped uniform distributions
In this section, we extend the method of indivisibles which was used so far for the
Lebesgue measure to a class of probability laws which contains the families of elliptically
contoured and /,, ,-symmetric distributions as special cases. This method was originally
developed in (Richter 1985, 1987) for proving large deviation limit theorems for the
multivariate standard Gaussian law.

We continue to use the notations from Section 2. Note that the following gen-
eral consideration always covers the very well interpretable specific case that S =
E,pand thus Og = Oy q.
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Definition 6. The star-generalized uniform probability distribution on the Borel o -field
B is defined as ws(A) = Os(A)/Ds(S).

Remark 7. (a) Let A € Bg. Then ws(A) = smy(A).
(b) LetBe B, Thenws([1B]NS) =Fs(B,r), r > 0.

Let (2,2, P) be a probability space and ¥ : 2 — R” a random vector being uniformly
distributed on K i.e.
P(Y € By = u(B)/u(K), VB € KN B,
The a.s. defined normalized random vector Us = Y /hg(Y) takes its values in

S, P(hx(Us) = 1) = 1. Let us further put R = hg (Y).

Theorem 6. (a) Us follows the star-generalized uniform distribution, Us ~ ws.
(b) The pdf of R is fr(r) = I,1)(r)n - "~ L.
(c) The random elements Us and R are stochastically independent.

Proof. (a) Let A € Bg. Then P(Us € A) = P(Y € sector(4, 1)), and

1
_ ulsector(A)) 1 -1 _ 954
P(Us € A) = M) = s [P dr [ @)Y = S5
0 StSph*—1(A)

Because of O5(S) = nu(K), we have P(Us € A) = ws(A).
(b) For 0 < r < 1, we consider the cumulative distribution function (cdf) of R,

PR <1)=P(Y € K(r)) = n(K(r)/u(K) = "I, ().

(c) The independence of Us and R follows from P(R < o, Us € A)

= P(Y e sector(A,0)) = [ PY(dx) = ﬁ [ du
sector(A,0) sector(A,0)
Q n
=200 {G(&) P @)dvdr = e 4 Os(A) = PR < 0)P(Us € A) O

Remark 8. (a) The pdf of R? is %P(R2 <r)=1Ion (r)%r”/z_l, reR
(b) The probability distribution of the random vector Y allows the representation

P(Y € B) = /P(US € %B|R= r) dP(R < 1)
0

which may be considered as a reformulation of Corollary 2 with

1 1
Fs(B,r) = ws <[rB] ﬂS) =P <L[5 € ;B|R = r> a.s. (3)

That is why the family of probability measures 3 = {P,,r > 0} where P, is defined on
the Borel o-field B, by P,(B) = ws ([%B] NS) = P(Us € 1BIR =r), may be called a
geometric disintegration of PY w.r.t. PR. The family 3 may also be considered as a regular
conditional probability.

4.2 Continuous star-shaped distributions
There are different ways to introduce more general classes of star-shaped distributions
than the uniform ones considered so far. One of the possibilities is to continue with
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star-shaped distributions having a density, to derive their most basic properties and
finally to introduce the class of all star-shaped distributions having just the latter as their
defining properties. This way may be considered as formally generalizing the notion of
norm-contoured distributions in (Richter, W.-D.: Norm contoured distributions in R2,
submitted), as well as being statistically well motivated by comparing empirical density
level sets with level sets of Minkowski functionals of suitably chosen star bodies. This
way will be followed in the present and in the following two sections. An alternative
possibility would be just to introduce here the general class of star-shaped distribu-
tions and to restrict consideration to special classes of distributions like continuous ones

only later.

Definition 7. Let g : RT — R satisfy the assumptions 0 < 1(g) < oo where I(g) =
oo
[ 7" g(r)dr. We call g a density generating function (dgf), gk (x) = C(g, K)g(hg (x)),x €
0

R" a star-shaped density and K its contour defining star body.

