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Abstract

In this paper, we investigate several well known approaches for missing data and their
relationships for the parametric probability regression model Pg(Y|X) when outcome
of interest Y is subject to missingness. We explore the relationships between the mean
score method, the inverse probability weighting (IPW) method and the augmented
inverse probability weighted (AIPW) method with some interesting findings. The
asymptotic distributions of the IPW and AIPW estimators are derived and their
efficiencies are compared. Our analysis details how efficiency may be gained from the
AIPW estimator over the IPW estimator through estimation of validation probability
and augmentation. We show that the AIPW estimator that is based on augmentation
using the full set of observed variables is more efficient than the AIPW estimator that is
based on augmentation using a subset of observed variables. The developed
approaches are applied to Poisson regression model with missing outcomes based on
auxiliary outcomes and a validated sample for true outcomes. We show that, by
stratifying based on a set of discrete variables, the proposed statistical procedure can
be formulated to analyze automated records that only contain summarized
information at categorical levels. The proposed methods are applied to analyze
influenza vaccine efficacy for an influenza vaccine study conducted in Temple-Belton,
Texas during the 2000-2001 influenza season.
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1 Introduction

Suppose that Y is the outcome of interest and X is a covariate vector. One is often inter-
ested in the probability regression model Pg(Y|X) that relates Y to X. In many medical
and epidemiological studies, the complete observations on Y may not be available for all
study subjects because of time, cost, or ethical concerns. In some situations, an easily
measured but less accurate outcome named auxiliary outcome variable, A, is supple-
mented. The relationship between the true outcome Y and the auxiliary outcome A in the
available observations can inform about the missing values of Y. Let V be a subsample of
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the study subjects, termed the validation sample, for which both true and auxiliary out-
comes are available. Thus observations on (X, Y, A) are available for the subjects in V and
only (X, A) are observed for those not in V.

It is well known that the complete-case analysis, which uses only subjects who have
all variables observed, can be biased and inefficient, cf. Little and Rubin (2002). The
issues also rise when substituting auxiliary outcome for true outcome; see Ellenberg
and Hamilton (1989), Prentice (1989) and Fleming (1992). Inverse probability weighting
(IPW) is a statistical technique developed for surveys by Horvitz and Thompson (1952) to
calculate statistics standardized to a population different from that in which the data was
collected. This approach has been generalized to many aspects of statistics under various
frameworks. In particular, the IPW approach is used to account for missing data through
inflating the weight for subjects who are underrepresented due to missingness. The
method can potentially reduce the bias of the complete-case estimator when weighting
is correctly specified. However, this approach has been shown to be inefficient in sev-
eral situations, see Clayton et al. (1998) and Scharfstein et al. (1999). Robins et al. (1994)
developed an improved augmented inverse probability weighted (AIPW) complete-case
estimation procedure. The method is more efficient and possesses double robustness
property. The multiple imputation described in Rubin (1987) has been routinely used to
handle missing data. Carpenter et al. (2006) compared the multiple imputation with IPW
and AIPW, and found AIPW as an attractive alternative in terms of double robustness
and efficiency. Using the maximum likelihood estimation (MLE) coupled with the EM-
algorithm (Dempster et al. 1977), Pepe et al. (1994) proposed the mean score method for
the regression model Pg(Y'|X) when both X and A are discrete.

In this paper, we investigate several well known approaches for missing data and
their relationships for the parametric probability regression model Pg(Y|X) when out-
come of interest Y is subject to missingness. We explore the relationships between
the mean score method, IPW and AIPW with some interesting findings. Our analy-
sis details how efficiency is gained from the AIPW estimator over the IPW estimator
through estimation of validation probability and augmentation to the IPW score func-
tion. Applying the developed missing data methods, we derive the estimation procedures
for Poisson regression model with missing outcomes based on auxiliary outcomes
and a validated sample for true outcomes. Further, we show that the proposed sta-
tistical procedures can be formulated to analyze automated records that only contain
aggregated information at categorical levels, without using observations at individual
levels.

The rest of the paper is organized as follows. Section 2 introduces several missing data
approaches for the probability regression model Pg(Y|X), where the outcome Y may be
missing. Section 3 explores the relationships among these estimators. The asymptotic
distributions of the IPW and AIPW estimators are derived and their efficiencies are com-
pared. Section 3 investigates efficiency of two AIPW estimators, one is based on the
augmentation using a subset of observed variables and the other is based on the aug-
mentation using the full set of observed variables. The procedures for Poisson regression
using automated data with missing outcomes are derived in Section 4. The finite-sample
performances of the estimators are studied in simulations in Section 5. The proposed
method is applied to analyze influenza vaccine efficacy for an influenza vaccine study
conducted in Temple-Belton, Texas during the 2000-2001 influenza season. The proofs
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of the main results are given in the Appendix A, while the proof of a simplified variance
formula in Section 4 is placed in the Appendix B.

2 Missing data approaches

Consider the probability regression model Pg(Y|X), where Y is the outcome of interest
and X is a covariate vector. Let A be the auxiliary outcome for Y and V be the validation
set such that observations on (X, Y, A) are available for the subjects in V and only (X, A)
are observed for those in V, the complement of V. In practice, the validation sample may
be selected based on the characteristics of a subset, Z, of the covariates in X. We write X =
(Z,Z°). For example, Z may include exposure indicator and other discrete covariates and
Z° may be the exposure time. Let (Z;, X;, Y, A;), i = 1,...,n, be independent identically
distributed (iid) copies of (Z, X, Y, A). Let & = I(i € V) be the selection indicator.

Most statistical methods for missing data require some assumptions on missingness
mechanisms. The commonly used ones are missing completely at random (MCAR) and
missing at random (MAR). MCAR assumes that the probability of missingness in a
variable is independent of any characteristics of the subjects. MAR assumes that the
probability that a variable is missing depends only on observed variables. In practice,
if missingness is a result by design, it is often convenient to let the missing probability
depend on the categorical variables only. There is also simplicity in statistical inference
by modeling the missing probability based on the categorical variables. We introduce the
following missing at random assumptions.

MARI & isindependent of ¥; conditional on (X;, A;) and &; is independent of Z{
conditional on (Z;, A;).
MARIL:  §; is independent of (Y7, Zf) conditional on (Z;, A;).

Since the conditional density f(y,z°&,z,a) = f(z°|§,z,a) f(¥|z5,&,2,a) = f(z°|z,a)
fWlzf z,a) = f(y,2°z,a), MAR I implies MAR II. It is also easy to show that MAR 1I
implies MAR.

Let 7; be the estimator of the conditional probability 7; = P(§; = 1|X;,4;), and
7f the estimator of n7 = P(§ = 1|Z;,A;). Let Sg(Y|X) denote the partial deriva-
tives of logPg(Y|X) with respect to f. Let E{Sﬁ(YlXi)|Xi,Ai} be the estimator of
the conditional expectation E {S;;(Y|X,-)|Xi,A,'}, and E {Sﬂ(Y|Xi)|Zi,A,'} the estimator
of E {S,g(Y|Xi)|Zi,Ai}. We investigate several estimators of 8 based on the following
estimating equations with different choices of W;:

n
Y Wi=o, (1)
i=1
where W; takes one of the following forms:
3
Wil = 2ZSp(YilX) @)
T
WE = £Sp(YilX) + (1 — &)E {Sp(Y1X0)1Zi, A} (3)
WAI _ & S &\ »
i =7z s(YilX) + |1 - =z E{Sp(Y|X)|Zi, A} (4)
13 1

Wi = %Sﬂmm) (5)
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WE = £:Sp(YilX0) + (1 — E)E [Sp(Y1X) X5, As) (6)
wh2 = %Sﬁmxi) + (1 - j) E{Sp(Y1X)|X1, As} . 7)
w3 = %sﬂmxa + (1 - j) E{Sp(Y|X)IXi, A} . (8)

The estimator A7, obtained by using VViI 1 is an IPW estimator where a subject’s valida-
tion probability 77 depends only on the category defined by (Z;, A;). Because E {(niz)_lf;‘i
Sp (1/i|Xl')} =E {Sﬁ ()G|Xi)} = 0, the estimator ﬁAn is approximately unbiased. The estima-
tor B obtained by using W2 is also an IPW estimator but with the validation probability
7; depending on the category defined by (Z;, A;) and the additional covariate Z7.

The estimator B; obtained by using W71 is the mean score estimator where the scores
Sp(Yi1X;) for those with missing outcomes are replaced by the estimated conditional
expectations given (Z;, A;). The estimator BE obtained by using W/f52 is the mean score
estimator where the scores Sg(Y;|X;) for those with missing outcomes are replaced by the
estimated conditional expectations given (X;, A;). The estimator ,352 is the mean score
estimator in Pepe et al. (1994). The mean score estimator is the MLE estimator employing
the EM-algorithm (Dempster et al. 1977) under the assumption that the auxiliary out-
come is noninformative in the sense that the probability model Py (A|Y, X) is unrelated to
B.

