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Abstract

In this paper we use Cox’s regression model to fit failure time data with continuous
informative auxiliary variables in the presence of a validation subsample. We first
estimate the induced relative risk function by kernel smoothing based on the
validation subsample, and then improve the estimation by utilizing the information on
the incomplete observations from non-validation subsample and the auxiliary
observations from the primary sample. Asymptotic normality of the proposed
estimator is derived. The proposed method allows one to robustly model the failure
time data with an informative multivariate auxiliary covariate. Comparison of the
proposed approach with several existing methods is made via simulations. Two real
datasets are analyzed to illustrate the proposed method.
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1 Introduction
In epidemiologic studies, the exposure variable vector X is often too difficult or too
expensive to measure on the full cohort, whereas an auxiliary variable vector W for X
can be easily measured for all subjects in the study cohort. For example, in a large scale
nutritional study, the PIN Study (Savitz et al. 2001), it would be prohibitively expen-
sive to obtain the exact dietary iron intake on each individual recruited. Instead, a self
administered quantitative food questionnaire is conducted on all subjects where a crude
assessment of iron intake is obtained. The true exposure, the blood serrum ferritin con-
centration, is only assayed for a validation set consisting of a small subset of the full study
cohort. Although the true covariates are missing for most individuals, the existence of
some surrogates or auxiliary measurements conveys information about X and serves as
common proxy measure. Utilizing the available auxiliary information to improve the effi-
ciency of the effects estimation and in turns to increase the power of the study is critical
for the success of the studies. In this paper, we study censored failure time regression with
a continuous auxiliary covariate vector.
A variety of authors have contributed their work to this field. Related works include

Prentice (1982), Pepe et al. (1989), Lin and Ying (1993), Hughes (1993), Lipsitz and
Ibrahim (1996), Zhou and Wang (2000), Fan and Wang (2009), Liu et al. (2010), etc. In
particular, Prentice (1982) introduced a partial likelihood estimator based on the induced
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relative risk function. This method was further developed by Pepe et al. (1989) using para-
metric modeling. Zhou and Pepe (1995) proposed an estimated partial likelihood method
for discrete auxiliary covariates to relax the parametric assumptions on the frequency of
events and the underlying distributions of covariates. This method was extended by Zhou
and Wang (2000) to deal with continuous auxiliary variables, based on the Nadaraya-
Watson kernel smoother method (Nadaraya 1964; Watson, 1964). Fan and Wang (2009),
Liu et al. (2010) used the same approach for multivariate failure time data with auxiliary
covariates. While Zhou and Wang’s (2000) approach is useful in certain situations, there
are some restrictions on it. First, the approach is effective only when the auxiliary variable
W is of low dimension so that the “curse of dimensionality” in nonparametric smoothing
can be avoided. Secondly, it requires that, conditionally on X, W provides no additional
information about the hazard of failure; that is, all of the effects ofW on failure and cen-
soring are mediated through X, which is somewhat restricted since W may not be a true
surrogate and depends on the failure given X.
Further, this method does not fully utilize the observations in the non-validation

subsample and hence cannot be efficient in certain situations.
We here propose a new method to deal with the above problems associated with the

method in Zhou andWang (2000). The proposedmethod allowsW to bemultivariate and
to be informative in the sense that, conditional X, it may provide additional information
on the hazard of failure. We first estimate the induced relative risk function with a kernel
smoother based on the validation sample, and then improve the estimation by utilizing
the information on the incomplete observations from the non-validation subsample. In
addition, the local linear smoother (see for example in Fan and Gijbels 1996) is employed
to enhance the performance of the kernel smoother in Zhou and Wang (2000) at the
boundary regions. Ourmethod will be expected to improve the efficiency of the estimator
of Zhou andWang (2000) in various situations, for example, when auxiliary variableW is
informative or not very informative about X (see also the simulation results). Asymptotic
normality of our estimator is derived.
The proposed methodology can be extended to model multivariate failure time data

with auxiliary covariates by following the method in Fan and Wang (2009) or Liu et al.
(2010).
The paper is organized as follows. In Section 2, we introduce the hazards models.

