
Qi and Sun Journal of Statistical Distributions and Applications 2014, 1:23
http://www.jsdajournal.com/content/1/1/23

METHODOLOGY Open Access

Missing data approaches for probability
regression models with missing outcomes
with applications
Li Qi and Yanqing Sun*

*Correspondence: yasun@uncc.edu
Department of Mathematics and
Statistics, The University of North
Carolina at Charlotte, 28223
Charlotte, NC, USA

Abstract

In this paper, we investigate several well known approaches for missing data and their
relationships for the parametric probability regression model Pβ(Y|X) when outcome
of interest Y is subject to missingness. We explore the relationships between the mean
score method, the inverse probability weighting (IPW) method and the augmented
inverse probability weighted (AIPW) method with some interesting findings. The
asymptotic distributions of the IPW and AIPW estimators are derived and their
efficiencies are compared. Our analysis details how efficiency may be gained from the
AIPW estimator over the IPW estimator through estimation of validation probability
and augmentation. We show that the AIPW estimator that is based on augmentation
using the full set of observed variables is more efficient than the AIPW estimator that is
based on augmentation using a subset of observed variables. The developed
approaches are applied to Poisson regression model with missing outcomes based on
auxiliary outcomes and a validated sample for true outcomes. We show that, by
stratifying based on a set of discrete variables, the proposed statistical procedure can
be formulated to analyze automated records that only contain summarized
information at categorical levels. The proposed methods are applied to analyze
influenza vaccine efficacy for an influenza vaccine study conducted in Temple-Belton,
Texas during the 2000-2001 influenza season.
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1 Introduction
Suppose that Y is the outcome of interest and X is a covariate vector. One is often inter-
ested in the probability regression model Pβ(Y |X) that relates Y to X. In many medical
and epidemiological studies, the complete observations on Y may not be available for all
study subjects because of time, cost, or ethical concerns. In some situations, an easily
measured but less accurate outcome named auxiliary outcome variable, A, is supple-
mented. The relationship between the true outcome Y and the auxiliary outcome A in the
available observations can inform about the missing values of Y . Let V be a subsample of
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the study subjects, termed the validation sample, for which both true and auxiliary out-
comes are available. Thus observations on (X,Y ,A) are available for the subjects in V and
only (X,A) are observed for those not in V .
It is well known that the complete-case analysis, which uses only subjects who have

all variables observed, can be biased and inefficient, cf. Little and Rubin (2002). The
issues also rise when substituting auxiliary outcome for true outcome; see Ellenberg
and Hamilton (1989), Prentice (1989) and Fleming (1992). Inverse probability weighting
(IPW) is a statistical technique developed for surveys by Horvitz and Thompson (1952) to
calculate statistics standardized to a population different from that in which the data was
collected. This approach has been generalized to many aspects of statistics under various
frameworks. In particular, the IPW approach is used to account for missing data through
inflating the weight for subjects who are underrepresented due to missingness. The
method can potentially reduce the bias of the complete-case estimator when weighting
is correctly specified. However, this approach has been shown to be inefficient in sev-
eral situations, see Clayton et al. (1998) and Scharfstein et al. (1999). Robins et al. (1994)
developed an improved augmented inverse probability weighted (AIPW) complete-case
estimation procedure. The method is more efficient and possesses double robustness
property. The multiple imputation described in Rubin (1987) has been routinely used to
handle missing data. Carpenter et al. (2006) compared the multiple imputation with IPW
and AIPW, and found AIPW as an attractive alternative in terms of double robustness
and efficiency. Using the maximum likelihood estimation (MLE) coupled with the EM-
algorithm (Dempster et al. 1977), Pepe et al. (1994) proposed the mean score method for
the regression model Pβ(Y |X) when both X and A are discrete.
In this paper, we investigate several well known approaches for missing data and

their relationships for the parametric probability regression model Pβ(Y |X) when out-
come of interest Y is subject to missingness. We explore the relationships between
the mean score method, IPW and AIPW with some interesting findings. Our analy-
sis details how efficiency is gained from the AIPW estimator over the IPW estimator
through estimation of validation probability and augmentation to the IPW score func-
tion. Applying the developed missing data methods, we derive the estimation procedures
for Poisson regression model with missing outcomes based on auxiliary outcomes
and a validated sample for true outcomes. Further, we show that the proposed sta-
tistical procedures can be formulated to analyze automated records that only contain
aggregated information at categorical levels, without using observations at individual
levels.
The rest of the paper is organized as follows. Section 2 introduces several missing data

approaches for the probability regression model Pβ(Y |X), where the outcome Y may be
missing. Section 3 explores the relationships among these estimators. The asymptotic
distributions of the IPW and AIPW estimators are derived and their efficiencies are com-
pared. Section 3 investigates efficiency of two AIPW estimators, one is based on the
augmentation using a subset of observed variables and the other is based on the aug-
mentation using the full set of observed variables. The procedures for Poisson regression
using automated data with missing outcomes are derived in Section 4. The finite-sample
performances of the estimators are studied in simulations in Section 5. The proposed
method is applied to analyze influenza vaccine efficacy for an influenza vaccine study
conducted in Temple-Belton, Texas during the 2000-2001 influenza season. The proofs
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of the main results are given in the Appendix A, while the proof of a simplified variance
formula in Section 4 is placed in the Appendix B.

2 Missing data approaches
Consider the probability regression model Pβ(Y |X), where Y is the outcome of interest
and X is a covariate vector. Let A be the auxiliary outcome for Y and V be the validation
set such that observations on (X,Y ,A) are available for the subjects in V and only (X,A)

are observed for those in V̄ , the complement of V . In practice, the validation sample may
be selected based on the characteristics of a subset,Z, of the covariates inX.WewriteX =
(Z,Zc). For example, Z may include exposure indicator and other discrete covariates and
Zc may be the exposure time. Let (Zi,Xi,Yi,Ai), i = 1, . . . , n, be independent identically
distributed (iid) copies of (Z,X,Y ,A). Let ξi = I(i ∈ V ) be the selection indicator.
Most statistical methods for missing data require some assumptions on missingness

mechanisms. The commonly used ones are missing completely at random (MCAR) and
missing at random (MAR). MCAR assumes that the probability of missingness in a
variable is independent of any characteristics of the subjects. MAR assumes that the
probability that a variable is missing depends only on observed variables. In practice,
if missingness is a result by design, it is often convenient to let the missing probability
depend on the categorical variables only. There is also simplicity in statistical inference
by modeling the missing probability based on the categorical variables. We introduce the
following missing at random assumptions.

MAR I: ξi is independent of Yi conditional on (Xi,Ai) and ξi is independent of Zc
i

conditional on (Zi,Ai).
MAR II: ξi is independent of (Yi,Zc

i ) conditional on (Zi,Ai).

Since the conditional density f (y, zc|ξ , z, a) = f (zc|ξ , z, a) f (y|zc, ξ , z, a) = f (zc|z, a)
f (y|zc, z, a) = f (y, zc|z, a), MAR I implies MAR II. It is also easy to show that MAR II
implies MAR.
Let π̂i be the estimator of the conditional probability πi = P(ξi = 1|Xi,Ai), and

π̂ z
i the estimator of π z

i = P(ξi = 1|Zi,Ai). Let Sβ(Y |X) denote the partial deriva-
tives of logPβ(Y |X) with respect to β . Let Ê

{
Sβ(Y |Xi)|Xi,Ai

}
be the estimator of

the conditional expectation E
{
Sβ(Y |Xi)|Xi,Ai

}
, and Ê

{
Sβ(Y |Xi)|Zi,Ai

}
the estimator

of E
{
Sβ(Y |Xi)|Zi,Ai

}
. We investigate several estimators of β based on the following

estimating equations with different choices ofWi:
n∑

i=1
Wi = 0, (1)

whereWi takes one of the following forms:

WI1
i = ξi

π̂ z
i
Sβ(Yi|Xi) (2)

WE1
i = ξiSβ(Yi|Xi) + (1 − ξi)Ê

{
Sβ(Y |Xi)|Zi,Ai

}
(3)

WA1
i = ξi

π̂ z
i
Sβ(Yi|Xi) +

(
1 − ξi

π̂ z
i

)
Ê
{
Sβ(Y |Xi)|Zi,Ai

}
(4)

WI2
i = ξi

π̂i
Sβ(Yi|Xi) (5)
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WE2
i = ξiSβ(Yi|Xi) + (1 − ξi)Ê

{
Sβ(Y |Xi)|Xi,Ai

}
(6)

WA2
i = ξi

π̂ z
i
Sβ(Yi|Xi) +

(
1 − ξi

π̂ z
i

)
Ê
{
Sβ(Y |Xi)|Xi,Ai

}
. (7)

WA3
i = ξi

π̂i
Sβ(Yi|Xi) +

(
1 − ξi

π̂i

)
Ê
{
Sβ(Y |Xi)|Xi,Ai

}
. (8)

The estimator β̂I1 obtained by using WI1
i is an IPW estimator where a subject’s valida-

tion probability π z
i depends only on the category defined by (Zi,Ai). Because E

{
(π z

i )
−1ξi

Sβ(Yi|Xi)
} = E

{
Sβ(Yi|Xi)