The estimator B4 obtained using Wi‘“ is the AIPW estimator augmented with the
estimated conditional expectation E {Sﬂ(YIXi)IZi,A,'}. The estimator BAZ obtained using
WiA2 is the AIPW estimator augmented with the estimated conditional expectation
E {Sﬂ Y'X;) |Xi,Ai}. The estimator ,éAg is obtained using WiAg. The VV;‘B differs from WiAz
in that the estimated validation probability is 77; instead of 77.

Suppose that 77 is an asymptotically unbiased estimator of 77 and that
E {Sﬁ(Y|Xi)|Zi,A,-} is asymptotically unbiased of E {Sﬂ (YX)) |Z,-,Ai}, where both 77 and
E {Sﬁ(Y|Xi)|Zi,Ai} are functions of (Z;,A;). Under MAR II, if one of the equalities,
?=n7and E[Sg(Y1X)|Z;, Ai]} = E[Sp(Y|X)|Zi, Ai]}, holds, then

7

E{ () Masp o} +E{ (1 - (7)) E[Sp (1X0 1z AL} = E{Sp X} =0,

which entails that the estimator 8,4; has the double robust property in the sense that it is a
consistent estimator of B if either 77 is a consistent estimator of 77 or E [S s(Y|X:) |Zi,Ai]
is a consistent estimator of E [Sﬁ(YlXi)|Z,',A,-]. Similarly, under MAR I, the estimator
,3,42 possesses the double robust property in that ﬁAz is a consistent estimator of 8 if
either ftf is a consistent estimator of nf orE [Sﬁ Y'X?) |Xi,Ai] is a consistent estimator of
E [Sﬁ (Y|Xi)|X,',AL~]. The estimator B43 has similar double robust property as Buao.

3 Method comparisons and asymptotic results

Let V(X;, A;) denote the subjects in V with values of (X, A) equal to (X;, A;), n" (X;, A;) the
number of subjects in V' (Xj, A;), and n(X;, A;) the number of subjects with values of (X, A)
equal to (X;, A;). When X and A are discrete and their dimensionality is reasonably small,
the probability 7; = P(§; = 1|X;, A;) can be estimated by 77; = nv(Xi,Ai)/n(Xi,Ai). The
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conditional expectation E {S 8 (Y1 X)) |X;, A,-} can be nonparametrically estimated based on
the validation sample,

E{Ss(YIXDIXp Ay = > Sp(%1X)) /n¥ (X Ad), ©)
JjeV(XiAi)

Under MARL E {S,g (Y|X;)|X,-,Ai} is an unbiased estimator of E {Sﬂ(YlX,') |Xi,Ai}. Now
we let V(Z;, A;) denote the subjects in V with values of (Z, A) equal to (Z;, A)), nV(Z;, Ap)
the number of subjects in V(Z;, A;), and n(Z;, A;) the number of subjects in the sample
with values of (Z, A) equal to (Z;, A;). A nonparametric estimator of 17 = P(§; = 1|Z;, A;)
is given by 77 = nY(Z;,A})/n(Z;, A;). A nonparametric estimator of E{Sp(Y'|X))|Z;, A} is
given by

E{Sp(YIXDI1Zp Ay = Y Sp(Y1X)) /n" (Zi Ab. (10)
jeV(Zi,Ai)
Under MAR 1II, (Y;,X;) is independent of &; conditional on (Z;A;), then
E {Sp(Y|Xi)|Zi, A} is an unbiased estimator of E{Sg(Y|X;)|Z;, A;}.

Proposition 1. Suppose that X = (Z,Z°) and A are discrete and their dimensionality is
reasonably small. Under the nonparametric estimators A7 = nV(Zi, A)In(Zi, AY), 7ti =

nV (X, A))/n(X;, A;) and the estimators for the conditional expectation defined in (9) and
(10), the estimators ,311, /351 and /3A1 are equivalent, and the estimators /312, ,352, ,3A2 and
ﬁAg are equivalent. However, the estimator ﬂAg is different from ,BAl unless Z{ is linearly
related to Z; in which case B is not identifiable.

The results of Proposition 1 are very intriguing since research has shown that the
AIPW and the mean score methods are more efficient than the IPW method. It is also
intriguing that the AIPW estimators ,1§A2 and BAg are actually the same estimators, not
affected by the validation probability. To further understand these approaches, we investi-
gate the asymptotic properties of these methods where (X, A) are not necessarily discrete.
Through the asymptotic analysis, we gain insights about what matters to the efficiency in
terms of the selections of the validation sample and the augmentation function.

Suppose that E {S,g(Y|X,-)|Xi,A,'} is a consistent parametric/nonparametric estima-
tor of E, {Sg(Y1X))|Xi, A}, where E, {Sp(YIX)|X;, Ai} is E {Sp(Y1Xy)|X;, Ai} or E{Sg(Y|
X)|Zi, Ai}. Let w(X;, A, ) be the parametric model for the validation probability 7;,
where ¥ is a g-dimensional parameter. We show in Corollary 2 that the nonparametric
estimator of 77 (X, A;, ¥) can also be expressed in the parametric form when (Xj, A;) are
discrete. Let 1o be the true value of . Under MAR I, the MLE 1& = (1&1, cees $q> of
¥ = (Y1,...,¥y) is obtained by maximizing the observed data likelihood,

n

[Tt e As 9o {1 — (X, Asy )5

i=1

The validation probability n; is estimated by 7; = 7 (Xi,A,', 1/A/> Then by the standard
likelihood based analysis, we have the approximation

J—vo=ntY (1Y) S +o, (1), (11)



Qi and Sun Journal of Statistical Distributions and Applications 2014, 1:23 Page 6 of 26
http://www.jsdajournal.com/content/1/1/23

where S;// and I" are the score vector and information matrix for ¢ defined by

S & — (X, Ai o)) o (X, Ais Yo)

(X A o) (1 — (X5, Ai ¥0)) wy

Y 1 (anoc,Ai, Ilfo)>®2} 12
7 (X, Ay o) (1 — (X, Ay, ¥o)) oy '

where a®? = ad'.
Consider the IPW estimator A; obtained by solving the estimating equation

n

£
U = Z ;‘isﬂ(mxi) .
i=1
and the AIPW estimator ﬁA based on solving the estimating equation
[ & EN -
Uy = Z [%Sﬂ il X)) + (1 — 7%) E {Sﬁ(Y|Xl‘)|Xi,Ai}:| . (14)

i=1
Theorem 1. Assume that Pg(Y|X) and (X, A, ) have bounded third-order derivatives
in a neighborhood of the true parameters and are bounded away from 0 almost surely,
both —E {(82/8;32) (logP,g(Y|X))} and IV are positive definite at the true parameters.
Then, under MAR 1,

n2 (B = B) =17 B2y Ql + 0p(D),
i=1

n2 (Ba— B) =BTy @ + 0y (1),
i=1

where [(8) = E {— (82/8,82) (logP,g(Y|X))} = Var (Sﬂ (Yi|Xi)),
Q! = &/mSp(YilX)) — E {7 2S5 (YilX0) (87 (Xi, Ay o) /09) ) V) ~1SY

and Qf = &/miSp(YilX) + (1 — &/71) Eq {Sp(Y|X))|Xi, Ai.

Both nl/? (BJ — ﬂ) and n/? (BA — ﬂ) have asymptotically normal distributions with
mean zero and covariances equal to I"*(B) Var (Q{) I7Y(B) and I71(B) Var (Q‘f‘) 1B,
respectively. Further,

Var (Q}) = Var (Qf) + Var(B; + O;) (15)

and

Var (Q{‘) — I(B) + Var ((1 - i) [Sp(Yil X)) — Eq {Sﬂ(YlXi)|Xi,Ai}}> . (16)
where O; = E {mi"%:Sp(Yi| X)) (0 (X, Ai, Y0) /09)'} (1) 'S} and Bi = (1—&/m)
Eo {Sp(Y1X)|Xi, Ai}.

Suppose that the validation probability 7; = P (§=1|X;,A;) depends only on
(Zi,A). That is, m; = nf = P(§ =1|Z;,A,). Suppose that 77; is the MLE of nf
under the parametric family ¥ (Z;, A;, ¥). Let ,BAI be the estimator obtained by solv-
ing (14) where the augmented term, E {S,g(Y|Xi)|Xi,Ai}, is a consistent paramet-
ric/nonparametric estimator of E {S,g(Y|X,')|Zi,Ai}. Let ,éAg be the estimator obtained
by solving (14) where E {Sﬂ(Y|X,-)|X,-,A,'} is a consistent parametric/nonparametric esti-
mator of E {S,g(Y | X7) |Xi,Ai}. The following corollary presents the asymptotic results for
two AIPW estimators of 8, one that corresponds to the augmentation based on a subset,
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(Z,A), of observed variables and the other that corresponds to the augmentation based
on the full set, (X, A), of the observed variables.

Corollary 1. Suppose that the validation probability m; = P (§; = 1|X;, A;) depends only
on (Z;, A;). Under the conditions of Theorem 1,

12 (Bar = B) > N (01748 + I BT B (B)), (17)

and
2 (B — B) 2> N(O.I7'B) + T BT (), (1s)

where 41(B) = E [((1 — nf)/nf) Var{Sg(Yi|X)|Zi, Ai}| and Ta2(B) = E[((1 — #f)/7f)
Var {S,g(YiIX,-)IXi,Ai}]. The asymptotic variance of Baa is smaller than the asymptotic
variance of ,3,41 if the covariates Z; are a proper subset of X;.