A probability measure having the density ¢y x will be denoted by &g «. Let us empha-
size that according to this definition 0, may be any point from the set of all points w.r.t.
which K is star-shaped, hence K needs not to be symmetric w.r.t. 0,. Densities of such
type have been studied already in (Balkema and Nolde 2010; Fernandez et al. 1995). Our
more general considerations in Sections 4.3-4.7, however, seem to be new. The follow-
ing theorem deals with a geometric measure representation of continuous star-shaped

distributions.

o
Theorem 7. For every B € B", g (B) = C(g, K)Os(S) f " g(NFs(B,r)dr.
0

Proof. Because of &, (B) = C(g,K) f g(hk (x))dx it follows from Corollary 1(a) that
B

Dok (B) = C(g,K) 707’”_1 f g(hg (r0))Ds(d6)dr. Hence,
0 [LB]ns

Sex(B) = Clg,K) | P Lg(r)Os ([LB] N S) dr. -
0

Classes of dgfs are surveyed, e.g., in (Fang et al. 1990) and (Richter 2013). Numer-
ous types of applications of special cases of the geometric measure representation in
Theorem 7 are surveyed in (Richter 2009, 2012). Later applications are to be found in
(Arellano-Valle and Richter 2012; Batiin-Cutz et al. 2013) and (Giinzel et al. 2012).

4.3 Stochastic representations
In this section, we consider that property of continuous star-shaped distributions which
will serve in the next section to define a general class of star-shaped distributions.

Theorem 8. If Y ~ &g then Y allows the stochastic representation Y 2 RyUs where
Ry and Ug are stochastically independent, Us ~ ws and Ry follows the density f(r) =
@r"‘lg(r),r > 0.

Proof PR < ¢) = P(Y € K(0) = C@ K) [ glh(x))dx
K(o)
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0
_ 2C(g,K)/ f g (hK (r (ﬁT, ;ﬁ(ﬂ)) T)) P (9)do dr

0 G(St)

P
= 2C(g,K) / " g(r)dr f J*()do
0

G(St)
O

Remark 9. The normalizing constant C(g,K) in Definition 7 allows according to
Theorem 7 the representation C(g,K) = m and the statement of Theorem 7 may
according to Theorem 8 be written as

By (B) = / 3s(B. PR € dr), B € B, (@)
0

where §s(B,r) may be interpreted as in (3). Hence, (4) may be read as a generalization of
Remark 8(b). Moreover,

g(hx (%)) c R

, 5
0s(Ig) " ©)

Yok (x) =
4.4 General star-shaped distributions
The results of the previous section may serve as a starting point for defining general star-
shaped distributions. We follow the way in (Fang et al. 1990) and (Richter 2009, 2013)
when we use the stochastic representation from Section 4.3 for defining now a large family
of star-shaped distributions.

Definition 8. A random vector Y : Q — R" is said to follow a star-shaped distribution
if there are a star body K having the origin as an interior point, 0, € int K, a vectorv € R”,
and a random variable R : Q —[0, 00) such that Y — v satisfies the stochastic represen-
tation Y —v £ R Us where Us follows the star-generalized uniform distribution on the
boundary S of K, Us ~ ws, and R and Uy are stochastically independent. If Y has a density
with dgf g then by ®g k., the distribution law of Y is denoted, Y ~ &4, , and K is called
a density contour defining star body of the star-shaped distribution ®g .

The set of all star-shaped distributions on B, will be denoted StSh™ and its subset of
continuous distributions by

CStSh'™ = {®g k., : v € R”, K isa star body with 0 € int K, g is a dgf}.

We recall that star-shaped sets are associated with multivariate stable distributions in
(Molchanov 2009) to describe characteristic functions, thus playing there another role
than in Definition 8. To finish this section, we remark that both the set of all star bodies
having the origin as an interior point and the set StSh" are invariant w.r.t. any orthogonal
transformation.