} = 0, the estimator β̂I1 is approximately unbiased. The estima-
tor β̂I2 obtained by usingWI2

i is also an IPW estimator but with the validation probability
πi depending on the category defined by (Zi,Ai) and the additional covariate Zc

i .
The estimator β̂E1 obtained by usingWE1

i is the mean score estimator where the scores
Sβ(Yi|Xi) for those with missing outcomes are replaced by the estimated conditional
expectations given (Zi,Ai). The estimator β̂E2 obtained by using WE2

i is the mean score
estimator where the scores Sβ(Yi|Xi) for those with missing outcomes are replaced by the
estimated conditional expectations given (Xi,Ai). The estimator β̂E2 is the mean score
estimator in Pepe et al. (1994). The mean score estimator is theMLE estimator employing
the EM-algorithm (Dempster et al. 1977) under the assumption that the auxiliary out-
come is noninformative in the sense that the probability model Pθ (A|Y ,X) is unrelated to
β .
The estimator β̂A1 obtained using WA1

i is the AIPW estimator augmented with the
estimated conditional expectation Ê

{
Sβ(Y |Xi)|Zi,Ai

}
. The estimator β̂A2 obtained using

WA2
i is the AIPW estimator augmented with the estimated conditional expectation

Ê
{
Sβ(Y |Xi)|Xi,Ai

}
. The estimator β̂A3 is obtained usingWA3

i . TheWA3
i differs fromWA2

i
in that the estimated validation probability is π̂i instead of π̂ z

i .
Suppose that π̂ z

i is an asymptotically unbiased estimator of π̄ z
i and that

Ê
{
Sβ(Y |Xi)|Zi,Ai

}
is asymptotically unbiased of Ē

{
Sβ(Y |Xi)|Zi,Ai

}
, where both π̄ z

i and
Ē
{
Sβ(Y |Xi)|Zi,Ai

}
are functions of (Zi,Ai). Under MAR II, if one of the equalities,

π̄ z
i = π z

i and Ē
[
Sβ(Y |Xi)|Zi,Ai

]} = E
[
Sβ(Y |Xi)|Zi,Ai

]}
, holds, then

E
{(

π̄ z
i
)−1

ξiSβ (Yi|Xi)
}

+ E
{(

1 − (
π z
i
)−1

ξi
)
Ē
[
Sβ (Y |Xi) |Zi,Ai

]} = E
{
Sβ(Yi|Xi)

} = 0,

which entails that the estimator β̂A1 has the double robust property in the sense that it is a
consistent estimator of β if either π̂ z

i is a consistent estimator of π z
i or Ê

[
Sβ(Y |Xi)|Zi,Ai

]
is a consistent estimator of E

[
Sβ(Y |Xi)|Zi,Ai

]
. Similarly, under MAR I, the estimator

β̂A2 possesses the double robust property in that β̂A2 is a consistent estimator of β if
either π̂ z

i is a consistent estimator of π z
i or Ê

[
Sβ(Y |Xi)|Xi,Ai

]
is a consistent estimator of

E
[
Sβ(Y |Xi)|Xi,Ai

]
. The estimator β̂A3 has similar double robust property as β̂A2.

3 Method comparisons and asymptotic results
LetV (Xi,Ai) denote the subjects inV with values of (X,A) equal to (Xi,Ai), nV (Xi,Ai) the
number of subjects inV (Xi,Ai), and n(Xi,Ai) the number of subjects with values of (X,A)

equal to (Xi,Ai). When X and A are discrete and their dimensionality is reasonably small,
the probability πi = P(ξi = 1|Xi,Ai) can be estimated by π̂i = nV (Xi,Ai)/n(Xi,Ai). The
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conditional expectation E
{
Sβ(Y |Xi)|Xi,Ai

}
can be nonparametrically estimated based on

the validation sample,

Ê
{
Sβ(Y |Xi)|Xi,Ai

} =
∑

j∈V (Xi,Ai)

Sβ

(
Yj|Xj

)
/nV (Xi,Ai), (9)

Under MAR I, Ê
{
Sβ(Y |Xi)|Xi,Ai

}
is an unbiased estimator of E

{
Sβ(Y |Xi)|Xi,Ai

}
. Now

we let V (Zi,Ai) denote the subjects in V with values of (Z,A) equal to (Zi,Ai), nV (Zi,Ai)

the number of subjects in V (Zi,Ai), and n(Zi,Ai) the number of subjects in the sample
with values of (Z,A) equal to (Zi,Ai). A nonparametric estimator of π z

i = P(ξi = 1|Zi,Ai)

is given by π̂ z
i = nV (Zi,Ai)/n(Zi,Ai). A nonparametric estimator of E{Sβ(Y |Xi)|Zi,Ai} is

given by

Ê
{
Sβ(Y |Xi)|Zi,Ai

} =
∑

j∈V (Zi,Ai)

Sβ

(
Yj|Xj

)
/nV (Zi,Ai). (10)

Under MAR II, (Yi,Xi) is independent of ξi conditional on (Zi,Ai), then
Ê
{
Sβ(Y |Xi)|Zi,Ai

}
is an unbiased estimator of E{Sβ(Y |Xi)|Zi,Ai}.

Proposition 1. Suppose that X = (Z,Zc) and A are discrete and their dimensionality is
reasonably small. Under the nonparametric estimators π̂ z

i = nV (Zi,Ai)/n(Zi,Ai), π̂i =
nV (Xi,Ai)/n(Xi,Ai) and the estimators for the conditional expectation defined in (9) and
(10), the estimators β̂I1, β̂E1 and β̂A1 are equivalent, and the estimators β̂I2, β̂E2, β̂A2 and
β̂A3 are equivalent. However, the estimator β̂A2 is different from β̂A1 unless Zc

i is linearly
related to Zi in which case β is not identifiable.

The results of Proposition 1 are very intriguing since research has shown that the
AIPW and the mean score methods are more efficient than the IPW method. It is also
intriguing that the AIPW estimators β̂A2 and β̂A3 are actually the same estimators, not
affected by the validation probability. To further understand these approaches, we investi-
gate the asymptotic properties of these methods where (X,A) are not necessarily discrete.
Through the asymptotic analysis, we gain insights about what matters to the efficiency in
terms of the selections of the validation sample and the augmentation function.
Suppose that Ẽ

{
Sβ(Y |Xi)|Xi,Ai

}
is a consistent parametric/nonparametric estima-

tor of Ea
{
Sβ(Y |Xi)|Xi,Ai

}
, where Ea

{
Sβ(Y |Xi)|Xi,Ai

}
is E

{
Sβ(Y |Xi)|Xi,Ai

}
or E{Sβ(Y |

Xi)|Zi,Ai}. Let π(Xi,Ai,ψ) be the parametric model for the validation probability πi,
where ψ is a q-dimensional parameter. We show in Corollary 2 that the nonparametric
estimator of π(Xi,Ai,ψ) can also be expressed in the parametric form when (Xi,Ai) are
discrete. Let ψ0 be the true value of ψ . Under MAR I, the MLE ψ̂ =

(
ψ̂1, . . . , ψ̂q

)
of

ψ = (ψ1, . . . ,ψq) is obtained by maximizing the observed data likelihood,
n∏

i=1
{π(Xi,Ai,ψ)}ξi {1 − π(Xi,Ai,ψ)}1−ξi .

The validation probability πi is estimated by π̃i = π
(
Xi,Ai, ψ̂

)
. Then by the standard

likelihood based analysis, we have the approximation

ψ̂ − ψ0 = n−1
n∑

i=1

(
Iψ
)−1 Sψ

i + op
(
n−1/2) , (11)
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where Sψ
i and Iψ are the score vector and information matrix for ψ̂ defined by

Sψ
i = (ξi − π(Xi,Ai,ψ0))

π(Xi,Ai,ψ0)(1 − π(Xi,Ai,ψ0))

∂π(Xi,Ai,ψ0)

∂ψ
,

Iψ = E
{

1
π(Xi,Ai,ψ0)(1 − π(Xi,Ai,ψ0))

(
∂π(Xi,Ai,ψ0)

∂ψ

)⊗2
}
, (12)

where a⊗2 = aa′.
Consider the IPW estimator β̂I obtained by solving the estimating equation

UI =
n∑

i=1

ξi
π̃i
Sβ(Yi|Xi) (13)

and the AIPW estimator β̂A based on solving the estimating equation

UA =
n∑

i=1

[
ξi
π̃i
Sβ (Yi|Xi) +

(
1 − ξi

π̃i

)
Ẽ
{
Sβ(Y |Xi)|Xi,Ai

}]
. (14)

Theorem 1. Assume that Pβ(Y |X) and π(X,A,ψ) have bounded third-order derivatives
in a neighborhood of the true parameters and are bounded away from 0 almost surely,
both −E

{(
∂2/∂β2) (logPβ(Y |X)

)}
and Iψ are positive definite at the true parameters.

Then, under MAR I,

n1/2
(
β̂I − β

)
= I−1(β)n−1/2

n∑
i=1

QI
i + op(1),

n1/2
(
β̂A − β

)
= I−1(β)n−1/2

n∑
i=1

QA
i + op(1),

where I(β) = E
{− (∂2/∂β2) (logPβ(Y |X)

)} = Var
(
Sβ (Yi|Xi)

)
,

QI
i = ξi/πiSβ(Yi|Xi) − E

{
πi

−2ξiSβ(Yi|Xi) (∂π(Xi,Ai,ψ0)/∂ψ)′
}
(Iψ)−1Sψ

i

and QA
i = ξi/πiSβ(Yi|Xi) + (1 − ξi/πi)Ea

{
Sβ(Y |Xi)|Xi,Ai

}
.

Both n1/2
(
β̂I − β

)
and n1/2

(
β̂A − β

)
have asymptotically normal distributions with

mean zero and covariances equal to I−1(β)Var
(
QI
i
)
I−1(β) and I−1(β)Var

(
QA
i
)
I−1(β),

respectively. Further,

Var
(
QI
i
) = Var

(
QA
i

)
+ Var(Bi + Oi) (15)

and

Var
(
QA
i

)
= I(β) + Var

((
1 − ξi

πi

){
Sβ(Yi|Xi) − Ea

{
Sβ(Y |Xi)|Xi,Ai

}})
, (16)

where Oi = E
{
πi−2ξiSβ(Yi|Xi) (∂π(Xi,Ai,ψ0)/∂ψ)′

}
(Iψ)−1Sψ

i and Bi = (1 − ξi/πi)

Ea
{
Sβ(Y |Xi)|Xi,Ai

}
.

Suppose that the validation probability πi = P (ξi=1|Xi,Ai) depends only on
(Zi,Ai). That is, πi = π z

i = P (ξi = 1|Zi,Ai). Suppose that π̃i is the MLE of π z
i

under the parametric family ψ(Zi,Ai,ψ). Let β̂A1 be the estimator obtained by solv-
ing (14) where the augmented term, Ẽ

{
Sβ(Y |Xi)|Xi,Ai

}
, is a consistent paramet-

ric/nonparametric estimator of E
{
Sβ(Y |Xi)|Zi,Ai

}
. Let β̂A2 be the estimator obtained

by solving (14) where Ẽ
{
Sβ(Y |Xi)|Xi,Ai

}
is a consistent parametric/nonparametric esti-

mator of E
{
Sβ(Y |Xi)|Xi,Ai

}
. The following corollary presents the asymptotic results for

two AIPW estimators of β , one that corresponds to the augmentation based on a subset,
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(Z,A), of observed variables and the other that corresponds to the augmentation based
on the full set, (X,A), of the observed variables.