Suppose that (Z, A) are discrete taking values (z, ) in a set Z of finite number of values.
If the number of parameters in ¢ equals the number of values ¥,, = P& = 1|Z; =
z,A; = a) for all distinct pairs (z,a), then ¥ = {V,,} and n(z,a,¥) = VY4 Further,
W can be viewed as a column vector with 1 in the position for ¥, , and 0 elsewhere.
The information matrix /¥ defined in (12) has the expression,

1 A7 (z,a,v%0) (37 (z a, o)\
= : ’
ZZﬂ:P(z a) {n(z,a, Vo)1 —n(z,a,%0) OV < Iy ) }

where p(z,a) = P(Z; = z,A; = a). It follows that I is a diagonal matrix and its inverse
matrix is also diagonal. The MLE 1/72,“ = nY(z,a) /n(z,a) is in fact the nonparametric
estimator for ¥, , based on the proportion of validated samples in the category specified
by (z,a). The equation (11) can be expressed as

&Z,q - 7T(Z, a, I/j‘o) = n_l nv(z’ (l) — W(Z, a)T[(Z, a, wo)
p(z,a)

+op (n71?),

for (z,a) € Z.

By Threom 1, the possible efficiency gain of the AIPW estimator over the IPW estimator
is shown through the equation (15). The AIPW estimator is more efficient unless Var(B;+
O;) = 0. In particular, from the proof of Theorem 1, we have

n

n Y2, = n_l/ZZQ‘;‘ +0,(1) (19)
i=1
n n

n—l/ZUI — p1/2 Z Q,;X Vo Z(Bi + O0)) + 0,(1), (20)
i=1 i=1

where B; and O; are defined following (16). The following corollary presents the analysis
of the term n—1/2 Z?:l (Bi + O;) when (Z;, A;) are discrete to understand how efficiency
may be gained from the AIPW estimator over the IPW estimator.

Corollary 2. Under the conditions of Theorem 1, suppose that X = (Z,Z°) and (Z,A)
are discrete taking values (z,a) in a set Z of finite number of values. Suppose that the
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validation probability w; = P(&; = 1|X;, A;) only depends on (Z;,A;) and ,, = P& =
11Z; = z, A; = a) is estimated nonparametrically by vﬁw =n"(z,a)/n(z,a). Then

n
n12Y (0; + B)
i=1

_ & —n(z,a,Yo)
1/2 j _ -
E E e Vo) L (7 =z, A = a)

z,a j=1
[E(5551X)12 = 2.4; = a) — E{Spv)1X)17) = 2,75, 4y = a} |
(21)

By Corollary 2, (19) and (20), BA is more efficient than ﬁI unless Var{Sg(Yj|X)|Z; =
z,Aj = a} = 0 for all (z, a) for which P(Z; = z,A; = a) # 0.If X = Z and the validation
probability w; = P(§; = 1|X;, A;) is nonparametrically estimated with the cell frequencies
1}z,a = nY(z,a)/n(z, a), then /§A and ﬁ; are asymptotically equivalent.

Remark Consider the estimators of B obtained based on the estimating equation (1)
corresponding to different choices of W; given in (2) to (8). If (Z, A) are discrete and the
validation probability n7 = P(§; = 1|Z; A;) is estimated nonparametrically by the cell
frequency, then by Theorem 1 and Corollary 2, Ba1 and Bp1 have same asymptotic normal
distributions as long as E Sg(Y|X;)|Z;, Ai] is a consistent estimator of E[ Sg(Y'|X;)|Z;, A;].
But B4y is more efficient than ;1 as long as E[Sﬁ(YlXi)|Xi,Ai] is a consistent estimator
of E[ Sg(Y'|X;)|Xi, A;] since Var(B; 4+ O;) is not zero by (21). These results are not affected
by whether E[Sg(Y|X;)|Z;, A;] and E[Sg(Y|X;)|X;, A;] are estimated nonparametrically
or based on some parametric models. In addition, by Theorem 1, Corollary 1 and 2, 43
and 312 have the same asymptotic normal distributions as long as E [Sp(YIX)|Xi, Ail is a
consistent estimator of E[ Sg(Y|X;)|X;, A;].

4 Poisson regression using the automated data with missing outcomes
Many medical and public health data are available only in aggregated format, where the
variables of interest are aggregated counts without being available at individual levels.
Many existing statistical methods for missing data require observations at individual lev-
els. Applying the missing data methods presented in Section 3, we derive some estimation
procedures for the Poisson regression model with missing outcomes based on auxiliary
outcomes and a validated sample for true outcomes. Further, we show that, by stratifying
based on a set of discrete variables, the proposed statistical procedure can be formulated
so that it can be used to analyze automated records which do not contain observations at
individual levels, only summarized information at categorical levels.

Let Y represent the number of events occurring in the time-exposure interval [0, 7] and
Z the covariates. We consider the Poisson regression model,

P(Y =y|Z,T) = exp {-Texp (B Z)} {T exp (B'2) '/, (22)

where Z is a vector of k + 1 covariates and f a vector of k + 1 regression coefficients.
In practice, the exact number of true events may not be available for all subjects. We
may instead have the number of possible events, namely, the auxiliary events. For exam-
ple, in the study of vaccine adverse events associated with childhood immunizations, the
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number of auxiliary events A for MAARI is collected based on ICD-9 codes through hos-
pital records. Further diagnosis may indicate that some of these events are false events.
The number of true vaccine adverse events, Y, can only be confirmed for the subjects in
the validation set V. Suppose that Z is the vaccination status, 1 for the vaccinated and 0
for the unvaccinated. Then, under Poisson regression, exp(p) is the relative rate of event
occurrence per unit time of the exposed versus unexposed. We assume that the num-
ber of automated events A can be expressed as A = Y + W, where W is the number of
false events independent of Y conditional on (Z, T). Suppose that W follows the Poisson
regression model

P(W=w|Z,T) =exp{—Texp(y'2)} {Texp(y'2)}"/w), (23)

where y' = (ag, ai, y1, > Vk—1)-

We apply the missing data methods introduced in Section 3 on model (22). The vari-
ables (Z;, T;, Y;, A;) are observed for the validation sample V and (Z;, T;, A;) are observed
for the nonvalidation sample V. While the covariate Z can be considered as categorical,
it is natural to consider the exposure time T as a continuous variable. We assume that the
validation probability depends only on the stratification of (Z, A). That is, the validation
sample is a stratified random sample by the categories defined by (Z, A). Of those estima-
tors discussed in Section 2, there are only two different estimators, ,311 and ,éAz. We show
in Section 4.3 that the proposed method can be formulated so that it can be used to ana-
lyze the automated records with missing outcomes. First we derive the explicit estimation

procedures for ,311 and 3,42 and their variance estimators under model (22).

4.1 Inverse probability weighting estimation

We adopt all notations introduced in Section 3. In particular, let 77 = P(§ = 1|Z;,A))
and 717 = nV(Zi,Ai)/n(Zi,Ai). Let X = (Z,T) and X; = (Z;,T;) to be consistent
with earlier notations. The score function for subject i under model (22) is Sg(Y;|X;) =
Z(Y;—T;exp(B'Z;)). The estimator B is obtained by solving > ", (&;/77)Sp(YilX;) = 0,
where Sg(Y;1X;) = Z{(Y; — T;exp(y'Z;)). By Corollary 1, JaBn — B) converges in dis-
tribution to a normal distribution with mean zero and the variance matrix I~'(8) +
I7X(B)Za1(B)I 1 (B), where S41(B) = E[((1 — 7f)/mf) Var {Sp(Yi|X))|Zi, Ai}].

The information matrix I(8) = E(Z;Z/T;exp(B'Z)) = ) ,P(Z; = z)zZ exp(B'z)
E(T;|Z; = z) can be estimated byj(,é) which is obtained by replacing 8 with ,311, P(Z; =2z)
by the sample proportion of the event {Z; = z}, and E(T;|Z; = z) with the sample average
exposure time for those with covariates Z; = z. The matrix X 41(8) can be estimated by

A o . 1-p%a,z) —
SaB) =) pa, D Say SO =aZ =2, (24)
a,z ’
where p(a,z) is the estimator of P{A; = a,Z; = 2z}, p'(a,z) is the estimator of
Pli € VIA; = aZ; = 2z}, and \//ﬁ{Sﬂ(YlXﬂA :a,Z:z} is an estimator of

Var {S,g Y1 X5) |Zi,Ai}] which is derived in the following.