4.5 Extension of the ball number function

In (Richter 2011), the ball number function was defined for /;, ,-balls and the problem of
extending it to balls being as general as possible was stated. It follows from the results in
Section 3 that both the ratios “(B‘;',‘,’ @) and e Z:fff(r)) do not depend on the star radius r,

and that their constant values are one and the same number. This common value will be
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Wnp
n )
hence the region where the ball number function is defined is extended here to all B,

balls.

called the ball number 7 (B,,) of B, ,(r),r > 0. Here, m(Byp) = n(Byp) = ay-...-ay -

4.6 Characteristic functions

Let Y : @ — R” be a star-shaped distributed random vector which satisfies the stochastic
representation Y’ 2R Us where the non-negative random variable R is independent of the
star-generalized uniformly distributed random vector Us, and let moreover ¢y and ¢y
denote the characteristic functions (ch.f.) of the vectors Y and Us, respectively. Further,
let Fr denote the cdf of R.

Theorem 9. The ch.f. of the star-shaped distributed random vector Y allows the integral
oo
representation ¢y (t) = [ ¢ug(rt)dFr(r), t € R".
0

Proof. Because of the independence of R and Us, Theorem 1.1.6 in (Sasvéri 2013)
applies. O

This theorem was proved first for spherically distributed vectors in (Schoenberg 1938)
and later for [, ; -symmetrically distributed random vectors in (Ng and Tian 2001) and for
continuous [, ,-symmetrically distributed vectors in (Kalke 2013).

Remark 10. (a) The ch.f. ¢y (t) = Eeit' Us , t € R”, of Us allows the integral representa-
tion gy (t) = [ cos (t10) ws(dd) + i [ sin (t70) ws(db).
S S

(b) The ch.f. ¢y of a star-shaped distributed random vector Y having a density with dgf
g and contour defining star body K allows the representation

v 0
Ds(S)I(g)¢Y(t)=/ Z / COS(t,r(y(ﬂ)))],*(ﬂ)dﬁ 7 le(r)dr
o |/ asp

. il : v * n—1
—H/ > / sm(t,r(y(ﬁ)))]j @)do | " g(rdr

o |/ asp
where (.,.) denotes the Euclidean scalar product in R".
(c) On combining the representations in (a) and (b), and taking into account Remark 1,
we get an alternative direct proof of Theorem 9 if Y has density ¢q k.
(d) If Us is symmetrically distributed w.r.t. the origin, Us 2 —Us, then the imagi-
nary parts of the integral representations in (a) and (b) vanish, and both ¢y, and ¢y are
symmetric w.r.t. the origin.

4.7 The class of p-generalized elliptically contoured distributions

The general principle for deriving geometric and stochastic representations of star-
shaped distributions developed so far will be proved in this section to successfully apply
to a class of distributions considered in Section 3.5 of (Arellano-Valle and Richter 2012)
and including both the [, ,-symmetric ones, accordingly represented in (Richter 2009),
and the elliptically contoured ones, analogously dealt with in (Richter 2013).
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According to Definition 6, Theorem 5 and Corollary 3, the p-generalized elliptically
contoured uniform distribution on B, , is defined for arbitrary p > 0 by

()

ai- ... ap2" (F (i))n

If a random vector Y : & — R” follows the uniform probability distribution on B,

Wapq(A) = D(n,a,p)0pqp,4(A) with D(n,a,p) =

and with ¢ satisfying 1/p + 1/g = 1.

then U ~ wapq = og,, where U is as. defined as I = Y/R and is independent of
R = hBa,p(Y). The latter, non-negative, random variable has the density described in
Theorem 6(b).

Let O(n) denote the set of all orthogonal 7 x #n matrices. A random vector Y : Q — R” is
said to follow a p-generalized elliptically contoured distribution EC, 0 with parameters
a= (a1,...,an) ,a; > 0,i =1,...,m,p > 0,v € R” and O € O(n) if there exists a
random variable R : 2 — [0, co) such that Y satisfies the stochastic representation

ofy—wZr.u

where U ~ wg,, and U and R are stochastically independent. Note that Y has a density
fy iff R has a density. If OT (Y — v) has the dgf g, i.e. if

fr) =Cgapyg <’OT(y - V)Lp) y €R”
with C(g,a, p) = C(g, B,) then R has the density

fr(r) = 1)1 " g (r)j0,00) (7).