In Section 3 we introduce our new estimation approach to predicting the induced rel-
ative risk for individuals in non-validation subsample based on the kernel smoother.
In Section 4 we concentrate on the asymptotic properties of the proposed estimators.
We conduct simulations in Section 5 to compare the efficiencies of different estimating
methods. In Section 6 we apply the proposed methodology to two real datasets.

2 Cox’s proportional hazards models
To facilitate exposition, we here employ the notations in Zhou and Wang (2000). Sup-
pose that there are n independent individuals in a study cohort. Let {Xi(t),Zi(t)} denote
the covariate vector for the ith subject at time t (i = 1, · · · , n). Assume that Xi(·) is only
observed in the validation subsample which is chosen at the baseline under the ignorable
missing mechanism condition (Rubin 1976). Let Zi(·) be the remaining covariate vector
that is always observed, and Wi(·) the informative auxiliary variables for Xi(·). Let ηi be
an indicator variable with ηi = 1 if the ith individual is in the validation set and 0 if
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in the nonvalidation set. Put V = {i : ηi = 1} and V̄ = {i : ηi = 0}. We assume
that individuals in the validation subsample are randomly selected and hence represen-
tative. Then observed data for the ith subject is {Si, δi,Zi(·),Wi(·),Xi(·)} if ηi = 1, and
{Si, δi,Zi(·),Wi(·)} if ηi = 0, where Si is the observed event time for the ith subject, which
is the minimum of the potential failure time Ti and the censoring time Ci, and δi is the
indicator of censoring. We consider the following conditional hazard rate function of
failure (Cox 1972)

λ{t;Xi(t),Zi(t)} ≡ lim
�t↓0

[
1
�t

Pr{t ≤ Ti < t + �t|Ti ≥ t,Xi(t),Zi(t)}
]

= λ0(t) exp
{
β ′
1Xi(t) + β ′

2Zi(t)
}
, (2.1)

where λ0(·) ≥ 0 is the unspecified base-line hazard and β = (
β ′
1,β ′

2
)′ is the relative risk

parameter vector to be estimated.
For model (2.1), the relative risk functions are γi(β , t) ≡ exp

{
β ′
1Xi(t) + β ′

2Zi(t)
}
, and

the partial likelihood function for the parameters β is

PL(β) =
∏

i∈V∪V̄

{
γi(β , Si)∑

j∈R(Si) γj(β , Si)

}δi

, (2.2)

where R(Si) is the risk set at time Si. However, for i ∈ V̄ , the true variate Xi(t) is not
observed, and hence the corresponding relative risk function γi(β , t) is not available and
has to be imputed.
Zhou and Wang (2000) used the conditional expectation

exp
{
β ′
2Zi(t)

}
E
[
exp

{
β ′
1Xi(t)

} |Si ≥ t,Zi(t),Wi(t)
]

(2.3)

for the imputation of γi(β , t) (i ∈ V̄ ). Based on data in V , they obtained the Nadaraya-
Watson kernel estimator (Nadaraya 1964; Watson 1964) of the above imputation and
replaced γi(β , t) for i ∈ V̄ in (2.2) by the kernel estimator, which leads to the estimated
partial likelihood. Under the assumption that W is not informative, that is, all of the
effects ofW on failure and censoring are mediated through X, so that

λ{t;Xi(t),Zi(t),Wi(t)} ≡ lim
�t↓0

[
1
�t

Pr {t ≤ Ti < t + �t|Ti ≥ t,Xi(t),Zi(t),Wi(t)}
]

= lim
�t↓0

[
1
�t

Pr{t ≤ Ti < t + �t|Ti ≥ t,Xi(t),Zi(t)}
]

= λ0(t) exp
{
β ′
1Xi(t) + β ′

2Zi(t)
}

≡ λ{t;Xi(t),Zi(t)},

they derived the consistency and asymptotic normality of the estimation. However, if W
is informative, their method will generally be biased (see also Section 5). In addition, since
this method directly used information in the auxiliary covariate W and estimated the
conditional expectation (2.3), it may encounter the so-called “curse of dimensionality” if
W is of higher dimension. For the present study, we propose a newmethod for imputation
of the relative risk function. The information in W will be used in a new way. This leads
to a new estimated partial likelihood.
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3 Estimated partial likelihood with a local smoother
In this section, we introduce our method to estimate the parameters in model (2.1) based
on maximizing the estimated partial likelihood.