Since A is observed for all subjects, W can be determined if Y is known, and unde-
termined otherwise. The IPW estimator, 1, of y can be estimated by solving the
equation Y 7 ,(&/77)S, (WilX;) = 0, where S, (W;|X;) = Z{(W; — Tiexp(y'Z))).
The conditional distribution of Y given A = a, T, and Z = z is Binomial (4, p,),
where p, = exp(8'z)/(exp(B'z) + exp(y’z)). Since this conditional distribution does
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not depend on T, the outcome Y and T are conditionally independent given (4, Z).
Therefore, Var {S,g(Y|X) |A,Z} =77 {Var(Y|A,Z) + exp (2,3’Z)Var(T|A,Z)} . The vari-
ance Var(Y|A = a,Z = z) can be estimated by ap,(1 — p,), where p, = exp(/é’z)/
[exp(B') + exp(7'2) |, and Var(TIA = 4,2 = 2) = E(T?14 = 0,7 = 2) — (E(TIA =
a,Z = z)}? can be estimated nonparametrically using the first and the second sample
moments conditional on each category withA = aand Z = z.

4.2 Augmented inverse probability weighted estimation
Under the assumption that W follows the Poisson regression model (23) and is inde-
pendent of Y conditional on (Z,T), E{Sp(Y[X)|Z T,A} = AZ o2 b2 . —
TZ exp (B'Z). Let E {Sﬂ(Y|Xi)IXi,Ai} be the estimator of E {Sﬁ(Y|Xi)|Xi,Ai} for a given
B by substituting y by its estimator 71 of Section 4.1. Then the estimator B is obtained
by solving
n & &
D 2258 (YilXo) + (1 - n) E{Sp(Y1Xp)|X;, Ai} =0. (25)
i=1 "% i
By Corollary 1, ﬁ(ﬁAg — B) converges in distribution to a normal distribution with
mean zero and the variance matrix where I~1(8) +1~1(8) Z42(B)I 1 (B), where X 42 (B) =
E[((l — niz)/nf)Var{Slg(Yi|X,‘)|XL',A,'}]‘ The information matrix I(8) can be estimated
by j(,é) given in Section 4.1. The conditional variance Var {Sﬁ(Y|X)|Z =z T,A= a} =
ap,(1 — p,)z®? can be estimated by ap,(1 — p,), where p, = exp(B'z)/(exp(B'z) +
exp(y’z)). It follows that ¥ 42(8) can be consistently estimated by

N . 1-p%a,z2) . N
Sa2B) =Y pla,2)————ap.(1 — p)z%,
s p¥(a,z)
where p(a, z) is the estimator of P{A; = a,Z; = z} and p"(a, z) is the estimator of P{i €
VIAi=a,Z; = z}.

4.3 Estimation using the automated data

This section formulates the missing data estimation procedure for (22) based on the auto-
mated (summarized) information at categorical levels defined by relevant covariates of
the model. In particular, we show that ,311 and /§A2 and their variance estimators can be
formulated using the automated data at categorical levels.

In many applications it is convenient to write Z = (1, Z(1), Z(2)) and 8 = (bo, b1,6"),
where Z(j) is the treatment indicator (Z;y = 1 for the exposed group and Z;) =
0 for the unexposed group) and Zy = (1, -+ ,nk—1) as the other covariates, and
0 = (61, ,6k_1) . For the applications involving the automated data records, we let
N1, -+ > Nk—1 be k — 1 dummy variables representing k groups. Without loss of generality,
we choose the kth group as the reference group, 71 =1, 72 =0, - - -, nx_1 = 0 for group
1,m=0,n=1- --,n_1 =0forgroup2,soonandn; =0,n =0, -+, N1 =0
for group k. Thus each value of Z denotes a category which can be represented by (/, m)
for/ =0,1and m = 1,--- , k. This correspondence is denoted by Z ~ (I, m) for conve-
nience. For/ = 0,1and m = 1,--- ,k — 1, category (/, m) is defined by Z with Z;, =/,
nm = land n; = 0forj # m,j = 1,...,k, and category (/, k) is defined by Z(;) = / and
nj =0forj=1,...,k — 1. Under model (22), the expected number of events for a sub-
ject in category (I, m) with the time-exposure interval [0, T] is T exp(by,), for / = 0,1 and
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m=1,---,k, where byx = bg + b1, box = by, b1, = by + b1 + 0,, and by,,, = by + 0, for
1 < m < k — 1. The parameter b; represents the log-relative rate of the exposed versus
the unexposed adjusted for other factors.

The following notations are used to show that the estimators of 8 and their variance
estimators can be calculated using the automated information at the categorical levels.
Let V(a,l, m) denote the set of subjects in V with (A = a, Z ~ (I, m)), V (I, m) for the
set of subjects in V with (Z ~ (I, m)), ngy,, for the number of subjects with (A = a,
Z >~ (I, m)), n,, for the number of subjects in V'(a,l,m), n;, for the number of subjects
in V(I,m), hatm = Naim/"N.,,» Yam for the number of events for subjects in V(a, [, m),
¥ for the number of events for subjects in V' (I, m), t,, for the total exposure time for
subjects with (A = a4, Z >~ (I, m)), £y, 4, for the total squared exposure time for subjects
with (A = a, Z >~ (I, m)), t;,,, for the total exposure time for subjects with Z >~ ([, m), oy,
for the number of automated events for subjects with Z >~ ([, m).

Estimation with /§11 using the automated data. The validation probability 77 can be
estimated by 1/x,;, when A; = a, Z; ~ (I,m). It can be shown that the estimating
equation for fj1 is equivalent to the following nonlinear equations for {by,, for [ =
0,1, m=1,---,k},

k
Z (Z Yalm*aim — ebim Z talm}\alm) =0,

m=1 \acA acA
(Z Yaimralm — ebim Z talm)\alm> =0,
[=0,1 \acA acA
forl=0,1landm =1,...,k— 1. When k > 1, the equations have no explicit solutions.

In the following, we show that the asymptotic variance of f; can be consistently esti-
mated by only using the automated information at categorical levels. The information
matrix is a (k + 1) x (k + 1) symmetric matrix given by

I(B) = E(Z:Z;T; exp(B'Z;))

Zz,m qim Zly(n=1 qim q11 +4o1 - q1r + qor
k k
Zm:l qim Zm:l qim q11 te qir
= | qu +qo1 q11 q11 +4qo1 - 0 ,
B qir + qor qir 0 q1r+q0r_

where r = k — 1 and ¢q;,, = E(T;ePmI{individual i in category (I, m)}). The consistent
estimator, I(B), of I(B) is thus obtained by replacing gy, with exp(l;lm)tlm /n.

Under model (23), the expected number of false events for a subject in category (I, m)
with the time-exposure interval [0, T] is T exp(dy,,), for /| = 0,1and m = 1, - - - , k, where
dix = ao + a1, dox = ao, dim = ao + a1 + v and doy, = ag + Y for 1 <m < k— 1. The
conditional distribution of Y given A = a, T, and Z >~ (/, m) is Binomial (a, p,,), where
Pim = exp(by,)/(exp(by,) + exp(dy,,)) for a > 1. Then Var(Y|A = a,Z >~ (I,m)) can be
estimated by apy,,, (1 — py,,), where py,, = ebim /(ei’lm + e;il'ﬂ), and Var(T|A = a, Z >~ (I, m))
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can be estimated by v, 1, = t201m/Haim — Eaim/ Ham)?. By (24) and the discussion that
follows, ¥41(8) can be estimated by

A A . 1—p%(a,l,m) . N
a1(B) = Z ola,l, m)WGlm{ﬂle(l = Dim) + Vaimh (26)
a,l,m ’
where p(a,l,m) = ngm/n, p*(a,l,m) = n’, /nu, and Gy, be the value of G; = z?z

when subject i belongs to the category (/, 7). Hence the covariance matrix of f7; can be
estimated by = (3) +11 (ﬁ) Sa1 (,BA)j’1 (B) using the automated data.

Estimation with /§A2 using the automated data. The estimating equations (25) are

equivalent to the following nonlinear equations for {b;,,, for [ =0,1, m=1,--- ,k},
k b eblm
Z Zyalm)\alm — ey, + ﬁ Al — Z aNgimaim =0,
m=1 laca evim + efim acA
blm
e
Z Zyalm)‘alm - eblm b+ ————— | %m — Z ﬂnalmkalm =0,
eblm —+ edlm
1=0,1 LaecA acA

forl=0,1landm=1,...,k—1.
Since Var {Sﬁ(Y|X)|Z ~(,m), T,A= a} = api(1 — piy) Gy La2(B) can be consis-
tently estimated by

1-—- ﬁv(a, l)m) ~

Sa2B) = bla,l,m) apim (L = Pim) G-

a,l,m

p" (a1, m)

Hence the covariance matrix of 3,42 can be estimated by 11 (,é) +11 (3) f)Az(ﬁA)j’l (/§)
using the automated data.

Remark In the special case where p(«, [, m) ~ 0 for « > 2, a much simpler formula for
the variance estimator of the log relative risk can be derived. For example in the vaccine
safety study, the adverse-event rate is very small. Let

k v
S COmA1mYomY1m AomA1mYomMy,,
m = v v v v o
Q0mYomMy,, + X1mY1mMy,, 1 AomYomMy,, + X1mY1mMy,,

Then an estimate of variance of by is given by

k
- = 1 1 1 1 1 1
Var(b1)=2w3n<—v++—v+>, 27)
=1 Yim nim Qlm Yom nom Xom

which is the weighted sum of the estimated variances for the estimated log relative rate of
the exposed versus the unexposed over k groups. The details of deviation are given in the

Appendix B.