Corollary 1. Suppose that the validation probability πi = P (ξi = 1|Xi,Ai) depends only
on (Zi,Ai). Under the conditions of Theorem 1,

n1/2
(
β̂A1 − β

) D−→ N
(
0, I−1(β) + I−1(β)�A1(β)I−1(β)

)
, (17)

and

n1/2
(
β̂A2 − β

) D−→ N
(
0, I−1(β) + I−1(β)�A2(β)I−1(β)

)
, (18)

where �A1(β) = E
[
((1 − π z

i )/π
z
i )Var{Sβ(Yi|Xi)|Zi,Ai}

]
and �A2(β) = E

[
((1 − π z

i )/π
z
i )

Var
{
Sβ(Yi|Xi)|Xi,Ai

}]
. The asymptotic variance of β̂A2 is smaller than the asymptotic

variance of β̂A1 if the covariates Zi are a proper subset of Xi.

Suppose that (Z,A) are discrete taking values (z, a) in a setZ of finite number of values.
If the number of parameters in ψ equals the number of values ψz,a = P(ξi = 1|Zi =
z,Ai = a) for all distinct pairs (z, a), then ψ = {ψz,a} and π(z, a,ψ) = ψz,a. Further,
∂π(z,a,ψ0)

∂ψ
can be viewed as a column vector with 1 in the position forψz,a and 0 elsewhere.

The information matrix Iψ defined in (12) has the expression,

Iψ =
∑
z,a

ρ(z, a)
{

1
π(z, a,ψ0)(1 − π(z, a,ψ0))

∂π(z, a,ψ0)

∂ψ

(
∂π(z, a,ψ0)

∂ψ

)′}
,

where ρ(z, a) = P(Zi = z,Ai = a). It follows that Iψ is a diagonal matrix and its inverse
matrix is also diagonal. The MLE ψ̂z,a = nV (z, a)/n(z, a) is in fact the nonparametric
estimator for ψz,a based on the proportion of validated samples in the category specified
by (z, a). The equation (11) can be expressed as

ψ̂z,a − π(z, a,ψ0) = n−1 nV (z, a) − n(z, a)π(z, a,ψ0)

ρ(z, a)
+ op

(
n−1/2) ,

for (z, a) ∈ Z .
By Threom 1, the possible efficiency gain of the AIPWestimator over the IPW estimator

is shown through the equation (15). The AIPW estimator is more efficient unless Var(Bi+
Oi) = 0. In particular, from the proof of Theorem 1, we have

n−1/2UA = n−1/2
n∑

i=1
QA
i + op(1) (19)

n−1/2UI = n−1/2
n∑

i=1
QA
i − n−1/2

n∑
i=1

(Bi + Oi) + op(1), (20)

where Bi and Oi are defined following (16). The following corollary presents the analysis
of the term n−1/2∑n

i=1 (Bi + Oi) when (Zi,Ai) are discrete to understand how efficiency
may be gained from the AIPW estimator over the IPW estimator.

Corollary 2. Under the conditions of Theorem 1, suppose that X = (Z,Zc) and (Z,A)

are discrete taking values (z, a) in a set Z of finite number of values. Suppose that the
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validation probability πi = P(ξi = 1|Xi,Ai) only depends on (Zi,Ai) and ψz,a = P(ξi =
1|Zi = z,Ai = a) is estimated nonparametrically by ψ̂z,a = nV (z, a)/n(z, a). Then

n−1/2
n∑

i=1
(Oi + Bi)

= −
∑
z,a

n−1/2
n∑

j=1

ξj − π(z, a,ψ0)

π(z, a,ψ0)
I(Zj = z,Aj = a)

[
E{Sβ(Yj|Xj)|Zj = z,Aj = a} − E

{
Sβ(Yj|Xj)|Zj = z,Zc

j ,Aj = a
}]

.

(21)

By Corollary 2, (19) and (20), β̂A is more efficient than β̂I unless Var{Sβ(Yj|Xj)|Zj =
z,Aj = a} = 0 for all (z, a) for which P(Zi = z,Ai = a) �= 0. If X = Z and the validation
probability πi = P(ξi = 1|Xi,Ai) is nonparametrically estimated with the cell frequencies
ψ̂z,a = nV (z, a)/n(z, a), then β̂A and β̂I are asymptotically equivalent.

Remark Consider the estimators of β obtained based on the estimating equation (1)
corresponding to different choices of Wi given in (2) to (8). If (Z,A) are discrete and the
validation probability π z

i = P(ξi = 1|Zi,Ai) is estimated nonparametrically by the cell
frequency, then by Theorem 1 and Corollary 2, β̂A1 and β̂I1 have same asymptotic normal
distributions as long as Ê[ Sβ(Y |Xi)|Zi,Ai] is a consistent estimator of E[ Sβ(Y |Xi)|Zi,Ai].
But β̂A2 is more efficient than β̂I1 as long as Ê[ Sβ(Y |Xi)|Xi,Ai] is a consistent estimator
of E[ Sβ(Y |Xi)|Xi,Ai] since Var(Bi +Oi) is not zero by (21). These results are not affected
by whether E[ Sβ(Y |Xi)|Zi, Ai] and E[ Sβ(Y |Xi)|Xi,Ai] are estimated nonparametrically
or based on some parametric models. In addition, by Theorem 1, Corollary 1 and 2, β̂A3
and β̂I2 have the same asymptotic normal distributions as long as Ê[ Sβ(Y |Xi)|Xi,Ai] is a
consistent estimator of E[ Sβ(Y |Xi)|Xi,Ai].

4 Poisson regression using the automated data withmissing outcomes
Many medical and public health data are available only in aggregated format, where the
variables of interest are aggregated counts without being available at individual levels.
Many existing statistical methods for missing data require observations at individual lev-
els. Applying the missing data methods presented in Section 3, we derive some estimation
procedures for the Poisson regression model with missing outcomes based on auxiliary
outcomes and a validated sample for true outcomes. Further, we show that, by stratifying
based on a set of discrete variables, the proposed statistical procedure can be formulated
so that it can be used to analyze automated records which do not contain observations at
individual levels, only summarized information at categorical levels.
Let Y represent the number of events occurring in the time-exposure interval [0,T] and

Z the covariates. We consider the Poisson regression model,

P(Y = y|Z,T) = exp
{−T exp (β ′Z)

} {
T exp (β ′Z)

}y
/y!, (22)

where Z is a vector of k + 1 covariates and β a vector of k + 1 regression coefficients.
In practice, the exact number of true events may not be available for all subjects. We
may instead have the number of possible events, namely, the auxiliary events. For exam-
ple, in the study of vaccine adverse events associated with childhood immunizations, the
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number of auxiliary events A for MAARI is collected based on ICD-9 codes through hos-
pital records. Further diagnosis may indicate that some of these events are false events.
The number of true vaccine adverse events, Y , can only be confirmed for the subjects in
the validation set V . Suppose that Z is the vaccination status, 1 for the vaccinated and 0
for the unvaccinated. Then, under Poisson regression, exp(β) is the relative rate of event
occurrence per unit time of the exposed versus unexposed. We assume that the num-
ber of automated events A can be expressed as A = Y + W , where W is the number of
false events independent of Y conditional on (Z,T). Suppose thatW follows the Poisson
regression model

P(W = w|Z,T) = exp
{−T exp (γ ′Z)

} {
T exp(γ ′Z)

}w
/w!, (23)

where γ ′ = (
a0, a1, γ1, · · · , γk−1

)
.

We apply the missing data methods introduced in Section 3 on model (22). The vari-
ables (Zi,Ti,Yi,Ai) are observed for the validation sample V and (Zi,Ti,Ai) are observed
for the nonvalidation sample V̄ . While the covariate Z can be considered as categorical,
it is natural to consider the exposure time T as a continuous variable. We assume that the
validation probability depends only on the stratification of (Z,A). That is, the validation
sample is a stratified random sample by the categories defined by (Z,A). Of those estima-
tors discussed in Section 2, there are only two different estimators, β̂I1 and β̂A2. We show
in Section 4.3 that the proposed method can be formulated so that it can be used to ana-
lyze the automated records with missing outcomes. First we derive the explicit estimation
procedures for β̂I1 and β̂A2 and their variance estimators under model (22).

4.1 Inverse probability weighting estimation

We adopt all notations introduced in Section 3. In particular, let π z
i = P(ξi = 1|Zi,Ai)

and π̂ z
i = nV (Zi,Ai)/n(Zi,Ai). Let X = (Z,T) and Xi = (Zi,Ti) to be consistent

with earlier notations. The score function for subject i under model (22) is Sβ(Yi|Xi) =
Z′
i(Yi−Ti exp(β ′Zi)). The estimator β̂I1 is obtained by solving

∑n
i=1(ξi/π̂

z
i )Sβ(Yi|Xi) = 0,

where Sβ(Yi|Xi) = Z′
i(Yi − Ti exp(γ ′Zi)). By Corollary 1,

√
n(β̂I1 − β) converges in dis-

tribution to a normal distribution with mean zero and the variance matrix I−1(β) +
I−1(β)�A1(β)I−1(β), where �A1(β) = E

[
((1 − π z

i )/π
z
i )Var

{
Sβ(Yi|Xi)|Zi,Ai

}]
.

The information matrix I(β) = E(ZiZ′
iTi exp(β ′Zi)) = ∑

z P(Zi = z)zz′ exp(β ′z)
E(Ti|Zi = z) can be estimated by Î(β̂)which is obtained by replacing β with β̂I1, P(Zi = z)
by the sample proportion of the event {Zi = z}, and E(Ti|Zi = z) with the sample average
exposure time for those with covariates Zi = z. The matrix �A1(β) can be estimated by

�̂A1(β̂) =
∑
a,z

ρ̂(a, z)
1 − ρ̂v(a, z)

ρ̂v(a, z)
V̂ar{Sβ(Y |X)|A = a,Z = z}, (24)

where ρ̂(a, z) is the estimator of P{Ai = a,Zi = z}, ρ̂v(a, z) is the estimator of
P{i ∈ V |Ai = a,Zi = z}, and V̂ar

{
Sβ(Y |X)|A = a,Z = z

}
is an estimator of

Var
{
Sβ(Yi|Xi)|Zi,Ai

}]
which is derived in the following.