3.1 Local smoother for the relative risk function

Instead of (2.3), we use the conditional expectation of γi(β , t),

φi(β , t) = exp{β ′
2Zi(t)E

[
exp

{
β ′
1Xi(t)

} |Si ≥ t,Zi(t)
]
,

as imputation of γi(β , t). Let d be the dimension of Z and let

ri(β , t) = ηiγi(β , t) + (1 − ηi)φi(β , t) (3.4)

be the induced risk function. Put ζi(β1, t) = exp
(
β ′
1Xi(t)

)
, and νi(β1, t) = E[ζi(β1, t)|Si ≥

t,Zi(t)]. To use the partial likelihood (2.2), we need to estimate φi(β , t) or equivalently
νi(β1, t) for i ∈ V̄ . Using the local linear smoother (see for example, Fan and Gijbels 1996)
leads to the following (functional) estimators of νj(β1, t) for j ∈ V̄

ν̂j(β1, t) =
∑
i∈V

ωi(t,Zj(t); h)ζi(β1, t), (3.5)

where h is the bandwidth,

ωi(t,Zj(t); h) = {s2 − (Zi(t) − Zj(t))s1}Yi(t)Kh(Zi(t) − Zj(t))∑
i∈V {s2 − (Zi(t) − Zj(t))s1}Yi(t)Kh(Zi(t) − Zj(t))

,

Yi(t) = I[Si≥t] is the at-risk indicator, sk = ∑
i∈V (Zi(t)−Zj(t))kYi(t)Kh(Zi(t)−Zj(t)), and

Kh(·) = h−dK(·/h) for a d-variate kernel function K(·).
The above estimation of the relative risk function was similarly used in Zhou and

Wang (2000) for a nonparametric smoothing problem on the estimation of E[γi(β , t)|Si ≥
t,Zi(t),Wi(t)], where the “curse of dimensionality” problem can happen if W is multi-
variate. Note that this estimation method uses only the complete observations in V and
neglects the important information on incomplete observations in V̄ . It follows that this
approach cannot be expected to be efficient in certain situations. In addition, it is required
in Zhou and Wang (2000) that, conditional on X, the auxiliary variable W provides no
additional information on the the hazard of failure. This requirement may not hold if W
is not a genuine surrogate of X. In the following, we propose an improved estimation
approach which utilizes information fromW and observations in V̄ and does not impose
the requirement. Moreover, the proposed method allows one to model the failure time
data with informative multivariate auxiliary variable W without “curse of dimensional-
ity”. Note that even for one dimensional Z andW , the method in Zhou and Wang (2000)
requires a two-dimensional smoother while the newmethod needs only one-dimensional
smoothing. To have a performance comparable with that of a one-dimensional nonpara-
metric smoother usingM1 = 50 data points, we need aboutM = M1.2

1 = 109 data points
for a 2-dimensional nonparameteric smoother. Hence the loss of efficiency due to highly
dimensional smoothing is large and increasing exponentially fast (see page 317 of Fan and
Yao 2003).
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3.2 Improved estimation of the relative risk function and the estimated partial likelihood

Recall that W is a vector of auxiliary variables for X and is hence correlated with X. Let
ξi(α, t) = exp(α′Wi(t)), where α is a parameter vector to be chosen. Considering the
conditional expectation ofψi(α, t) = E[ξi(α, t)|Si ≥ t,Zi(t)], then we can estimateψi(α, t)
by running local linear smoothing based on the data in V :

ψ̂j(α, t) =
∑
i∈V

ωi(t,Zj(t); h)ξi(α, t). (3.6)

The following result depicts asymptotic correlation of ν̂j(β1, t) and ψ̂j(α, t).