In this case, we write Y ~ ®g 41,0 and fy = ¢gap,,0- Note that @g40,.1, = Pg,5,,,0,
where I, denotes the n x n-unit matrix. The measure ®g,, 1,0 allows the geometric
representation

D0 ® = [ Fap (OB = v,1)) drtr) ®)
0
where §,,(M,r) = WE,, ([%M] N Ea,p) ,r > 0.

Example 1. In the case of dimension n = 2, Figure 1 shows the density ¢gqpv,0 and

contours of its superlevel sets where g(r) = exp {—%p} ,a = (3,1)T, p takes several values,
v=(0,0)" and
0= <cosla sin o >’ o = 57/3.
—sino cosa

The matrix O causes an anticlockwise rotation through an angle of size 7 /3.

~1
Remark 11 (On independent coordinates). Let (R, ®1,...,P;,_1) = (T5p> (Y) be
the random p-generalized ellipsoidal coordinates of Y where Y ~ 44,0, 0. Accord-

n 1/p
ing to Theorem 3, the generalized radius is (Z |Y,-/a,'|p) = R, and by the density
i=1

transformation formula and Theorem 4,
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Figure 1 p-generalized elliptically contoured densities for p = 4, 1 and 0.6, from left to right.

n—1
g [T hiten

C(g,a,p)
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RD1,.. ) P15 s Pu1) =
-f( 1 n 1) »¢ ’ y¢n s P

n—i—1

. _ (Sin(air“iJrl?P) (¢i))
with hi($) = N(zﬂivﬂi+l€P) 2
ably normalized, the functions ho, hy, . . ., hy—1 with ho(r) = rg(r)1o,00) (r) are the densities

,i=1,...,n— 1 being integrable functions. Thus, suit-

of R, 1, ..., D,_1, respectively.
Hence, the random coordinates R, ®1, . . ., ,,_1 are stochastically independent.

This result opens new perspectives for various applications which are not considered in
the present paper.

5 Applications

5.1 The non-concentric elliptically contoured distribution class

The general distribution classes considered in the present paper include various interest-
ing special cases to be studied only in detail in the future. Just to start with,let0 < b < a
and

Kap = {(x,y)T e R%: (x/a)*> + (y/b)* < 1} )

A point (e, /)T is from the inner part of K, ;, iff it satisfies the inequality (e/a)? + (f/b)* <
1. For such points, we put K, per = Kyp — (e,f)T. As because "Kapef = Karbrerfrr for
arbitrary dgf g, the level sets of the density

<ﬂ;,a,b,e sy =C (@ Kapef) g (hKa,b,e y ((x, ) T)) ,(x,9) T e R?
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are the boundaries of the sets Ky prerfr» ¥ > 0. Note that if (e, 0)7 is a focal point of the
elliptical disc K 5 then the origin (0, 0)7 is a focal point of E g brer0, for all ¥ > 0. In this
case, we call the origin a position of the density (p; ab.e0"
called a position of the density w;,a,b,o f if (0,f)7 is a focal point of K, ;. The distribution

Similarly, the origin may also be

class
NCEC = {0} ppes » g1s 2 dgh,0 < b < a,(e/a)* + (f/b)* < 1]

will be called a non-concentric elliptically contoured distribution class. It is left to

the reader to derive explicit expressions for the Minkowski functional /g, . and the

Lb.ef
normalizing constant C(g, Ky pe)-

5.2 Circular distributions
In this section, we study directional distributions on further using the results of the
present work. For a recent overview on circular distributions we refer to (Pewsey et al.
2013).

In the case of dimension two, the density of @,k is

Poicw(®y) = Cg, K)g (hK ((’“) - ("1 ))) , (5,07 e R~
Y V2

We recall that star-generalized trigonometric functions and random polar coordinates
are defined in (Richter 2011a) by cosg(¢) = M%;iimm’ sing (¢) = M%fmm and
X = Rcosg(®),Y = Rsing(P), respectively. The K-generalized radius coordinate is

R = hi(X,Y), and the angle @ satisfies the representation of the usual polar angle,
arctan(|]Y/X|) =®inQq, =7 —Pin Qy, =P —7in Q3,= 27 — @ in Q4.