5 A simulation study

We conduct a simulation study to examine the finite sample performance of the IPW esti-
mator A1 and the AIPW estimator B4. We consider the Poisson regression model (22).
The covariates Z; and Z; are generated from the Bernoulli distributions with the proba-
bility of success equals to 0.4 and 0.5 respectively. The exposure time T is generated from a
uniform distribution on [0, 10]. Given Z = (Z1, Z») and T, the outcome variable Y follows
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a Poisson distribution with mean T exp (by + b1Z1 + 6Z) where by = —0.5, by = —0.8
and 6 = —0.6, and W follows a Poisson distribution with mean T exp (ag + a1Z1 + yZ2)
whereag = —1.3,a1 = —1.1,y = —1. WesetA=Y + W.

Four models for the validation sample are considered. Under Model 1, the validation
sample is a simple random sample with probability w; = 0.4. Model 2 considers w; = 0.6.
In Model 3, the validation probability only depends on A through the logistic regression
model logit{m;(X,A)} = A — 0.5 where X = (Z, T). In Model 4, the validation probability
depends on A and Z; through the logistic regression model logit{m;(X,A)} = A—Z; —0.5.

Tables 1 and 2 present the simulation results for » = 50, 100, 300, 500 and 800. Each
entry of the tables is based on 1000 simulation runs. Tables 1 and 2 summarize the bias
(Bias), the empirical standard error (SSE), the average of the estimated standard error
(ESE), and the empirical coverage probability (CP) of 95% confidence intervals of A;; and
/§A2 for B = (bo, b1,0). We also compare the performance of the estimators ,311 and BAQ
with the complete-case (CC) estimator B¢ obtained by simply deleting subjects with miss-
ing values of Y;. As a gold standard, we present the estimation results for the full data
where all the values of Y; are fully observed. Table 1 presents the results under Model 1
and 2, and Table 2 shows the results under Model 3 and 4.

Table 1 shows that under Model 1 and Model 2, the bias of all estimators is very small at
a level comparable with that of the full data estimator. The bias decreases with increased
sample size and the increased level of the validation probability. The empirical standard
errors are in good agreement with the corresponding estimated standard errors, except
for the IPW estimator when # < 100 and # < 0.6. Among them, AIPW has the smallest
standard errors for all parameters and sample sizes concerned. The coverage probabilities
of the confidence intervals for by, by and 6 are close to the nominal level 95%. When
the sample size and the validation probability are both small, for example, # = 50 and
7 = 0.4, the IPW has large bias and is unstable but the AIPW still performs well.

Table 2 gives the results under Model 3 and Model 4. The bias remains small for ,311 and
Baz. The empirical standard errors are also close to the corresponding estimated standard
errors. The coverage probabilities remain close to the nominal level 95% for all IPW and
AIPW estimators. However, the complete-case estimator yields larger bias and incorrect
coverage probability because of the association between the validation probability and
the auxiliary variable A and/or the covariate Z;, in which case the missing is not missing
completely at random. The AIPW performs better than IPW with smaller standard errors.

6 An Application

A community-based, nonrandomized, open-label influenza vaccine (CAIV-T) study was
conducted in Temple-Belton, Texas during the 2000-2001 influenza season. The total
11,606 healthy children aged 18 months - 18 years were involved in this study and about
20% of them received a single dose of CAIV-T in 2000. The primary clinical outcome was
based on an nonspecific case definition called medically attended acute respiratory infec-
tion (MAARI), which included all International Classification of Diseases, Ninth Revision,
Clinical Modification diagnoses codes (ICD-9 codes 381-383, 460-487) for upper and
lower respiratory tract infections, otitis media and sinusitis. MAARI outcomes and demo-
graphic data were extracted from the Scott & White Health Plan administrative database.
For each visit, one or two International Classification of Diseases, Ninth Revision, Clinical
Modification diagnosis codes were listed. Visits for which asthma diagnosis codes alone



Table 1 Simulation comparison of the IPW estimator ,én, the AIPW estimator ﬁAz and the complete-case (CC) estimator ﬁc under various sample sizes and selection

probabilities
bo b,
n Bias SSE ESE CcpP Bias SSE ESE CcP Bias SSE ESE CcP
Model 1: z; = .4
50 IPW -0415 3561 1839 851 -2175 16737 3354 864 -1610 1.2201 2962 847
AIPW -0110 2213 1664 890 -0062 .3099 2873 943 -0186 3076 2551 929
CC -0246 .3398 2738 938 -1515 1.6082 4730 968 -.1038 1.1709 4187 .959
100 IPW -.0650 1815 1404 870 -0548 3120 2458 891 -0249 2653 2161 898
AIPW -0094 1376 1187 914 -0024 2284 .1988 926 0027 1994 1780 925
CcC -0240 1728 1685 948 -0086 3086 2981 960 0031 2556 2581 946
300 IPW -0368 0936 0874 931 -0209 1535 1460 946 -0022 1419 1286 929
AIPW -0027 0732 0712 946 -0028 1233 1165 940 0005 1130 1046 938
CC -0092 0919 0935 960 -0012 1627 1634 952 0040 1438 1432 952
500 IPW -0183 0698 0671 938 -0172 1159 1128 943 -0083 1069 0993 933
AIPW 0022 0566 0550 936 -0022 0956 0902 943 -0068 0867 0811 930
CC 0006 0704 0716 949 -0059 1268 1255 949 -0046 1135 1103 942
800 IPW -0126 0538 0527 942 -0134 .0862 0889 950 -0029 0759 0779 947
AIPW 0011 0433 0435 952 -0047 .0720 0713 956 -0020 0638 0640 951
CcC 0002 0562 0565 948 -0051 0974 0990 958 -0013 0844 0869 958
Model 2: z; = .6
50 IPW -0316 2079 1714 926 -0934 8426 3112 944 -0563 3320 2690 937
AIPW -0072 1723 1591 941 -0105 2893 2772 950 -0172 2653 2440 948
CC -0126 1973 1949 959 -0594 .8369 3512 967 -0278 3213 3044 .959
100 IPW -0366 1399 1259 926 -0420 2363 2192 944 -0100 2103 1911 925
AIPW -0121 1206 1133 941 -0107 2069 1921 944 0078 1764 .1700 940
CC -0142 1370 1345 947 -0216 2379 2370 961 0030 2103 2072 .949
300 IPW -0138 0742 0728 944 -0194 1267 1250 957 -0049 1064 .1096 964
AIPW -0030 0650 0651 948 -0044 1136 1093 949 0005 0960 0974 956
CcC -0017 0763 0759 946 -0118 1345 1328 951 -0035 1147 1169 957
500 IPW -0069 0571 0555 945 -0096 0946 0965 947 -0094 0866 0844 953
AIPW 0029 0495 0496 942 -0032 0856 0841 947 -0076 0757 0749 955
CC 0013 0577 0581 947 -0034 1024 1019 949 -0086 0906 0899 954
800 IPW -0072 0437 0438 954 -.0069 0754 0763 956 -0025 0692 0664 947
AIPW -0011 0401 0393 951 -0019 0693 0665 943 -0015 0626 0590 931
CC -0012 0452 0460 958 -0026 .0805 0806 952 -0024 0723 0709 952
Fulldata:z; =1
50 -0079 1510 1466 952 -0182 22691 2618 948 -0104 2264 2263 957
100 -0079 1068 1024 943 -0075 1841 1798 948 -0039 1560 1577 949
300 -0019 0596 0583 950 -0081 1032 1023 936 0001 0934 0898 932
500 0006 0452 0450 951 -0041 .0783 0788 950 0014 0656 0693 .960
800 -0004 0343 0356 951 0025 0612 0622 938 -.0006 0532 0547 955
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Table 2 Simulation comparison of the IPW estimator ,én, the AIPW estimator ﬁAg and the complete-case (CC) estimator ﬁc under various sample sizes and selection

probabilities
bo b,
n Bias SSE ESE CcP Bias SSE ESE CcpP Bias SSE ESE CcpP
Model 3
50 IPW 0081 1609 1502 949 -0034 5535 2790 954 -0116 2592 2400 963
AIPW -0070 1543 1486 950 -0134 2715 .2690 958 -0185 2364 2330 955
CC 0230 1529 1504 938 0798 5441 2835 940 .0648 2367 2414 952
100 IPW -0052 1145 1077 948 -0001 2073 2014 959 .0030 1789 1724 948
AIPW -0124 1077 1041 947 -0085 .1869 1840 957 .0050 1636 .1606 948
CcC 0221 1074 1054 939 1023 1830 1937 924 .0828 1625 1664 915
300 IPW -0011 0617 0614 951 -0044 1176 1157 952 .0019 1009 0993 953
AIPW -0023 0582 0588 956 -0051 1056 1036 954 0022 0936 0910 944
CC 0295 0577 .0596 924 1051 .1070 .1095 824 .0823 0925 0946 861
500 IPW 0018 0451 .0473 958 -0037 0853 0895 958 -.0069 0765 0767 945
AIPW 0009 0430 0452 957 -0032 0793 0798 947 -.0066 0689 0702 951
CcC 0317 0429 0459 903 1077 0788 0844 763 0737 0704 0730 839
800 IPW -.0006 0374 0375 951 -0030 0671 0708 962 .0004 0617 0605 946
AIPW -0003 0362 .0358 .949 -0031 0623 0631 954 -0012 0577 0554 935
CC 0315 0353 0364 863 1065 0630 0667 633 .0786 0568 0576 721
Model 4