Since A is observed for all subjects, W can be determined if Y is known, and unde-
termined otherwise. The IPW estimator, γ̂I1, of γ can be estimated by solving the
equation

∑n
i=1(ξi/π̂

z
i )Sγ (Wi|Xi) = 0, where Sγ (Wi|Xi) = Z′

i(Wi − Ti exp(γ ′Zi)).
The conditional distribution of Y given A = a, T , and Z = z is Binomial (a, pz),
where pz = exp(β ′z)/(exp(β ′z) + exp(γ ′z)). Since this conditional distribution does
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not depend on T , the outcome Y and T are conditionally independent given (A,Z).
Therefore, Var

{
Sβ(Y |X)|A,Z} = ZZ′ {Var(Y |A,Z) + exp (2β ′Z)Var(T |A,Z)

}
. The vari-

ance Var(Y |A = a,Z = z) can be estimated by ap̂z(1 − p̂z), where p̂z = exp(β̂ ′z)/{
exp(β̂ ′z) + exp(γ̂ ′z)

}
, and Var(T |A = a,Z = z) = E(T2|A = a,Z = z) − {E(T |A =

a,Z = z)}2 can be estimated nonparametrically using the first and the second sample
moments conditional on each category with A = a and Z = z.

4.2 Augmented inverse probability weighted estimation

Under the assumption that W follows the Poisson regression model (23) and is inde-
pendent of Y conditional on (Z,T), E

{
Sβ(Y |X)|Z,T ,A} = AZ′ exp (β ′Z)

exp (β ′Z)+exp (γ ′Z)
−

TZ′ exp (β ′Z). Let Ê
{
Sβ(Y |Xi)|Xi,Ai

}
be the estimator of E

{
Sβ(Y |Xi)|Xi,Ai

}
for a given

β by substituting γ by its estimator γ̂I1 of Section 4.1. Then the estimator β̂A2 is obtained
by solving

n∑
i=1

ξi
π̂ z
i
Sβ (Yi|Xi) +

(
1 − ξi

π̂ z
i

)
Ê
{
Sβ(Y |Xi)|Xi,Ai

} = 0. (25)

By Corollary 1,
√
n(β̂A2 − β) converges in distribution to a normal distribution with

mean zero and the variancematrix where I−1(β)+I−1(β)�A2(β)I−1(β), where�A2(β) =
E
[
((1 − π z

i )/π
z
i )Var{Sβ(Yi|Xi)|Xi,Ai}

]
. The information matrix I(β) can be estimated

by Î(β̂) given in Section 4.1. The conditional variance Var
{
Sβ(Y |X)|Z = z,T ,A = a

} =
apz(1 − pz)z⊗2 can be estimated by ap̂z(1 − p̂z), where p̂z = exp(β̂ ′z)/(exp(β̂ ′z) +
exp(γ̂ ′z)). It follows that �A2(β) can be consistently estimated by

�̂A2(β) =
∑
a,z

ρ̂(a, z)
1 − ρ̂v(a, z)

ρ̂v(a, z)
ap̂z(1 − p̂z)z⊗2,

where ρ̂(a, z) is the estimator of P {Ai = a,Zi = z} and ρ̂v(a, z) is the estimator of P{i ∈
V |Ai = a,Zi = z}.

4.3 Estimation using the automated data

This section formulates the missing data estimation procedure for (22) based on the auto-
mated (summarized) information at categorical levels defined by relevant covariates of
the model. In particular, we show that β̂I1 and β̂A2 and their variance estimators can be
formulated using the automated data at categorical levels.
In many applications it is convenient to write Z = (1,Z(1),Z(2)) and β = (b0, b1, θ ′)′,

where Z(1) is the treatment indicator (Z(1) = 1 for the exposed group and Z(1) =
0 for the unexposed group) and Z(2) = (η1, · · · , ηk−1)

′ as the other covariates, and
θ = (θ1, · · · , θk−1)

′. For the applications involving the automated data records, we let
η1, · · · , ηk−1 be k − 1 dummy variables representing k groups. Without loss of generality,
we choose the kth group as the reference group, η1 = 1, η2 = 0, · · · , ηk−1 = 0 for group
1, η1 = 0, η2 = 1, · · · , ηk−1 = 0 for group 2, so on and η1 = 0, η2 = 0, · · · , ηk−1 = 0
for group k. Thus each value of Z denotes a category which can be represented by (l,m)

for l = 0, 1 and m = 1, · · · , k. This correspondence is denoted by Z � (l,m) for conve-
nience. For l = 0, 1 and m = 1, · · · , k − 1, category (l,m) is defined by Z with Z(1) = l,
ηm = 1 and ηj = 0 for j �= m, j = 1, . . . , k, and category (l, k) is defined by Z(1) = l and
ηj = 0 for j = 1, . . . , k − 1. Under model (22), the expected number of events for a sub-
ject in category (l,m) with the time-exposure interval [0,T] is T exp(blm), for l = 0, 1 and
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m = 1, · · · , k, where b1k = b0 + b1, b0k = b0, b1m = b0 + b1 + θm and b0m = b0 + θm for
1 ≤ m ≤ k − 1. The parameter b1 represents the log-relative rate of the exposed versus
the unexposed adjusted for other factors.
The following notations are used to show that the estimators of β and their variance

estimators can be calculated using the automated information at the categorical levels.
Let V (a, l,m) denote the set of subjects in V with (A = a, Z � (l,m)), V (l,m) for the
set of subjects in V with (Z � (l,m)), nalm for the number of subjects with (A = a,
Z � (l,m)), nvalm for the number of subjects in V (a, l,m), nvlm for the number of subjects
in V (l,m), λalm = nalm/nvalm, yalm for the number of events for subjects in V (a, l,m),
ylm for the number of events for subjects in V (l,m), talm for the total exposure time for
subjects with (A = a, Z � (l,m)), t2,alm for the total squared exposure time for subjects
with (A = a, Z � (l,m)), tlm for the total exposure time for subjects with Z � (l,m), αlm
for the number of automated events for subjects with Z � (l,m).

Estimation with β̂I1 using the automated data. The validation probability π z
i can be

estimated by 1/λalm when Ai = a, Zi � (l,m). It can be shown that the estimating
equation for β̂I1 is equivalent to the following nonlinear equations for {blm, for l =
0, 1, m = 1, · · · , k},

k∑
m=1

(∑
a∈A

yalmλalm − eblm
∑
a∈A

talmλalm

)
= 0,

∑
l=0,1

(∑
a∈A

yalmλalm − eblm
∑
a∈A

talmλalm

)
= 0,

for l = 0, 1 andm = 1, . . . , k − 1. When k > 1, the equations have no explicit solutions.
In the following, we show that the asymptotic variance of β̂I1 can be consistently esti-

mated by only using the automated information at categorical levels. The information
matrix is a (k + 1) × (k + 1) symmetric matrix given by

I(β) = E(ZiZ′
iTi exp(β ′Zi))

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑
l,m qlm

∑k
m=1 q1m q11 + q01 · · · q1r + q0r∑k

m=1 q1m
∑k

m=1 q1m q11 · · · q1r
q11 + q01 q11 q11 + q01 · · · 0

...
...

...
. . .

...
q1r + q0r q1r 0 · · · q1r + q0r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where r = k − 1 and qlm = E(TieblmI{individual i in category (l,m)}). The consistent
estimator, Î(β̂), of I(β) is thus obtained by replacing qlm with exp(b̂lm)tlm/n.
Under model (23), the expected number of false events for a subject in category (l,m)

with the time-exposure interval [0,T] is T exp(dlm), for l = 0, 1 andm = 1, · · · , k, where
d1k = a0 + a1, d0k = a0, d1m = a0 + a1 + γm and d0m = a0 + γm for 1 ≤ m ≤ k − 1. The
conditional distribution of Y given A = a, T , and Z � (l,m) is Binomial (a, plm), where
plm = exp(blm)/(exp(blm) + exp(dlm)) for a ≥ 1. Then Var(Y |A = a,Z � (l,m)) can be
estimated by ap̂lm(1− p̂lm), where p̂lm = eb̂lm/(eb̂lm + ed̂lm), and Var(T |A = a,Z � (l,m))



Qi and Sun Journal of Statistical Distributions and Applications 2014, 1:23 Page 12 of 26
http://www.jsdajournal.com/content/1/1/23

can be estimated by νa,l,m = t2,a,l,m/nalm − (talm/nalm)2. By (24) and the discussion that
follows, �A1(β) can be estimated by

�̂A1(β̂) =
∑
a,l,m

ρ̂(a, l,m)
1 − ρ̂v(a, l,m)

ρ̂v(a, l,m)
Glm{ap̂lm(1 − p̂lm) + νa,l,m}, (26)

where ρ̂(a, l,m) = nalm/n, ρ̂v(a, l,m) = nvalm/nalm and Glm be the value of Gi = z⊗2
i

when subject i belongs to the category (l,m). Hence the covariance matrix of β̂I1 can be
estimated by Î−1(β̂) + Î−1(β̂)�̂A1(β̂)Î−1(β̂) using the automated data.

Estimation with β̂A2 using the automated data. The estimating equations (25) are
equivalent to the following nonlinear equations for {blm, for l = 0, 1, m = 1, · · · , k},

k∑
m=1

{∑
a∈A

yalmλalm − eblmtlm + eblm

eblm + ed̂1m

(
αlm −

∑
a∈A

analmλalm

)}
= 0,

∑
l=0,1

{∑
a∈A

yalmλalm − eblmtlm + eblm

eblm + ed̂lm

(
αlm −

∑
a∈A

analmλalm

)}
= 0,

for l = 0, 1 andm = 1, . . . , k − 1.
Since Var

{
Sβ(Y |X)|Z � (l,m),T ,A = a

} = aplm(1 − plm)Glm, �A2(β) can be consis-
tently estimated by

�̂A2(β̂) =
∑
a,l,m

ρ̂(a, l,m)
1 − ρ̂v(a, l,m)

ρ̂v(a, l,m)
ap̂lm(1 − p̂lm)Glm.