Proposition 3.1. Suppose that the conditions in Appendix 1 hold. Given (Sj ≥ t,Zj(t)),√
nhd[ (ν̂j(β1, t) − νj(β1, t)), (ψ̂j(α, t) − ψj(α, t))] is jointly asymptotically normal with

mean zero and covariance matrix

� = v0(K)p−1(Zj)

[
σ 2
1 (Zj, t) ρ∗

α(Zj, t)σ1(Zj, t)σ2(Zj, t)
ρ∗

α(Zj, t)σ1(Zj, t)σ2(Zj, t) σ 2
2 (Zj, t)

]
,

where v0(K) = ∫
K2(u)du, σ 2

1 (Zj, t) = Var[ζj|Sj ≥ t,Zj], σ 2
2 (Zj, t) = Var[ξj|Sj ≥ t,Zj],

and p(·) is the density function of Z.

By the distribution theory for multivariate normal variates, the conditional distribution
of

√
nhd[ ν̂j(β1, t)−νj(β1, t)] given

√
nhd[ ψ̂j(α, t)−ψj(α, t)] is asymptotically normal with

mean

ρ∗
α(Zj, t)

σ1(Zj, t)
σ2(Zj, t)

√
nhd[ ψ̂j(α, t) − ψj(α, t)] .

The conditional mean can be estimated by substituting consistent estimators based on
the validation sample for ρ∗

α(Zj, t), σ1(Zj, t) and σ2(Zj, t), and by replacing ψj(α, t) with
the primary sample based estimator

ψ̄j(α, t) =
∑

i∈V∪V̄
ω̄i(t,Zj(t); h)ξi(α, t), (3.7)

where

ω̄i(t,Zj(t); h) =
{
s̄2 − (Zi(t) − Zj(t))s̄1

}
Yi(t)Kh(Zi(t) − Zj(t))∑

i∈V∪V̄
{
s̄2 − (Zi(t) − Zj(t))s̄1

}
Yi(t)Kh(Zi(t) − Zj(t))

and s̄k = ∑
i∈V∪V̄

(
Zi(t) − Zj(t)

)k Yi(t)Kh
(
Zi(t) − Zj(t)

)
.

By equating
√
nvhd[ ν̂j(β1, t)−νj(β1, t)] with its estimated conditional mean and solving

for νj(β1, t), we obtain an improved (functional) estimate

ν̄j (β1, t) = ν̂j (β1, t) − ρ̂∗
α

(
Zj, t

) σ̂1
(
Zj, t

)
σ̂2(Zj, t)

[
ψ̂j (α, t) − ψ̄j (α, t)

]
. (3.8)

The updated estimator ν̄j(β1, t) is doomed to be more accurate than ν̂j(β1, t) in (3.5),
since it has used the information from W and observations in V̄ . Even though the infor-
mation aboutW may not be utilized in a very efficient way as in Zhou andWang’s (2000)
estimator when W is not informative, it is the price we have to pay for achieving robust-
ness against informative W . Note that ν̄j depends on α which is related to efficiency of
the estimator. Intuitively, one should choose α to maximize the conditional correlation
coefficient between ζj and ξj, given (Sj ≥ t,Zj), which is evident from the following result.
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Proposition 3.2. Assume that the conditions in Appendix 1 hold. Given (Sj ≥ t,Zj(t)),
then we have

√
nhd

[
ν̄ j(β1, t) − νj(β1, t)

] D−→ N (0,�),

where �(Zj, t) = σ 2
1 (Zj, t)

[
1 − (1 − ρ)ρ∗2

α (Zj, t)
]
v0(K)p−1(Zj).

When ρ∗
α = 0, i.e. the relative risk contributed byW is not correlated to that contributed

by X, given (S ≥ t,Z), the estimator ν̄j is asymptotically equivalent to ν̂j in (3.5).
In general, ρ∗

α > 0. Hence, by Propositions 3.1 and 3.2, ν̄j is more efficient than ν̂j. Note
that the proposed estimator is consistent for any α.
The above estimation method for νj(β , t) was similarly used in Chen and Chen (2000)

for estimating parameters in a parametric regression model. Our estimation can be
regarded as an extension of their estimation approach in nonparametric regression. In
addition, we do not need a working model to specify the regression relationship between
the surrogate and the covariate, and hence there is no risk of misspecification of the
working model.
For each given value of β , with the estimator ν̄j(β , t), we can estimate the induced

relative risk ri(β , t) in (3.4) by

r̂i(β , t) = ηiγi(β , t) + (1 − ηi)φ̄i(β , t), (3.9)

where φ̄i(β , t) = ν̄i(β1, t) exp
{
β ′
2Zi(t)