50 IPW 0053 1627 1504 948 0825 3531 2832 913 -0057 2736 2405 948
AIPW -0085 .1549 1489 .950 -0122 2746 2752 .966 -0138 2395 2340 961
CC 2295 2640 .0855 531 4513 .3805 1760 517 2954 3285 1409 536
100 IPW -0050 1168 .1085 939 0481 2350 2130 922 .0016 .1884 1761 940
AIPW -0130 1083 1043 943 -0067 1920 .1885 950 .0066 1648 1613 949
CcC 0196 1077 1063 943 2010 1946 2087 820 .0900 1645 1702 910
300 IPW -0001 0630 0624 945 -0001 1323 1311 955 -0011 1043 1038 946
AIPW -0020 0588 .0588 951 -0052 1095 1059 952 .0012 0950 0913 931
CC 0271 0582 .0601 930 2020 .1060 1173 576 .0894 0939 0965 863
500 IPW 0012 0457 0480 951 -0007 0966 1010 966 -0054 0801 0799 948
AIPW 0006 0433 0453 956 -0010 0821 0813 941 -0059 0697 0704 950
CcC 0291 0434 0463 912 2047 0817 0903 364 .0815 0711 0745 820
800 IPW -0006 0381 0380 949 0004 0761 0794 967 .0000 0636 0630 947
AIPW -0002 0362 .0359 .949 -0016 0640 0641 955 -0014 0574 0555 942
CC 0288 0356 0367 885 2039 0644 0714 166 .0864 0570 0588 673
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were noted, without another MAARI code, were excluded. More details about this study
can be found in Halloran et al. (2003).

Any children representing with history of fever and any respiratory illness were eligible
to have a throat swab for influenza virus culture. The decision to obtain specimens was
made irrespective of whether a patient had received CAIV-T. The specific case definition
was culture-confirmed influenza. Table 3 taken from Halloran et al. (2003) contains infor-
mation on the number of children in three age groups, the number of children who are
vaccinated versus unvaccinated, the number of nonspecific MAARI cases, the number of
cultures performed, and the number of cultures positive for each group.

With the method developed in Section 4 for Poisson regression, we compare the risk
of developing MAARI for children who received CAIV-T to the risk for children who
had never received CAIV-T using the automated information provided in Table 3. The
number of nonspecific MAARI cases extracted using the ICD-9 codes is the auxiliary
outcome A, whereas the actual number of influenza cases Y is the outcome of interest.
Let Z; be the treatment indicator (1=vaccine and O=placebo). Let Zy = (n1,712) be the
dummy variables indicating three age groups, where n; = 1 if the age is in the range 1.5—
4, m = 0, otherwise, and 1y = 1 if the age is in the range 5-9, n2 = 0, otherwise. The
reference group is the age 10—18. The exposure time for all children is taken as T = 1 year.

Consider a Poisson regression model with mean T exp (bo + b1Z1 + 61n1 + 6212).
Using the IPW estimator ,311, the estimates (standard errors) are Z)o = —0.7659 (6p, =
0.1046), by = —1.5830 (83, = 0.5017), 6; = —0.5572 (64, = 0.2111) and H = —0.0199
(69, = 0.1472). The age-adjusted relative rate (RR) in the vaccinated group compared
with the unvaccinated group equals exp(l;l) = exp(—1.5830) = 0.2054, which means
that the rate of developing MAARI for the vaccinated group is 20% of that for the unvac-
cinated group. In terms of the vaccine efficacy VE = 1 — RR = 0.7946, this represents
about 80% reduction in the risk of developing MAARI for the vaccinated group compared
to the unvaccinated group. The 95% confidence interval of RR obtained by using the delta
method is (0.0768, 0.5490), showing clear evidence that the vaccinated children have less
risk of influenza than the unvaccinated children. The 95% confidence interval for VE is
(0.4510,0.9232).

Table 3 Study data for influenza epidemic season 2000-01, by age and vaccine group (from
Halloran et al. 2003)

Age group Vaccine No. of No. of MAARI No. of MAARI No. of positive
(years) children cases cases cultured cultures
1.5-4 CAIV-T 537 389 16 0
None 1844 1665 86 24
5-9 CAIV-T 807 316 17 2
None 2232 1156 118 53
10-18 CAIV-T 937 219 19 3
None 5249 1421 123 56
Total CAIV-T 2281 924 52 5

None 9325 4242 327 133
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Using the AIPW estimator BAz; the estimates (standard errors) are 1;() = —2.0703
(65, = 0.0851), by = —1.8072 (6, = 0.3786),6, = 0.6452 (65, = 0.1966) and f, = 0.6235
(66, = 0.1265). The age-adjusted relative rate (RR) is exp(l;l) = exp(—1.8072) = 0.1641.
The estimated VE is 0.8359 and the 95% confidence interval is (0.6553,0.9219). The esti-
mator ;§A2 yields smaller standard errors and confidence intervals with more precision
than using ,311.

This data was analyzed by Halloran et al. (2003) and Chu and Halloran (2004). Assuming
the binary probability model for Pg(Y|X) where X includes the vaccination status and age
group indicators, and using the mean score method, Halloran et al. (2003) found that the
estimated VE based on the nonspecific MAARI cases alone was 0.18 with 95% confidence
interval of (0.11,0.24). The estimated VE by incorporating the surveillance cultures was
0.79 with 95% confidence interval of (0.51,0.91). Halloran et al. also reported sample-size-
weighted VE= 0.77 with 95% confidence interval of (0.48,0.90). Chu and Halloran (2004)
have developed a Bayesian method to estimate vaccine efficacy. By Chu and Halloran
(2004), the estimated VE was 0.74 with 95% confidence interval (0.50, 0.88) and estimated
VE by the multiple imputation method was 0.71 with 95% confidence interval (0.42, 0.86).

Our estimates of the vaccine efficacy are in line with the existing methods. The esti-
mator ,3,42 yields smaller standard errors and therefore confidence intervals are more
precise than the existing methods of Halloran et al. (2003) and Chu and Halloran (2004).
Compared to the binary regression, Poisson regression model allows multiple recurrent
MAARI cases for each child. Although for this particular application the exposure time is
fixed at one year time interval, the proposed method is applicable to the situation where
the length of exposure time may be different for different children.

7 Conclusions

In this paper, we investigated the mean score method, the IPW method and the AIPW
method for the parametric probability regression model Pg(Y'|X) when outcome of inter-
est Y is subject to missingness. The asymptotic distributions are derived for the IPW
estimator and the AIPW estimator. The selection probability often needs to be estimated
for the IPW estimator, and both the selection probability and the conditional expectation
of the score function needs to be estimated for the AIPW estimator. We investigated the
properties of the IPW estimator and the AIPW estimator when the selection probability
and the conditional expectation are implemented differently.

An AIPW estimator is said to be fully augmented if the selection probability and the
conditional expectation are estimated using the full set of observed variables; it is par-
tially augmented if the selection probability and the conditional expectation are estimated
using a subset of observed variables. Corollary 1 shows that the fully augmented AIPW
estimator is more efficient than the partially augmented AIPW estimator. Corollary 2
shows that the AIPW estimator is more efficient than the IPW estimator. However, when
the selection probability depends only on a set of discrete random variables, the IPW
estimator obtained by estimating the selection probability nonparametrically with the
cell frequencies is asymptotically equivalent to the AIPW estimator augmented using
the same set of discrete random variables. Proposition 1 shows that the IPW estimator,
the AIPW estimator and the mean score estimator are equivalent if the selection prob-
ability and the conditional expectation are estimated using same set of discrete random
variables.
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Applying the developed missing data methods, we derived the estimation procedures
for Poisson regression model with missing outcomes based on auxiliary outcomes and a
validated sample for true outcomes. By assuming the selection probability depending only
on the observed discrete exposure variables, not on the continuous exposure time, we
show that the IPW estimator and the AIPW estimator can be formulated to analyze data
when only aggregated/summarized information are available. The simulation study shows
that for a moderate sample size and selection probability, the IPW estimator and AIPW
estimator perform better than the complete-case estimator. The AIPW estimator is more
efficient and more stable than the IPW estimator. The proposed methods are applied to
analyze a data set from for an influenza vaccine study conducted in Temple-Belton, Texas
during the 2000-2001 influenza season. The data set presented in Table 3 only contains
summarized information at categorical levels defined by the three age groups and vacci-
nation status. The actual number of influenza cases (the number of positive cultures) out
of the number of MAARI cases cultured, along with the number of MAARI cases, are
available for each category. Our analysis using the AIPW approach shows that the age-
adjusted relative rate in the vaccinated group compared to the unvaccinated group equals
0.1641, which represents about 84% reduction in the risk of developing MAARI for the
vaccinated group compared to the unvaccinated group.