Hence the covariance matrix of β̂A2 can be estimated by Î−1(β̂) + Î−1(β̂)�̂A2(β̂)Î−1(β̂)

using the automated data.

Remark In the special case where ρ(α, l,m) ≈ 0 for α ≥ 2, a much simpler formula for
the variance estimator of the log relative risk can be derived. For example in the vaccine
safety study, the adverse-event rate is very small. Let

wm = α0mα1my0my1m
α0my0mnv1m + α1my1mnv0m

/ k∑
m=1

α0mα1my0mnv1m
α0my0mnv1m + α1my1mnv0m

.

Then an estimate of variance of b̂1 is given by

̂Var(b̂1) =
k∑

m=1
w2
m

(
1

y1m
− 1

nv1m
+ 1

α1m
+ 1

y0m
− 1

nv0m
+ 1

α0m

)
, (27)

which is the weighted sum of the estimated variances for the estimated log relative rate of
the exposed versus the unexposed over k groups. The details of deviation are given in the
Appendix B.

5 A simulation study
We conduct a simulation study to examine the finite sample performance of the IPW esti-
mator β̂I1 and the AIPW estimator β̂A2. We consider the Poisson regression model (22).
The covariates Z1 and Z2 are generated from the Bernoulli distributions with the proba-
bility of success equals to 0.4 and 0.5 respectively. The exposure timeT is generated from a
uniform distribution on [ 0, 10]. GivenZ = (Z1,Z2) andT , the outcome variable Y follows
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a Poisson distribution with mean T exp (b0 + b1Z1 + θZ2) where b0 = −0.5, b1 = −0.8
and θ = −0.6, andW follows a Poisson distribution with mean T exp (a0 + a1Z1 + γZ2)

where a0 = −1.3, a1 = −1.1, γ = −1. We set A = Y + W .
Four models for the validation sample are considered. Under Model 1, the validation

sample is a simple random sample with probability πi = 0.4. Model 2 considers πi = 0.6.
In Model 3, the validation probability only depends on A through the logistic regression
model logit{πi(X,A)} = A − 0.5 where X = (Z,T). In Model 4, the validation probability
depends onA and Z1 through the logistic regressionmodel logit{πi(X,A)} = A−Z1−0.5.
Tables 1 and 2 present the simulation results for n = 50, 100, 300, 500 and 800. Each

entry of the tables is based on 1000 simulation runs. Tables 1 and 2 summarize the bias
(Bias), the empirical standard error (SSE), the average of the estimated standard error
(ESE), and the empirical coverage probability (CP) of 95% confidence intervals of β̂I1 and
β̂A2 for β = (b0, b1, θ). We also compare the performance of the estimators β̂I1 and β̂A2
with the complete-case (CC) estimator β̂C obtained by simply deleting subjects withmiss-
ing values of Yi. As a gold standard, we present the estimation results for the full data
where all the values of Yi are fully observed. Table 1 presents the results under Model 1
and 2, and Table 2 shows the results under Model 3 and 4.
Table 1 shows that under Model 1 andModel 2, the bias of all estimators is very small at

a level comparable with that of the full data estimator. The bias decreases with increased
sample size and the increased level of the validation probability. The empirical standard
errors are in good agreement with the corresponding estimated standard errors, except
for the IPW estimator when n ≤ 100 and π ≤ 0.6. Among them, AIPW has the smallest
standard errors for all parameters and sample sizes concerned. The coverage probabilities
of the confidence intervals for b0, b1 and θ are close to the nominal level 95%. When
the sample size and the validation probability are both small, for example, n = 50 and
π = 0.4, the IPW has large bias and is unstable but the AIPW still performs well.
Table 2 gives the results under Model 3 andModel 4. The bias remains small for β̂I1 and

β̂A2. The empirical standard errors are also close to the corresponding estimated standard
errors. The coverage probabilities remain close to the nominal level 95% for all IPW and
AIPW estimators. However, the complete-case estimator yields larger bias and incorrect
coverage probability because of the association between the validation probability and
the auxiliary variable A and/or the covariate Z1, in which case the missing is not missing
completely at random. The AIPWperforms better than IPWwith smaller standard errors.

6 An Application
A community-based, nonrandomized, open-label influenza vaccine (CAIV-T) study was
conducted in Temple-Belton, Texas during the 2000-2001 influenza season. The total
11,606 healthy children aged 18 months - 18 years were involved in this study and about
20% of them received a single dose of CAIV-T in 2000. The primary clinical outcome was
based on an nonspecific case definition called medically attended acute respiratory infec-
tion (MAARI), which included all International Classification of Diseases, Ninth Revision,
Clinical Modification diagnoses codes (ICD-9 codes 381-383, 460-487) for upper and
lower respiratory tract infections, otitis media and sinusitis. MAARI outcomes and demo-
graphic data were extracted from the Scott &White Health Plan administrative database.
For each visit, one or two International Classification of Diseases, Ninth Revision, Clinical
Modification diagnosis codes were listed. Visits for which asthma diagnosis codes alone



Q
iand

Sun
JournalofStatisticalD

istributionsand
A
pplications

2014,1:23
Page

14
of26

http
://w

w
w
.jsdajournal.com

/content/1/1/23

Table 1 Simulation comparison of the IPW estimator β̂I1, the AIPW estimator β̂A2 and the complete-case (CC) estimator β̂C under various sample sizes and selection
probabilities

b0 b1 θ

n Bias SSE ESE CP Bias SSE ESE CP Bias SSE ESE CP

Model 1: πi = .4
50 IPW -.0415 .3561 .1839 .851 -.2175 1.6737 .3354 .864 -.1610 1.2201 .2962 .847

AIPW -.0110 .2213 .1664 .890 -.0062 .3099 .2873 .943 -.0186 .3076 .2551 .929
CC -.0246 .3398 .2738 .938 -.1515 1.6082 .4730 .968 -.1038 1.1709 .4187 .959

100 IPW -.0650 .1815 .1404 .870 -.0548 .3120 .2458 .891 -.0249 .2653 .2161 .898
AIPW -.0094 .1376 .1187 .914 -.0024 .2284 .1988 .926 .0027 .1994 .1780 .925
CC -.0240 .1728 .1685 .948 -.0086 .3086 .2981 .960 .0031 .2556 .2581 .946

300 IPW -.0368 .0936 .0874 .931 -.0209 .1535 .1460 .946 -.0022 .1419 .1286 .929
AIPW -.0027 .0732 .0712 .946 -.0028 .1233 .1165 .940 .0005 .1130 .1046 .938
CC -.0092 .0919 .0935 .960 -.0012 .1627 .1634 .952 .0040 .1438 .1432 .952

500 IPW -.0183 .0698 .0671 .938 -.0172 .1159 .1128 .943 -.0083 .1069 .0993 .933

AIPW .0022 .0566 .0550 .936 -.0022 .0956 .0902 .943 -.0068 .0867 .0811 .930
CC .0006 .0704 .0716 .949 -.0059 .1268 .1255 .949 -.0046 .1135 .1103 .942

800 IPW -.0126 .0538 .0527 .942 -.0134 .0862 .0889 .950 -.0029 .0759 .0779 .947
AIPW .0011 .0433 .0435 .952 -.0047 .0720 .0713 .956 -.0020 .0638 .0640 .951
CC .0002 .0562 .0565 .948 -.0051 .0974 .0990 .958 -.0013 .0844 .0869 .958

Model 2: πi = .6
50 IPW -.0316 .2079 .1714 .926 -.0934 .8426 .3112 .944 -.0563 .3320 .2690 .937

AIPW -.0072 .1723 .1591 .941 -.0105 .2893 .2772 .950 -.0172 .2653 .2440 .948
CC -.0126 .1973 .1949 .959 -.0594 .8369 .3512 .967 -.0278 .3213 .3044 .959

100 IPW -.0366 .1399 .1259 .926 -.0420 .2363 .2192 .944 -.0100 .2103 .1911 .925

AIPW -.0121 .1206 .1133 .941 -.0107 .2069 .1921 .944 .0078 .1764 .1700 .940
CC -.0142 .1370 .1345 .947 -.0216 .2379 .2370 .961 .0030 .2103 .2072 .949

300 IPW -.0138 .0742 .0728 .944 -.0194 .1267 .1250 .957 -.0049 .1064 .1096 .964
AIPW -.0030 .0650 .0651 .948 -.0044 .1136 .1093 .949 .0005 .0960 .0974 .956
CC -.0017 .0763 .0759 .946 -.0118 .1345 .1328 .951 -.0035 .1147 .1169 .957

500 IPW -.0069 .0571 .0555 .945 -.0096 .0946 .0965 .947 -.0094 .0866 .0844 .953
AIPW .0029 .0495 .0496 .942 -.0032 .0856 .0841 .947 -.0076 .0757 .0749 .955
CC .0013 .0577 .0581 .947 -.0034 .1024 .1019 .949 -.0086 .0906 .0899 .954

800 IPW -.0072 .0437 .0438 .954 -.0069 .0754 .0763 .956 -.0025 .0692 .0664 .947

AIPW -.0011 .0401 .0393 .951 -.0019 .0693 .0665 .943 -.0015 .0626 .0590 .931
CC -.0012 .0452 .0460 .958 -.0026 .0805 .0806 .952 -.0024 .0723 .0709 .952

Full data: πi = 1
50 -.0079 .1510 .1466 .952 -.0182 .2691 .2618 .948 -.0104 .2264 .2263 .957
100 -.0079 .1068 .1024 .943 -.0075 .1841 .1798 .948 -.0039 .1560 .1577 .949
300 -.0019 .0596 .0583 .950 -.0081 .1032 .1023 .936 .0001 .0934 .0898 .932
500 .0006 .0452 .0450 .951 -.0041 .0783 .0788 .950 .0014 .0656 .0693 .960
800 -.0004 .0343 .0356 .951 .0025 .0612 .0622 .938 -.0006 .0532 .0547 .955
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Table 2 Simulation comparison of the IPW estimator β̂I1, the AIPW estimator β̂A2 and the complete-case (CC) estimator β̂C under various sample sizes and selection
probabilities

b0 b1 θ

n Bias SSE ESE CP Bias SSE ESE CP Bias SSE ESE CP

Model 3

50 IPW .0081 .1609 .1502 .949 -.0034 .5535 .2790 .954 -.0116 .2592 .2400 .963
AIPW -.0070 .1543 .1486 .950 -.0134 .2715 .2690 .958 -.0185 .2364 .2330 .955
CC .0230 .1529 .1504 .938 .0798 .5441 .2835 .940 .0648 .2367 .2414 .952