}
. Then the parameters β can be estimated by

maximizing the following estimated partial likelihood function (EPL):

EPL(β) =
n∏

i=1

{
r̂i(β , Si)∑

j∈R(Si) r̂j(β , Si)

}δi

. (3.10)

We denote β̂EPL = argmaxβ EPL(β).
For an extreme case withW ≈ Z, Zhou and Wang’s imputation for (2.3) approximately

becomes φ̂i(β , t) = ν̂i(β , t) exp(β ′Zi(t)) and uses a two dimensional smoother, which
is inferior to the improved estimator φ̄i(β , t), and hence by the definition of β̂EPL, our
estimator is superior to Zhou and Wang’s. However, it is generally difficult to compare
these two estimators. In our estimation of the induced relative risk, we used an improved
estimator φ̄j(β , t) for j ∈ V̄ . The “curse of dimensionality” problem in Zhou and Wang
(2000) can be avoided for a multivariate W . Our approach would at least be useful in
cases where the number of variables in Z which are correlated with the missing covariate
X is low, whereas the exposure variables of interest and their auxiliary variables may be
multivariate.
An alternative to β̂EPL is to maximize (3.10) but with r̂i(β , t) replaced by r̃i(β , t) =

ηiγi(β , t)+ (1−ηi)φ̂i(β , t), where φ̂i(β , t) = ν̂i(β , t) exp(β ′Zi(t)). We denote the resulting
estimator by β̂V , which does not use the information on W in V̄ . Intuitively, β̂EPL should
be better than β̂V , but this is not true in general, since comparison of the asymptotic
results in Theorems 4.1 and 4.2 below could not lead to a dominated estimator. However,
in small validation ratio settings, β̂V is not expected to perform well, since it uses only the
observations in the validation set for smoothing.
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4 Asymptotic behaviors
Let nv be the subsample size of the validation set and let ρ be the limit of ratio of validation
observations, limn→∞ nv/n. Assume that ρ ∈ (0, 1]. Define s(0)(β , t) = E [Yi(t)ri(β , t)] ,
s(1)(β , t) = (∂/∂β)s(0)(β , t), s(2)(β , t) = (∂/∂βτ )s(1)(β , t).
For any matrix A, we use A⊗2 to denote matrix AAτ .
Let Ni(t) = I[Si<t,δi=1] and

Mi(t) = Ni(t) −
∫ t

0
Yi(u)ri(β0,u)λ0(u)du.

Define the filters Fi(t) = σ
{
Ni(u),Yi(u+),Xi(u),Zi(u) : 0 ≤ u ≤ t

}
.

The censoring time is assumed to be independent of the failure time conditioning on
the true covariates in model (2.1), that is,

P{t ≤ T < t + �t|T ≥ t,C ≥ t,X(t),Z(t)} = P{t ≤ T < t + �t|T ≥ t,X(t),Z(t)},
(4.11)

which is different from that in Zhou and Wang (2000) where it is assumed

P{t ≤ T < t + �t|T ≥ t,C ≥ t,W (t),Z(t)} = P{t ≤ T < t + �t|T ≥ t,W (t),Z(t)}.
Then, under the independent censoring assumption (4.11),
Mi(t) is a mean zero martingale with repsect to Fi(t) (Kalbfleisch and Prentice 1980;

Fleming and Harrington 1991).
In addition, the cumulative hazard �0(t) = ∫ t

0λ0(w) dw can be consistently estimated
as

�̂0(t) =
∫ t

0

[ nv∑
i=1

Yi(u)ri(β̂EPL,u)

]−1 nv∑
i=1

dNi(u).

Without loss of generality, we assume that t ∈[0, 1]. Put �(φi)(u) = φ
(1)
i (u)/φi(u) −

s(1)/s(0),�(γi)(u) = γ
(1)
i (u)/γi(u) − s(1)/s(0),Qi = ∫ 1

0 �(φi)(u)Yi(u)[γi(β0,u) −
φi(β0,u)] λ0(u)du,Q∗

i = ∫ 1
0 �(φi)(u)Yi(u)θi(u;α)λ0(u)du, where φ

(1)
1 (β ,u) =

(∂/∂β)ri(β ,u), and

θi(u;α) = [ξi(α,u) − ψi(α,u)] exp(β ′
2Zi(u))ρ∗

α(Zi,u)σ1(Zi,u)/σ2(Zi,u).