Appendix A
Proof of Proposition 1.
Since
n
DA —&ESs(YIX)IZi A} =Y > SpIXp/n (Zi Ai
i=1 ieV jeV(ZiAi)
=" [ @V @ Ap} spviixo,
eV
we have
1%
(Zi Ai) &
wE! = ool ) s,k = Y LX) = S Wi (Al
Z ZV< +nV(Zi,Ai)) 5(Y1X) 2}: 7258 (XD = le (A1)

This shows that the mean score estimator ,351 is the same as the IPW estimator ,éIl.
Further, since

n

5 <1 - j) E(Sp(Y1X)1Z5 Al
i=1 i

B SpGIX) ¥ (ZiAd) Sp(Y1X))
-2 2 n¥(Zi, Ay) §nv<z,-,AA> 2 n¥(Zi, Ay)

ie\_//€V(Zi»A‘) Y jev(zuA

n (Zl,A) nV(Zi,Ai) B
Z nV(Z:, A; )Sﬂ(YzLXz) - ZV mSﬁ(YAXZ) =0,

we have Y7, WAL = Y% | W', Thus the AIPW estimator S41, the [IPW estimator A,
and the mean score estimator ,351 are equivalent to each other.

Page 18 of 26
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Note that

n

3 <1 _ j) S (Y1X0) X, A

i=1

Yy Sp(Yj1X) ZnWZi,Ai) 3 Sp(Y1X))
- VX, A V(7z. A. ViX. A
=y Kk SV (2 Ay Y (X, A

X, A; V(X A) nV (Zi, A
=Z”( D $p(¥ilX)) — Z”( 21 el v

n¥ (Xi, Ai) nV(X;, A) nV(Z, A
_ n’ (X, Ap) V(ZL',Al') -
Z ! VX, A nV(Zi, A } Sp(YilXy), (A.2)

which is not zero unless Z7 is linearly related to Z; and in this case g is not identifiable.
Hence the AIPW estimator ,3A2 is different from the AIPW estimator ,3,41.
By (A.1) and (A.2), we have

n(ZpAi) | onV (XA nV(Z, A)
wi? = - Sp(Y1X;
2V iezv{nV(zi,Ai)UV(XbAi) W7 2y | PO

nV (X, Ai) -
B Z{ (X A)}Sﬁ(y"'x“) = Wi

eV i=1

Following the same arguments leading to (A.1), we also have Y I ; WiEz =31, Wilz.
Hence, the estimators /§12, ,352 and /§A2 are equivalent. By following the steps in (A.2),
we also have > 7, ( - —) {S,g(Y|X)|Xl,A } = 0. Hence, /§A3 is the same as 312.
Therefore, these are essentially two different estimators. O
Proof of Theorem 1.

Applying the first order Taylor expansion, 77; — 7; = (07 (X;, Aj, ¥o)/0v) (1@ — WO) +
0p (n_l/z). From (13), we have

n V2 = n? Z Si S,g(Y|X) —n 12 Z .g,sﬂ(yp() (A.3)

The second term of (A.3) is

*I/ZZ slsﬂmX)
_ _ Bﬂ(Xi,Ai;'ﬁO) ' ~
n 2y TP ESp(YilX) () ¥ — Yo
Z ) (7=wm)
= {2y (L) L (5 w) +o,0 (A

By (11), (A.3) and (A .4), we have

n n
_ _ &i _
w2 = /2 § 1 (7125,3(1@|X,-) — o,-) +op,(1) =n"2Y " Qf +0p(D).
=

i=1
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Now consider the AIPW estimator ﬁA based on solving the estimating equation (14).
For simplicity, we denote E, {S,g(Y|Xi)|X,-,Ai} by E; and E {Sﬂ(Y|Xi)|Xi,Ai} by Ei. We
note that

n

_ _ si El
n 12Uy =n I/ZZ [msﬂ(mxi) + (1 - n) El}

il’ L

71/22 [(’5’ i) {Sp(YilX)) — Ei} + (1 - i) (E" _El')} '

1

Suppose that 77; and Ei are the estimates of ; and E; based on some parametric or non-
parametric models. Then it can be shown using Taylor expansion and standard probability
arguments that the second term is at the order of 0,(1) under MAR 1. Hence

2y = 25 s v AYS
n V2 Uy =n ;[msﬂ(m)@H(l )E,}+op(1).

T

It can be shown that under MAR L, n~191l;/8f —=> 1(8) and n— 194 /3 —> I(B). By

routine derivations, we have

2 (= B) = B 2U + 0, (1) = T By 12 Y Qf + 0, (1),

i=1

n'2 (Ba = B) = I B U+ 0p() = I B2 Y @ + 0, (1),

i=1

By the central limit theorem, both n1/2 </§1 — ,B) and n'/2 (ﬁA — ,B) have asymptotically
normal distributions with mean zero and covariances equal to I~!(8)Var (Q{ ) IY(B) and
I 1(B)Var (Qf‘) 1B, respectively.

Next, we examine the covariance matrices Var (Q{ ) and Var (Qf‘) to understand the effi-
ciency gain of ,3A over /§1. Note that Q{ = &/m;iSp(Yi|X;) — O; and Qf‘ =&/m;iSp(YilX;) +
(1—&;/m;)E;. Denote A; = & /7;Sp(Y;1X;) and B; = (1—&;/m;)E;. Then QY = Q! —B;— 0.
Under MAR I, Cov (Q4,0;) = E(Q*0;) = E{E(Q!I&,X:,A)O;} = E{E;0;} = E{E;
E(0;]X:, A7)} = 0, and

o=l 1-2)a] - £)

i T

. [(1 =) } : [(1 -5) sﬁmxim]

+E|:<1 - g,) Sﬂ(Y|X)E:|

Hence, Cov (Q‘;‘,Bi + O') = 0. It follows that Var(Ql{) = Var (Q‘;‘) + Var(B; + O;). Since
Qf‘ = Sp(Yi| X)) — ( — —) {Sﬂ(Y | X)) — } and the two terms are uncorrelated under
MAR I, we have Var (Q{‘) = Var (Sﬂ(Yi|Xi)) + Var ((1 —&/mp) {Sﬂ(Yi|Xi) — Ei}), where
the first term equals /(8). This completes the proof of Theorem 1. O
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Proof of Corollary 1.
Let QM = &/n7Sp(Yil X))+ (1—&/nP)E {Sp(Y|X))IZi, A}, and Q* = & /nSp(Yil X))+
(1 —&/n7) E{Sp(YIX))|Xi, Ai}. By (16),

Var (Q;.‘“) = Var (Sp(Yi|X)) + Var ((1 - j’) [Sp(Yi1X)) — {Sﬁ(Y|Xl')|Zi,Ai}]),

4

Var (Q?) = Var (S5(Yi|Xp) + Var ((1 - 5’) [Sp(YiIX0) — {Sﬂ(Y|Xi)|Xi,Ai}]> :

1

The second term of Var (Qf“) equals X 41(8) and the second term of Var (Q‘;‘Z) equals
2 42(B). Then it follows from the main results in Theorem 1 that (17) and (18) hold.
Also by Theorem 1, the difference in the variances of Q' and QZAZ contributes to the

difference in the asymptotic variances of ﬁAl and ,3,;2. Since E {(1 - “;‘i/nf)z |)/i,Xi,Ai} =
E {(1 — g/n7) |X,,A,-} = (1 - 77)/? under MAR,

1—nf

Y42(B) = E( Z
T

{E {S%(Y,»|Xi)|Xi,AI-] —[E {Sﬂ(Y|Xi)|XixAi}]2})
_F (1_” [E|s3cixoizi,a:) ~ [ {Sﬂ(Y|Xi)|Zi’Ai}]2})

1—rm;
_E —

1
= Za1(8) —E(

[[E{ssrixolx, A - [ {Sﬁ(Y|Xi)|Zi,Ai}]2})

— T var ([E {Sp(Y1X0)1 X5, Ar} ] |Z,,A,-)) ,

i

which is less than X 41 (B) if the covariates Z; is a proper subset of Xj. O

Proof of Corollary 2.
Consider the definitions of B; and O; given following (16). We note that

o (Zi, Ai, Yo) )/
oY }

=E [m—lE {Sp(YilX))1Zi, A} (

E {”ilsﬁ(Yi|Xi) (
87[(Zi1Al': wo) >/
Y }

= p@aym Nz a,Vo)E {Sp(Y|X)|Z = 2,A = a} (

z,a

87[(2, a, 1p()))/
Iy ’

and

_1/2 st _ n_l/z (g - 7T(Zi>Ai) WO)) aT[(ZL',Ai, 1/f0)
— 7(Zi, Ai, Yo) (1 — 7 (Z;, Ai, ¥0)) oy

_ anl/Z Z (& — 7z a,v0))I(Zj =z,Aj = a) dn(z,a, Yo)

j=1 n(z,a, w())(l —7T(Z,6l, WO)) 81// ’
From the discussions preceding Corollary 2, ¥ = {y,,} and n(z,a, V) = ¥4, where
Yo = P& = 1|Z; = z,A; = a) for all distinct pairs (z, ). Hence, %f;’wo) is a column
vector with 1 in the position for v/, , and 0 elsewhere. And IV is a diagonal matrix and its

inverse matrix is also diagonal.
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We have

n , ;
on(Z;, A, o

n1/2 Z O, =E {”i_lsﬂ(Yi|Xi) (W) } (1111) 1,-1/2 Zs;p

i=1 P

= Y E[S(YI0|Z =24 = a —1/22M1(Z]:Z,Aj=a)’

c & wza o)

and

1w _ (& — m(Zi, Ap)
1/2 L 1/2
! ZB‘_ Z T a Ay

— 12 Z & —n(Zi,A; ))

< Z A E{Sp(Yi1X)|Xi, A}

7[(21 a, 1pO)

zn-wz% TEN) (o = @) E|Ss 0017 = 275y =]

Then (21) holds. It follows that ,3A is more efficient than ,31 unless Var{Sg(Y;|X))|Z; =

z,Aj = a} = O for all (z,a) for which P(Z; = z,A; = a) # 0.