100 IPW -.0052 .1145 .1077 .948 -.0001 .2073 .2014 .959 .0030 .1789 .1724 .948
AIPW -.0124 .1077 .1041 .947 -.0085 .1869 .1840 .957 .0050 .1636 .1606 .948
CC .0221 .1074 .1054 .939 .1023 .1830 .1937 .924 .0828 .1625 .1664 .915

300 IPW -.0011 .0617 .0614 .951 -.0044 .1176 .1157 .952 .0019 .1009 .0993 .953
AIPW -.0023 .0582 .0588 .956 -.0051 .1056 .1036 .954 .0022 .0936 .0910 .944
CC .0295 .0577 .0596 .924 .1051 .1070 .1095 .824 .0823 .0925 .0946 .861

500 IPW .0018 .0451 .0473 .958 -.0037 .0853 .0895 .958 -.0069 .0765 .0767 .945
AIPW .0009 .0430 .0452 .957 -.0032 .0793 .0798 .947 -.0066 .0689 .0702 .951
CC .0317 .0429 .0459 .903 .1077 .0788 .0844 .763 .0737 .0704 .0730 .839

800 IPW -.0006 .0374 .0375 .951 -.0030 .0671 .0708 .962 .0004 .0617 .0605 .946
AIPW -.0003 .0362 .0358 .949 -.0031 .0623 .0631 .954 -.0012 .0577 .0554 .935
CC .0315 .0353 .0364 .863 .1065 .0630 .0667 .633 .0786 .0568 .0576 .721

Model 4

50 IPW .0053 .1627 .1504 .948 .0825 .3531 .2832 .913 -.0057 .2736 .2405 .948

AIPW -.0085 .1549 .1489 .950 -.0122 .2746 .2752 .966 -.0138 .2395 .2340 .961
CC .2295 .2640 .0855 .531 .4513 .3805 .1760 .517 .2954 .3285 .1409 .536

100 IPW -.0050 .1168 .1085 .939 .0481 .2350 .2130 .922 .0016 .1884 .1761 .940
AIPW -.0130 .1083 .1043 .943 -.0067 .1920 .1885 .950 .0066 .1648 .1613 .949
CC .0196 .1077 .1063 .943 .2010 .1946 .2087 .820 .0900 .1645 .1702 .910

300 IPW -.0001 .0630 .0624 .945 -.0001 .1323 .1311 .955 -.0011 .1043 .1038 .946
AIPW -.0020 .0588 .0588 .951 -.0052 .1095 .1059 .952 .0012 .0950 .0913 .931
CC .0271 .0582 .0601 .930 .2020 .1060 .1173 .576 .0894 .0939 .0965 .863

500 IPW .0012 .0457 .0480 .951 -.0007 .0966 .1010 .966 -.0054 .0801 .0799 .948
AIPW .0006 .0433 .0453 .956 -.0010 .0821 .0813 .941 -.0059 .0697 .0704 .950
CC .0291 .0434 .0463 .912 .2047 .0817 .0903 .364 .0815 .0711 .0745 .820

800 IPW -.0006 .0381 .0380 .949 .0004 .0761 .0794 .967 .0000 .0636 .0630 .947
AIPW -.0002 .0362 .0359 .949 -.0016 .0640 .0641 .955 -.0014 .0574 .0555 .942
CC .0288 .0356 .0367 .885 .2039 .0644 .0714 .166 .0864 .0570 .0588 .673
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were noted, without another MAARI code, were excluded. More details about this study
can be found in Halloran et al. (2003).
Any children representing with history of fever and any respiratory illness were eligible

to have a throat swab for influenza virus culture. The decision to obtain specimens was
made irrespective of whether a patient had received CAIV-T. The specific case definition
was culture-confirmed influenza. Table 3 taken fromHalloran et al. (2003) contains infor-
mation on the number of children in three age groups, the number of children who are
vaccinated versus unvaccinated, the number of nonspecific MAARI cases, the number of
cultures performed, and the number of cultures positive for each group.
With the method developed in Section 4 for Poisson regression, we compare the risk

of developing MAARI for children who received CAIV-T to the risk for children who
had never received CAIV-T using the automated information provided in Table 3. The
number of nonspecific MAARI cases extracted using the ICD-9 codes is the auxiliary
outcome A, whereas the actual number of influenza cases Y is the outcome of interest.
Let Z1 be the treatment indicator (1=vaccine and 0=placebo). Let Z2 = (η1, η2) be the
dummy variables indicating three age groups, where η1 = 1 if the age is in the range 1.5–
4, η1 = 0, otherwise, and η2 = 1 if the age is in the range 5–9, η2 = 0, otherwise. The
reference group is the age 10–18. The exposure time for all children is taken asT = 1 year.
Consider a Poisson regression model with mean T exp (b0 + b1Z1 + θ1η1 + θ2η2).

Using the IPW estimator β̂I1, the estimates (standard errors) are b̂0 = −0.7659 (σ̂b0 =
0.1046), b̂1 = −1.5830 (σ̂b1 = 0.5017), θ̂1 = −0.5572 (σ̂θ1 = 0.2111) and θ̂2 = −0.0199
(σ̂θ2 = 0.1472). The age-adjusted relative rate (RR) in the vaccinated group compared
with the unvaccinated group equals exp(b̂1) = exp(−1.5830) = 0.2054, which means
that the rate of developing MAARI for the vaccinated group is 20% of that for the unvac-
cinated group. In terms of the vaccine efficacy VE = 1 − RR = 0.7946, this represents
about 80% reduction in the risk of developingMAARI for the vaccinated group compared
to the unvaccinated group. The 95% confidence interval of RR obtained by using the delta
method is (0.0768, 0.5490), showing clear evidence that the vaccinated children have less
risk of influenza than the unvaccinated children. The 95% confidence interval for VE is
(0.4510, 0.9232).

Table 3 Study data for influenza epidemic season 2000-01, by age and vaccine group (from
Halloran et al. 2003)

Age group Vaccine No. of No. of MAARI No. of MAARI No. of positive
(years) children cases cases cultured cultures

1.5-4 CAIV-T 537 389 16 0

None 1844 1665 86 24

5-9 CAIV-T 807 316 17 2

None 2232 1156 118 53

10-18 CAIV-T 937 219 19 3

None 5249 1421 123 56

Total CAIV-T 2281 924 52 5

None 9325 4242 327 133
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Using the AIPW estimator β̂A2, the estimates (standard errors) are b̂0 = −2.0703
(σ̂b0 = 0.0851), b̂1 = −1.8072 (σ̂b1 = 0.3786), θ̂1 = 0.6452 (σ̂θ1 = 0.1966) and θ̂2 = 0.6235
(σ̂θ2 = 0.1265). The age-adjusted relative rate (RR) is exp(b̂1) = exp(−1.8072) = 0.1641.
The estimated VE is 0.8359 and the 95% confidence interval is (0.6553, 0.9219). The esti-
mator β̂A2 yields smaller standard errors and confidence intervals with more precision
than using β̂I1.
This data was analyzed byHalloran et al. (2003) andChu andHalloran (2004). Assuming

the binary probability model for Pβ(Y |X) where X includes the vaccination status and age
group indicators, and using the mean score method, Halloran et al. (2003) found that the
estimated VE based on the nonspecific MAARI cases alone was 0.18 with 95% confidence
interval of (0.11, 0.24). The estimated VE by incorporating the surveillance cultures was
0.79 with 95% confidence interval of (0.51, 0.91). Halloran et al. also reported sample-size-
weighted VE= 0.77 with 95% confidence interval of (0.48, 0.90). Chu and Halloran (2004)
have developed a Bayesian method to estimate vaccine efficacy. By Chu and Halloran
(2004), the estimated VE was 0.74 with 95% confidence interval (0.50, 0.88) and estimated
VE by the multiple imputation method was 0.71 with 95% confidence interval (0.42, 0.86).
Our estimates of the vaccine efficacy are in line with the existing methods. The esti-

mator β̂A2 yields smaller standard errors and therefore confidence intervals are more
precise than the existing methods of Halloran et al. (2003) and Chu and Halloran (2004).
Compared to the binary regression, Poisson regression model allows multiple recurrent
MAARI cases for each child. Although for this particular application the exposure time is
fixed at one year time interval, the proposed method is applicable to the situation where
the length of exposure time may be different for different children.

7 Conclusions
In this paper, we investigated the mean score method, the IPW method and the AIPW
method for the parametric probability regression model Pβ(Y |X) when outcome of inter-
est Y is subject to missingness. The asymptotic distributions are derived for the IPW
estimator and the AIPW estimator. The selection probability often needs to be estimated
for the IPW estimator, and both the selection probability and the conditional expectation
of the score function needs to be estimated for the AIPW estimator. We investigated the
properties of the IPW estimator and the AIPW estimator when the selection probability
and the conditional expectation are implemented differently.
An AIPW estimator is said to be fully augmented if the selection probability and the

conditional expectation are estimated using the full set of observed variables; it is par-
tially augmented if the selection probability and the conditional expectation are estimated
using a subset of observed variables. Corollary 1 shows that the fully augmented AIPW
estimator is more efficient than the partially augmented AIPW estimator. Corollary 2
shows that the AIPW estimator is more efficient than the IPW estimator. However, when
the selection probability depends only on a set of discrete random variables, the IPW
estimator obtained by estimating the selection probability nonparametrically with the
cell frequencies is asymptotically equivalent to the AIPW estimator augmented using
the same set of discrete random variables. Proposition 1 shows that the IPW estimator,
the AIPW estimator and the mean score estimator are equivalent if the selection prob-
ability and the conditional expectation are estimated using same set of discrete random
variables.
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Applying the developed missing data methods, we derived the estimation procedures
for Poisson regression model with missing outcomes based on auxiliary outcomes and a
validated sample for true outcomes. By assuming the selection probability depending only
on the observed discrete exposure variables, not on the continuous exposure time, we
show that the IPW estimator and the AIPW estimator can be formulated to analyze data
when only aggregated/summarized information are available. The simulation study shows
that for a moderate sample size and selection probability, the IPW estimator and AIPW
estimator perform better than the complete-case estimator. The AIPW estimator is more
efficient and more stable than the IPW estimator. The proposed methods are applied to
analyze a data set from for an influenza vaccine study conducted in Temple-Belton, Texas
during the 2000-2001 influenza season. The data set presented in Table 3 only contains
summarized information at categorical levels defined by the three age groups and vacci-
nation status. The actual number of influenza cases (the number of positive cultures) out
of the number of MAARI cases cultured, along with the number of MAARI cases, are
available for each category. Our analysis using the AIPW approach shows that the age-
adjusted relative rate in the vaccinated group compared to the unvaccinated group equals
0.1641, which represents about 84% reduction in the risk of developing MAARI for the
vaccinated group compared to the unvaccinated group.