The following theorem shows that β̂EPL is asymptotically normal.

Theorem 4.1. Suppose that Condition (A) in Appendix 1 holds. Then β̂EPL is consistent
estimator for β and satisfies

√
n(β̂EPL − β0)

L−→ N (0,�),

where � = I−1(β0)�(β0)I−1(β0) with �(β0) = (1 − ρ)�1(β0) + ρ�2(β0),

I(β0) = −E

⎡
⎣∫ 1

0

⎛
⎝ r(2)i (β0,u)

r(0)i (β0,u)
−
{
r(1)i (β0,u)

r(0)i (β0,u)

}⊗2

− s(2)(β0,u)

s(0)(β0,u)
−
{
s(1)(β0,u)

s(0)(β0,u)

}⊗2
⎞
⎠ dNi(t)

⎤
⎦ ,

�1(β0) = E
[∫ 1

0
�(φi)(u)dMi(u) − (1 − ρ)Q∗

i

]⊗2
,
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�2(β0) = E
[∫ 1

0
�(γi)(u)dMi(u) − 1 − ρ

ρ

{
Qi − (1 − ρ)Q∗

i
}]⊗2

.

Remark 4.1. It is interesting to note that Q∗
i ≈ Qi when the auxiliary W approximates

X, and hence the second term in the expectation of �2(β) approximates to (1 − ρ)Qi.
Therefore, a small ρ will not result in a big �2(β0). Theoretically, whenWi = Zi, Q∗

i = 0
and the above asymptotic variance formula shares the same formula as that for the esti-
mator in Zhou andWang (2000) as exactly expected. However, in practice whereWi ≈ Zi,
since Zhou and Wang (2000) used a higher dimensional smoother than us, our estimator
would have better efficiency for finite samples.

When ρ∗
α = 0, β̂EPL is asymptotically equivalent to the complete-case estimator based

on only the validation set V . This is also expected, since the auxiliary variable Wi con-
tains no information on Xi at this setting. From Theorem 4.1, the asymptotic covariance
matrix of β̂EPL is of sandwich form, which can consistently be estimated by �̂0 =
Î−1(β0)�̂(β0)Î−1(β0), where Î(β) and �̂(β) are the corresponding empirical estimates.
Specifically,

Î(β) = −n−1
n∑

i=1

∫ 1

0

⎛
⎝ r̂i(2)(β ,u)

r̂i(0)(β ,u)
−
{
r̂i(1)(β ,u)

r(0)i (β ,u)

}⊗2

− Ŝ(2)(β ,u)

Ŝ(0)(β ,u)
+
{
Ŝ(1)(β ,u)

Ŝ(0)(β ,u)

}⊗2
⎞
⎠ dNi(t),

�̂1(β)=(n − nv)−1
∑
i∈V̄

{∫ 1

0
�(φ̂i)(t)

[
dNi(t) − Yi(t)φ̄i(β̂EPL, t) d�̂0(t)

]
− (1 − ρ̂)Q̂∗

i

}⊗2
,

�̂2(β)= n−1
v

∑
i∈V

{∫ 1

0
�(γ̂i)(t)

[
dNi(t) − Yi(t)ri(β̂EPL, t) d�̂0(t)

]
− 1 − ρ̂

ρ̂

[
Q̂i − (1 − ρ̂)Q̂∗

i

]}⊗2
,

where ρ̂ = nv/n,

Q̂i =
∫ 1

0
�(φ̂i)(t)Yi(t)

[̂
ri(β , t) − φ̂i(β , t)

]
d�̂0(t),

Q̂∗
i =

∫ 1

0
�(φ̂i)(t)Yi(t)θ̂i(t;α) d�̂0(t),

�(φ̂i)(t) = φ̂
(1)
i (β , t)/φ̂i(β , t) − Ŝ(1)(β , t)/Ŝ(0)(β , t),

�(γ̂i)(t) = γ̂
(1)
i (β , t)/γ̂i(β , t) − Ŝ(1)(β , t)/Ŝ(0)(β , t),

θ̂i(t;α) = [
ξi(α, t) − ψ̄i(α, t)

]
exp

(
β̂τ
2Zi(t)

)
ρ̂∗

α(Zi, t)σ̂1(Zi,u)/σ̂2(Zi, t).