Appendix B

Proof of the simplified variance formula (27)

The information matrix I(8) isa (k + 1) x (k 4+ 1) symmetric matrix given by

>t dim anzl qim q11 +4qo1 - - q1r + qor
k k
Y1 dim D1 Dim Q11 qir
I(bg, b1,0) = | 911 t+4qo1 qi1 qiu1 +4qo1 -+ 0
B q1r + qor qir 0 q1r+q0r_

where r = k — 1 and ¢, = E(T;e’™I{individual i in category (I,m)}). For ease of
presentation in the following, we drop the augments (bg, b1,0) and use I for I(bg, b1,0).

Let I;; be the cofactor of the (i, j)th element of 1.

First we need to find the elements on the second row of the information matrix
1(bg, b1,0). Note that for a matrix A, ((aij)y,xn)’l = (Aj))nxn/|Al, where A;; is the cofactor
of a;j in the matrix A and |A| is the determinant of A. Also note that for a block matrix

Bi1 B
g (BB
By1 By
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the determinant |B| = |By;||B11 — 31232_21321|~ We have

k—1
1l = [T @um+ gom
m=1
1 k—1 k—1
Zlm qim Z]r(nzl qim Zl:O Zm:l qim Zm:l q1m
k k B k-1 k=1 (qum)?
Zm:l qim Zm:l qim m=191m m=1 qlzllJrqOm
k-1
q1k + qGok q1k
= H(qlm + qom) + k=1 qomqim
el ik qik m=1 q1,u+qom
k k qom4q1
= H(qlm +q0m) &7
qim + qom

m=1 m=1

and

anﬂ qim 911 + qo1 - q1r + qor

q11 q11 +4qo1 - - 0
Iy = - . ) )
qir 0 “ q1r + qor
k—1 k k—1
= - l_[ (q1m + qom) Z qim — Z qim
m=1 m=1 m=1
k—1
= —qik l_[ (G1m + qom)-
m=1

Hence, the (2, 1)th element of I ! is

(1—1) _ 1271 __ qik
| W(q1k + qor)

where W = Zl:nzl qomqim/(Gim + qom)-
To calculate (2, 2)th element of I~1, we have

me 9im 911 + 4901 - q1r + qor

q11 + qo1 411 +qo1 - - 0
Iy = ) ) . )

q1r + qor 0 < q1r + qor

1

k—1 k—1 k
[T@m+a0m) | D aim =D aim | =[] @m + gom)-
m=1 ILm m=1

=0 m=1
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Hence, the (2,2)th element of I is (I™1),, = Inp/|I| = 1/W.
To calculate (2, 3)th element of /™!, we have

> 1m Gim an:l Tim q12 +402 - - q1r + qor
q11 + qo1 q11 0 e 0
Ly =—|q2+4q02 412 qi2+qo2 -+ 0
q1r + qor qi1r 0 < qir + qor
k-1 k
I 171
= - H(q1m+q0m) ( Zlmqm Zm 14 m)
2 q11 + 4qo1 q11
_ Yrro @im + Gom) Ynh qim
0 0
k-1
= — 1_[ (q1m + qom) (qoxkq11 — q1kqo1)-
m=2
Hence
(I V) = by _ q11 . q1k '
17| W(q11 +4q01)  W(qix + qok)

To calculate (2, 4)th element of 1!, we have

Zl,m qim an:l qim q11 +4o1 913 + 4903 -+ q1r + qor
q11 + qo1 qi1 q11 + qo1 0 e 0
; q12 + qo2 q12 0 0 e 0
2= q13 + qo3 q13 0 q13 +qo3 - - 0
q1r + qor q1r 0 0 <o q1r + qor

By switching the 2nd and the 3rd row, we have

Zz,m qim Zﬁqzl qim 911 + qo01 913 + 403 -+ q1r + qor
q12 + qo2 q12 0 0 e 0
! L |41+ qon qu q11 + qo1 0 E 0
%= 13+ qos q13 0 q13 +q03 - - 0
q1r + qor qir 0 0 “ q1r + qor
Hence
I
(1—1)24 _ 124 _ q12 T qik .
] Wi(qi12 +q02)  W(qikx + qox)
In general, to calculate I5(,42) for m = 1,---,k — 1, we can obtain a matrix with a

(k —2) x (k — 2) diagonal right lower block by switching rows of I5(;;42) even number of
times when m is odd and by switching rows odd number of times when m is even. Then

similar to calculating (I _1)2 4, we have

(1_1) _ qim + 91k
2m+2) W (qim + qom) W (qik + qox)

Page 24 of 26



Qi and Sun Journal of Statistical Distributions and Applications 2014, 1:23 Page 25 of 26
http://www.jsdajournal.com/content/1/1/23

For/ = land 1 < m < k, the (i ))th element of Gy, is g5 = 1 for (i,j) =
(1,1),(1,2),A,m+2),(2,1),(2,2), 2,m+2),(m+2,1),(m + 2,2), (m + 2, m + 2), and
gij = 0 elsewhere. We have the (2, 2)th element of / “1G,, I as

()50 + ) )0y + 20 )0 (s

F2(7) g (1) sy + 2T )y ()

_ (‘10’")2

W2\ qim +4qom)
Sincefor/ = 0and1 <m < k,gj = 1for (i,)) = (1, 1), (L, m + 2),(m + 2,1),(m +
2,m + 2),and g;j = 0 elsewhere, in this case the (2,2)th element of I71Gy, IV is

N3+ T D3 ez + 20 DT Dagmia)
= (U™ D1 + T Dapme2)?

1 ( qim )2
W2\ qum + qom)

Hence the (2, 2)th element of the asymptotic covariance matrix of B is given by szl =
1/W + U/W?, where

1—p"(a,l,m) < q4a-hm )2
u= O[,l,Wl — 1-— _— .
Z o( ) ,OV(Oé,l, ) Pim( Pim) dom + qm

a,l,m
Note that P(Y; = 1|A; = 1,i € category (/,m)) can be estimated by y;,,,/n}, and p(l, m)
by &, /n. Thus gy, can be estimated by (e, /1) (Vim/n},,)- Then we can estimate W by
W = n! an:l A0 mYomY1m/ (QomYomMy,, + A1mY1mhy,). By replacing pZm with
ny,./%m and py, with yg, /n; , we can estimate U by

-2
A _ Ay — 1y, Vi ny, =y Ya-i ! Yo,
u=nt E A m - b 2 b m d(1-hm i L A1m vm + oom vm

v v v
Im im o o n(l—l)m 1m om

v oV
P v Qom—,— + Qom — Hg,Hoy v Xlm—,
m=1 1m 1m Om Om 1m

k
_n_l Z I:alm_nlllm nlim_ylm JYom n(l;m_yom ylmi|

-2
Yim Yom Yim Yom
X\ A1m——%m —, A~ — + Qom ™,
n

1m Om 1m 0m

:n—li[(l_ul_nﬁm>+(1_1+1_n6m>}
= L\yim i, Gm mYim Yom My, Com  XomYom

2
% ( A1mY1m%0mYom )
ALY 1mMyy, + COmYomM]

From W and {I, we obtain an estimate of ab21 as follows

k 2
1 1 1 1 1 1 1 A1 mY1momYo
I e
w Yim ny,, A1m Yom o Qom A1mY1mMNg,, + ComYomMny,,
|:_ nlim _ ”Bm ] ( X1mY1mA0m)0m )2
A1mY1m AomYom almylmngm + aOm}’Om”]{m

m=
L_L_*_L_FL_ 1 +L)i| ( A1mY1m%omYom )2
Yim nll)m %m Yom "(‘Sm Aom Ollmylmngm + Ol()myomn‘{m ’
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The variance of IA91 is estimated by Var (Bl) = n_lc}bzl. O
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