Appendix A
Proof of Proposition 1.
Since

n∑
i=1

(1 − ξi)Ê
{
Sβ(Y |Xi)|Zi,Ai

} =
∑
i∈V̄

∑
j∈V (Zi,Ai)

Sβ(Yj|Xj)/nV (Zi,Ai)

=
∑
i∈V

{
nV̄ (Zi,Ai)/nV (Zi,Ai)

}
Sβ(Yi|Xi),

we have

n∑
i=1

WE1
i =

∑
i∈V

(
1 + nV̄ (Zi,Ai)

nV (Zi,Ai)

)
Sβ(Yi|Xi) =

n∑
i=1

ξi
π̂ z
i
Sβ(Yi|Xi) =

n∑
i=1

WI1
i . (A.1)

This shows that the mean score estimator β̂E1 is the same as the IPW estimator β̂I1.
Further, since

n∑
i=1

(
1 − ξi

π̂ z
i

)
Ê{Sβ(Y |Xi)|Zi,Ai}

=
∑
i∈V̄

∑
j∈V (Zi,Ai)

Sβ(Yj|Xj)

nV (Zi,Ai)
−
∑
i∈V

nV̄ (Zi,Ai)

nV (Zi,Ai)

∑
j∈V (Zi,Ai)

Sβ(Yj|Xj)

nV (Zi,Ai)

=
∑
i∈V

nV̄ (Zi,Ai)

nV (Zi,Ai)
Sβ(Yi|Xi) −

∑
i∈V

nV̄ (Zi,Ai)

nV (Zi,Ai)
Sβ(Yi|Xi) = 0,

we have
∑n

i=1WA1
i = ∑n

i=1WI1
i . Thus the AIPW estimator β̂A1, the IPW estimator β̂I1

and the mean score estimator β̂E1 are equivalent to each other.
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Note that

n∑
i=1

(
1 − ξi

π̂ z
i

)
Ê{Sβ(Y |Xi)|Xi,Ai}

=
∑
i∈V̄

∑
j∈V (Xi,Ai)

Sβ(Yj|Xj)

nV (Xi,Ai)
−
∑
i∈V

nV̄ (Zi,Ai)

nV (Zi,Ai)

∑
j∈V (Xi,Ai)

Sβ(Yj|Xj)

nV (Xi,Ai)

=
∑
i∈V

nV̄ (Xi,Ai)

nV (Xi,Ai)
Sβ(Yi|Xi) −

∑
i∈V
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=
∑
i∈V

{
nV̄ (Xi,Ai)

nV (Xi,Ai)
− nV̄ (Zi,Ai)

nV (Zi,Ai)

}
Sβ(Yi|Xi), (A.2)

which is not zero unless Zc
i is linearly related to Zi and in this case β is not identifiable.

Hence the AIPW estimator β̂A2 is different from the AIPW estimator β̂A1.
By (A.1) and (A.2), we have

n∑
i=1

WA2
i =

∑
i∈V

{
n(Zi,Ai)

nV (Zi,Ai)
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{
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}
Sβ(Yi|Xi) =

n∑
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i .

Following the same arguments leading to (A.1), we also have
∑n

i=1WE2
i = ∑n

i=1WI2
i .

Hence, the estimators β̂I2, β̂E2 and β̂A2 are equivalent. By following the steps in (A.2),
we also have

∑n
i=1

(
1 − ξi

π̂i

)
Ê
{
Sβ(Y |Xi)|Xi,Ai

} = 0. Hence, β̂A3 is the same as β̂I2.
Therefore, these are essentially two different estimators.
Proof of Theorem 1.
Applying the first order Taylor expansion, π̃i − πi = (∂π(Xi,Ai,ψ0)/∂ψ)′

(
ψ̂ − ψ0

)
+

op
(
n−1/2). From (13), we have
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π̃iπi

ξiSβ(Yi|Xi) (A.3)

The second term of (A.3) is

n−1/2
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ξiSβ(Yi|Xi)

= n−1/2
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−2ξiSβ(Yi|Xi)

(
∂π(Xi,Ai,ψ0)
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+ op(1) (A.4)

By (11), (A.3) and (A.4), we have

n−1/2UI = n−1/2
n∑

i=1

(
ξi
πi
Sβ(Yi|Xi) − Oi

)
+ op(1) = n−1/2

n∑
i=1

QI
i + op(1).
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Now consider the AIPW estimator β̂A based on solving the estimating equation (14).
For simplicity, we denote Ea

{
Sβ(Y |Xi)|Xi,Ai

}
by Ei and Ẽ

{
Sβ(Y |Xi)|Xi,Ai

}
by Ẽi. We

note that

n−1/2UA = n−1/2
n∑

i=1

[
ξi
πi
Sβ(Yi|Xi) +

(
1 − ξi

πi

)
Ei
]
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π̃i
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πi

){
Sβ(Yi|Xi) − Ei
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(
1 − ξi

π̃i

)(
Ẽi − Ei

)]
.

Suppose that π̃i and Ẽi are the estimates of πi and Ei based on some parametric or non-
parametricmodels. Then it can be shown using Taylor expansion and standard probability
arguments that the second term is at the order of op(1) under MAR I. Hence

n−1/2UA = n−1/2
n∑
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[
ξi
πi
Sβ(Yi|Xi) +

(
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)
Ei
]
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It can be shown that under MAR I, n−1∂UI/∂β
P−→ I(β) and n−1∂UA/∂β

P−→ I(β). By
routine derivations, we have

n1/2
(
β̂I − β

)
= I−1(β)n−1/2UI + op(1) = I−1(β)n−1/2

n∑
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QI
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(
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n∑
i=1
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By the central limit theorem, both n1/2
(
β̂I − β

)
and n1/2

(
β̂A − β

)
have asymptotically

normal distributions with mean zero and covariances equal to I−1(β)Var
(
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i
)
I−1(β) and

I−1(β)Var
(
QA
i
)
I−1(β), respectively.

Next, we examine the covariancematrices Var
(
QI
i
)
and Var

(
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i
)
to understand the effi-

ciency gain of β̂A over β̂I . Note that QI
i = ξi/πiSβ(Yi|Xi) −Oi and QA

i = ξi/πiSβ(Yi|Xi) +
(1−ξi/πi)Ei. DenoteAi = ξi/πiSβ(Yi|Xi) and Bi = (1−ξi/πi)Ei. ThenQI
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Hence, Cov
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) = 0. It follows that Var(QI
i ) = Var
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)+Var(Bi +Oi). Since
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MAR I, we have Var
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i
) = Var
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})
, where

the first term equals I(β). This completes the proof of Theorem 1.
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Proof of Corollary 1.
LetQA1

i = ξi/π
z
i Sβ(Yi|Xi)+(1−ξi/π

z
i )E

{
Sβ(Y |Xi)|Zi,Ai

}
, andQA2
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}
. By (16),
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The second term of Var
(
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i
)
equals �A1(β) and the second term of Var

(
QA2
i
)
equals

�A2(β). Then it follows from the main results in Theorem 1 that (17) and (18) hold.
Also by Theorem 1, the difference in the variances of QA1

i and QA2
i contributes to the

difference in the asymptotic variances of β̂A1 and β̂A2. Since E
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,

which is less than �A1(β) if the covariates Zi is a proper subset of Xi.

Proof of Corollary 2.
Consider the definitions of Bi and Oi given following (16). We note that
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∂ψ

)′
,

and

n−1/2
n∑

i=1
Sψ
i = n−1/2

n∑
i=1

(ξi − π(Zi,Ai,ψ0))

π(Zi,Ai,ψ0)(1 − π(Zi,Ai,ψ0))

∂π(Zi,Ai,ψ0)

∂ψ

=
∑
z,a

n−1/2
n∑

j=1

(
ξj − π(z, a,ψ0)

)
I
(
Zj = z,Aj = a

)
π(z, a,ψ0)(1 − π(z, a,ψ0))

∂π(z, a,ψ0)

∂ψ
.

From the discussions preceding Corollary 2, ψ = {ψz,a} and π(z, a,ψ) = ψz,a, where
ψz,a = P(ξi = 1|Zi = z,Ai = a) for all distinct pairs (z, a). Hence, ∂π(z,a,ψ0)

∂ψ
is a column

vector with 1 in the position for ψz,a and 0 elsewhere. And Iψ is a diagonal matrix and its
inverse matrix is also diagonal.
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We have

n−1/2
n∑

i=1
Oi = E

{
πi

−1Sβ(Yi|Xi)

(
∂π(Zi,Ai,ψ0)

∂ψ

)′}
(Iψ)−1n−1/2

n∑
i=1

Sψ
i

=
∑
z,a

E
{
Sβ(Y |X)|Z = z,A = a

}
n−1/2

n∑
j=1

ξj − π(z, a,ψ0)

π(z, a,ψ0)
I
(
Zj = z,Aj = a

)
,

and

n−1/2
n∑

i=1
Bi = −n−1/2

n∑
i=1

(ξi − π(Zi,Ai))

π(Zi,Ai)
Ei

= −n−1/2
n∑

i=1

(ξi − π(Zi,Ai))

π(Zi,Ai)
E
{
Sβ(Yi|Xi)|Xi,Ai

}

= −
∑
z,a

n−1/2
n∑

j=1

ξj − π(z, a,ψ0)

π(z, a,ψ0)
I
(
Zj = z,Aj = a

)
E
{
Sβ(Yj|Xj)|Zj = z,Zc

j ,Aj = a
}
.