In summary, a constant variance estimator for β̂EPL can be obtained by replacing the
population quantities in the asymptotic covariance matrix �(β0) with their correspond-
ing sample averages as in Zhou and Wang (2000). Hence, the asymptotic confidence
intervals for β can also be constructed.
The following theorem demonstrates the asymptotic normality of β̂V .
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Theorem 4.2. Under the same conditions as in Theorem 4.1, the estimator β̂V shares the
same asymptotic distribution as β̂EPL but with �1(β0) and �2(β0) replaced by �1V (β0)

and �2V (β0), respectively, where �1V (β0) = E
[∫ 1

0 �(φi)(u)dMi(u)
]⊗2

, and �2V (β0) =
E
[∫ 1

0 �(γi)(u)dMi(u) − 1−ρ
ρ

Qi
]⊗2

.

4.1 Choice of the parameter vector α

The choice of α affects efficiency of β̂EPL, although the estimator is
√
n-consistent for any

α. In this paper, we choose α by minimizing the variance of the estimator β̂EPL. Given
initial value of β and α, one can estimate α by minimizing the trace of �̂(α).
Once the value of α is known, maximization of EPL(β) can be solved via Newton-

Raphson iterations. Repeating this procedure, one can find a solution to the optimization
problem (3.10). To reduce the burden of computation in practice, one can employ a con-
sistent naive estimator of β as initial value, for example the estimator of β based on only
the validation sample which is easy to implement because it involves only a simple fit for
the usual Cox’s model. In our experience, using the naive estimator as the initial value the
iterations converge in a few steps.

4.2 Choice of the bandwidth parameter

As for the bandwidths, they affect the estimator β̂EPL, which is true in any nonparamet-
ric smoothing problems. Fortunately, the proposed estimator β̂EPL is effective for a large
range of bandwidths (see Condition (6) in Appendix 1). Similar to that in Zhou andWang
(2000), we employed here the empirical bandwidth h = (h1, h2)′ with h1 = 2σ̂Zn−1/3 and
h2 = 2σ̂Wn−1/3, where σ̂Z and σ̂W are respectively the sample standard deviations of Z
andW , which satisfy the bandwidth conditions required in this paper.

5 Simulations
In this section, we conduct finite-sample simulationsa The aims of the simulations are
three-fold: one is to examine the small sample behavior of β̂EPL, another is to compare the
performance of our estimator with some existing estimators under various situations, and
the third and the most important is to illustrate that the proposed estimation allows for
an informative auxiliary vectorW . The covariates (X,Z) are generated from the following
transformation to create correlation:(

X
Z

)
=
(

1 0.0
0.5 1

)(
U1
U2

)
, (5.12)

where Ui’s are independent and identically distributed as U(0, 2). The failure time T
conditional on covariate X is from an exponential distribution with hazard function

λ(t;X) = λ exp(β1X + β2Z),

where λ is the baseline constant hazard. We only consider the case λ = 1. Then

f (t;X,Z) = exp(β1X + β2Z) exp(−t exp (β1X + β2Z)).

The auxiliary variableW is generated from

W = X + γ log(T) + e, (5.13)
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where e ∼ N (0, σ 2) and σ 2 is the parameter controlling the strength of the association
between X and W . We consider the settings with γ = 0 and 2. Model (5.13) with γ = 2
allows one to explore the effectiveness of the proposed method with an informative sur-
rogateW . For γ = 0, it also allows us to compare the performance of the newly proposed
method and that in Zhou and Wang (2000). We do simulations for σ = 0.2 and 0.8.
The censoring variable is uniformly distributed and independent of the failure time. The
validation set is randomly selected with P(ηi = 1) = 0.5.
We choose the Gaussian kernel function with the bandwidths