The Jacobian of this transformation is rRé(q&) where the function Rg(¢p) =
1/hx (cos ¢, sin ¢) describes the boundary S of K:

s = {Rs(@) (C?S‘f’) 0<¢< 2n} = {7 hx(xy) =1} .
sin ¢

With uniquely determined p €[0,27) and A > 0, the location vector (vi, v3)T can be
represented as

v\, cosg (p)
%) sing(n) /|

Thus, the density of (R, )7 is

— A
iz (rn$) = C@ K)rRA($)g (hK (( reosg(¢) = A cosx () ))) Lo @) 000) () -

rsing (¢) — A sing (u)

Integrating f(r ¢) w.r.t. ¢, and dividing fir¢) by the latter result, gives for(¢|r) =

vMdg K 1.1 (@) Where
2 rcosg(¢) — A cosg (i)
o (h’( << rsing (9) — A sing (1) )))

2 2 r coss(¢p) — A coss(11) '
o Rs(@k (hK (( rsing(¢) — A sing(je) ))) a

VMdg,K,r,A,;L (9) = (7)

Page 21 of 24
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This function will be called a star-shaped generalization of the von Mises density which
itself appears as a special case for K being the Euclidean unit disc in R? and g(r) =
exp {—72/2} , r > 0, c.f. (von Mises 1918).

Example 2. For illustrating our principle of constructing generalized von Mises densi-
ties at the hand of a concrete example, let P, denote the polygon having the n vertices
I,; = (cos (27”(1‘ — 1)) ,sin (27”(1' — 1)))T,i =1,...,m,n > 3, and let K, be the con-
vex body circumscribed by P,. The Minkowski functional of K,, has been dealt with in
(Richter, W-D, Schicker, K: Circle numbers of centered regular convex polygons, submit-
ted). Figure 2 shows, from the left to the right, in each row, the polygonally contoured
density Qg 1,v (%, ¥), (%, T e R?, the contours of this density (black shapes) together with
the polygonally generalized circle consisting of all points (x,y)T € R? satisfying the con-
dition hg, ((x,7) T) = r (blue shape), and the polygonally generalized von Mises density
vMdg k... Where g(p) = exp {—%2} ,0>0,7r=1,u = 3n/4and (n,A) = (3, %) in
the first row, but (n, 1) = (4, %) in the second row. Each of the arrows in the middle panel
shows the way from the center of the blue drawn polygonally generalized circle to that of
the black drawn ones.

6 Concluding remarks

Exact distributions of numerous statistics like mean value statistic, Student statistic,
Chi-squared statistic have been derived in a broad and well known literature under the
assumption that the sample vector follows a multivariate normal law, or more generally,
an elliptically contoured one. Similarly, exact statistical distributions have been derived

when the sample distribution is exponential or one of its geometric generalizations. For

#
=
s

A
=
"

'

e
ala
9
=[x
A

Figure 2 From left to right: polygonally contoured density, density contours with polygonally
generalized circle describing the condition hg, ((x,y)) = 1, polygonally generalized von Mises
density, where (n, 1) = (3, %) in the first row and = (4, %) in the second row.




Richter Journal of Statistical Distributions and Applications 2014, 1:20 Page 23 of 24
http://www.jsdajournal.com/content/1/1/20

results of the latter type, we refer to (Henschel 2001, 2002; Henschel and Richter 2002).
However, there seem, in general, not to be as many exact distributional results as in the
Gaussian or elliptically contoured cases in the case of samples from any other multivari-
ate distribution. Mathematical research without one of the above assumptions often deals
with asymptotic considerations for large sample sizes. Many results of such work are again
closely connected with properties of the Gaussian law which occurs often as a limit law.
The present paper provides new possibilities for deriving representations of exact sta-
tistical distributions if the sample vector follows a probability law coming from a rather
big class of probability laws. It is not the place here to demonstrate in any detail all the
possible applications of the present results. Instead, we refer to (Richter 2012) and several
references given therein for getting a first overview. A recent example for deriving new
results on distributions of functions of Gaussian vectors is given in (Richter 2014). This
example might stimulate consideration of exact distributions of new classes of statistics.
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