Then (21) holds. It follows that β̂A is more efficient than β̂I unless Var{Sβ(Yj|Xj)|Zj =
z,Aj = a} = 0 for all (z, a) for which P(Zi = z,Ai = a) �= 0.

Appendix B
Proof of the simplified variance formula (27)
The information matrix I(β) is a (k + 1) × (k + 1) symmetric matrix given by

I(b0, b1, θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑
l,m qlm

∑k
m=1 q1m q11 + q01 · · · q1r + q0r∑k

m=1 q1m
∑k

m=1 q1m q11 · · · q1r
q11 + q01 q11 q11 + q01 · · · 0

...
...

...
. . .

...
q1r + q0r q1r 0 · · · q1r + q0r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where r = k − 1 and qlm = E(TieblmI{individual i in category (l,m)}). For ease of
presentation in the following, we drop the augments (b0, b1, θ) and use I for I(b0, b1, θ).
Let Iij be the cofactor of the (i, j)th element of I.
First we need to find the elements on the second row of the information matrix

I(b0, b1, θ). Note that for a matrix A, ((aij)n×n)−1 = (Aji)n×n/|A|, where Aij is the cofactor
of aij in the matrix A and |A| is the determinant of A. Also note that for a block matrix

B =
(
B11 B12
B21 B22

)
,
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the determinant |B| = |B22||B11 − B12B−1
22 B21|. We have

|I| =
k−1∏
m=1

(q1m + q0m)

∣∣∣∣∣∣
⎛⎝ ∑

lm qlm
∑k

m=1 q1m∑k
m=1 q1m

∑k
m=1 q1m

⎞⎠−
⎛⎝∑1

l=0
∑k−1

m=1 qlm
∑k−1

m=1 q1m∑k−1
m=1 q1m

∑k−1
m=1

(q1m)2

q1m+q0m

⎞⎠∣∣∣∣∣∣
=

k−1∏
m=1

(q1m + q0m)

∣∣∣∣∣ q1k + q0k q1k
q1k q1k +∑k−1

m=1
q0mq1m
q1m+q0m

∣∣∣∣∣
=

k∏
m=1

(q1m + q0m)

k∑
m=1

q0mq1m
q1m + q0m

,

and

I21 = −

∣∣∣∣∣∣∣∣∣∣

∑k
m=1 q1m q11 + q01 · · · q1r + q0r
q11 q11 + q01 · · · 0
...

...
. . .

...
q1r 0 · · · q1r + q0r

∣∣∣∣∣∣∣∣∣∣
= −

k−1∏
m=1

(q1m + q0m)

⎡⎣ k∑
m=1

q1m −
k−1∑
m=1

q1m

⎤⎦
= −q1k

k−1∏
m=1

(q1m + q0m).

Hence, the (2, 1)th element of I−1 is

(
I−1)

21 = I21
|I| = − q1k

W (q1k + q0k)
,

whereW = ∑k
m=1 q0mq1m/(q1m + q0m).

To calculate (2, 2)th element of I−1, we have

I22 =

∣∣∣∣∣∣∣∣∣∣

∑k
l,m qlm q11 + q01 · · · q1r + q0r

q11 + q01 q11 + q01 · · · 0
...

...
. . .

...
q1r + q0r 0 · · · q1r + q0r

∣∣∣∣∣∣∣∣∣∣
=

k−1∏
m=1

(q1m + q0m)

⎡⎣∑
l,m

qlm −
1∑

l=0

k−1∑
m=1

qlm

⎤⎦ =
k∏

m=1
(q1m + q0m).
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Hence, the (2, 2)th element of I−1 is
(
I−1)

22 = I22/|I| = 1/W .
To calculate (2, 3)th element of I−1, we have

I23 = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
l,m qlm

∑k
m=1 q1m q12 + q02 · · · q1r + q0r

q11 + q01 q11 0 · · · 0
q12 + q02 q12 q12 + q02 · · · 0

...
...

...
. . .

...
q1r + q0r q1r 0 · · · q1r + q0r

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

k−1∏
m=2

(q1m + q0m)

∣∣∣∣∣
( ∑

lm qlm
∑k

m=1 q1m
q11 + q01 q11

)

−
(∑k−1

m=2(q1m + q0m)
∑k−1

m=2 q1m
0 0

)∣∣∣∣∣
= −

k−1∏
m=2

(q1m + q0m)(q0kq11 − q1kq01).

Hence

(I−1)23 = I23
|I| = − q11

W (q11 + q01)
+ q1k

W (q1k + q0k)
.

To calculate (2, 4)th element of I−1, we have

I24 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
l,m qlm

∑k
m=1 q1m q11 + q01 q13 + q03 · · · q1r + q0r

q11 + q01 q11 q11 + q01 0 · · · 0
q12 + q02 q12 0 0 · · · 0
q13 + q03 q13 0 q13 + q03 · · · 0

...
...

...
...

. . .
...

q1r + q0r q1r 0 0 · · · q1r + q0r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By switching the 2nd and the 3rd row, we have

I24 = −nk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
l,m qlm

∑k
m=1 q1m q11 + q01 q13 + q03 · · · q1r + q0r

q12 + q02 q12 0 0 · · · 0
q11 + q01 q11 q11 + q01 0 · · · 0
q13 + q03 q13 0 q13 + q03 · · · 0

...
...

...
...

. . .
...

q1r + q0r q1r 0 0 · · · q1r + q0r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Hence (
I−1)

24 = I24
|I| = − q12

W (q12 + q02)
+ q1k

W (q1k + q0k)
.

In general, to calculate I2(m+2) for m = 1, · · · , k − 1, we can obtain a matrix with a
(k − 2) × (k − 2) diagonal right lower block by switching rows of I2(m+2) even number of
times when m is odd and by switching rows odd number of times when m is even. Then
similar to calculating

(
I−1)

24, we have(
I−1)

2(m+2) = − q1m
W (q1m + q0m)

+ q1k
W (q1k + q0k)

.
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For l = 1 and 1 ≤ m ≤ k, the (i, j)th element of Glm is gij = 1 for (i, j) =
(1, 1), (1, 2), (1,m + 2), (2, 1), (2, 2), (2,m + 2), (m + 2, 1), (m + 2, 2), (m + 2,m + 2), and
gij = 0 elsewhere. We have the (2, 2)th element of I−1GlmI−1 as(

I−1)2
21 + (

I−1)2
22 + (

I−1)2
2(m+2) + 2

(
I−1)

21
(
I−1)

2(m+2)

+2
(
I−1)

22
(
I−1)

2(m+2) + 2
(
I−1)

21
(
I−1)

22

= 1
W 2

(
q0m

q1m + q0m

)2
.

Since for l = 0 and 1 ≤ m ≤ k, gij = 1 for (i, j) = (1, 1), (1,m + 2), (m + 2, 1), (m +
2,m + 2), and gij = 0 elsewhere, in this case the (2, 2)th element of I−1GlmI−1 is

(I−1)221 + (I−1)22(m+2) + 2(I−1)21(I−1)2(m+2)

= ((I−1)21 + (I−1)2(m+2))
2

= 1
W 2

(
q1m

q1m + q0m

)2
.

Hence the (2, 2)th element of the asymptotic covariance matrix of β̂A2 is given by σ 2
b1 =

1/W + U/W 2, where

U =
∑
α,l,m

ρ(α, l,m)
1 − ρV (α, l,m)

ρV (α, l,m)
αplm(1 − plm)

(
q(1−l)m

q0m + q1m

)2
.

Note that P(Yi = 1|Ai = 1, i ∈ category (l,m)) can be estimated by ylm/nvlmand ρ(l,m)

by αlm/n. Thus qlm can be estimated by (αlm/n)(ylm/nvlm). Then we can estimateW by
Ŵ = n−1∑k

m=1 α0mα1my0my1m/(α0my0mnv1m + α1my1mnv0m). By replacing ρv
l,m with

nvlm/αlm and plm with ylm/nvlm, we can estimate U by

Û = n−1
∑
l,m

αlm
αlm − nvlm

nvlm

ylm
nvlm

nvlm − ylm
nvlm

(
α(1−l)m

y(1−l)m
nv

(1−l)m

)(
α1m

y1m
nv1m

+ α0m
y0m
nv0m

)−2

= n−1
k∑

m=1

[
α1m − nv1m

nv1m

nv1m − y1m
nv1m

α0m
y0m
nv0m

+ α0m − nv0mn
v
0m

nv0m − y0m
nv0m

α1m
y1m
nv1m

]

×
(

α1m
y1m
nv1m

α0m
y0m
nv0m

)(
α1m

y1m
nv1m

+ α0m
y0m
nv0m

)−2

= n−1
k∑

m=1

[(
1

y1m
− 1

nv1m
+ 1

α1m
− nv1m

α1my1m

)
+
(

1
y0m

− 1
nv0m

+ 1
α0m

− nv0m
α0my0m

)]

×
(

α1my1mα0my0m
α1my1mnv0m+ α0my0mnv1m

)2
.

From Ŵ and Û , we obtain an estimate of σ 2
b1 as follows

σ̂ 2
b1

= 1
Ŵ 2

k∑
m=1

[(
1

y1m
− 1

nv1m
+ 1

α1m

)
+
(

1
y0m

− 1
nv0m

+ 1
α0m

)](
α1my1mα0my0m

α1my1mnv0m + α0my0mnv1m

)2

+ 1
Ŵ

+ 1
Ŵ 2

k∑
m=1

[
− nv1m

α1my1m
− nv0m

α0my0m

](
α1my1mα0my0m

α1my1mnv0m + α0my0mnv1m

)2

= 1
Ŵ 2

k∑
m=1

[(
1

y1m
− 1

nv1m
+ 1

α1m
+ 1

y0m
− 1

nv0m
+ 1

α0m

)](
α1my1mα0my0m

α1my1mnv0m + α0my0mnv1m

)2
.
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The variance of b̂1 is estimated by V̂ar
(
b̂1
)

= n−1σ̂ 2
b1 .
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