(
h1 = 2σ̂Zn−1/3,

h2 = 2σ̂Wn−1/3) which satisfy the bandwidth conditions in Theorem 4.1, where σ̂Z and
σ̂W are the sample standard deviations of Z and W respectively. In the following tables,
β0 =[log(2), 0.5]′ denotes the true value of the parameter to be estimated, se is the stan-
dard error of β̂EPL from simulation,mean(ŝe) denotes the mean of the estimated standard
errors and cp denotes the 95% coverage probability.
The methods we considered are the newly proposed estimated partial likehood estima-

tion (β̂EPL)and its conterpart (β̂ZW ) in Zhou and Wang (2000), the estimator (β̂V ) which
does not use the information onW in V̄ , the complete-case Cox regression analysis (β̂CC)
which uses only the validation subsample, the Cox regression withW substituted for the
missing X (β̂N ), and the full data Cox regression (β̂F ) which assumes that X is available
for all n subjects in the study.
Tables 1 and 2 summarizes the results obtained from the simulation. Note that β̂F , β̂CC

and β̂V in Table 2 are the same in Table 1, so we do not report them in Table 2. For finite
sample sizes, the mean, median, standard error (se) and 95% confidence intervals of the
estimator are calculated based on 500 independent runs. We observe that β̂F is the best
estimator but it is not always obtainable for practical studies. The estimator β̂N is biased.
In all the situations β̂EPL is observed to be a consistent estimator of true β0. The estimates
obtained fromZhou andWang (2000) method are biased when γ = 2. Also,we notice that
the bias in their estimates increases when σ increases. Efficiency of β̂EPL relative to the
complete case estimator β̂CC is approximately the same for β1 = log(2) but much higher
for β2 = 0.5. For γ = 0 the estimator β̂ZW is more efficient than the proposed estimator
for smaller values of σ but as the correlation between the exposure and auxiliary variable
decreases the efficiency becomes closer (see the values of se for n = 300). Also, we notice
that β̂EPL has less bias than β̂V for different values of n, but they are still comparable and
even in some cases β̂V is better in terms of the standard deviation. For γ = 2, our method
stays almost equally efficient as σ increases, but β̂ZW fails because of its large bias and low
coverage probability (cp). Note that, when γ = 2, W is an informative auxiliary variable
about the failure time and is not very informative about X.
We also performed simulations to see the effect of validation ratio and different band-

widths on the estimation. The proposed estimator β̂EPL works well for smaller validation
percentages and is not very sensitive to the bandwidth selection. In particular, β̂EPL is
better than β̂V when the validation ratio is 0.25, which is evidenced in Table 3. We also
conducted simulations with smaller validation ratios. Our experience indicates that, as
the validation ratio gets as small as 0.2, β̂V is very bad but β̂EPL still works.
We conclude that, the proposed partial likelihood estimator can be used to make infer-

ence for β under various situations. In particular, the estimator is consistent and efficient
when the auxiliary variable is informative about the hazard rate of failure time while Zhou
and Wang’s estimator fails.
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Table 1 Comparison of simulation results with σ = 0.2 and validation fraction 0.5

n γ = 0 γ = 2

β̂F β̂CC β̂N β̂V β̂ZW β̂EPL β̂N β̂ZW β̂EPL

50%

censoring

100 mean − β0 0.018 0.021 -0.034 -0.036 -0.045 0.006 -0.988 -0.434 0.031

0.004 0.030 0.022 0.035 0.013 0.006 0.169 0.174 0.010

median − β0 0.013 -0.001 -0.045 -0.047 0.033 -0.033 -0.983 -0.484 0.021

-0.015 0.023 0.002 0.019 -0.001 0.011 0.160 0.172 0.008

se 0.323 0.439 0.302 0.410 0.346 0.457 0.084 0.574 0.459

0.281 0.391 0.276 0.307 0.283 0.312 0.237 0.324 0.338

mean(ŝe) 0.292 0.429 0.280 0.402 0.329 0.414 0.068 0.373 0.411

0.258 0.382 0.257 0.278 0.257 0.296 0.244 0.274 0.288

cp 0.916 0.956 0.924 0.938 0.948 0.946 0.0 0.670 0.946

0.930 0.960 0.934 0.922 0.914 0.924 0.920 0.892 0.916

300 mean − β0 -0.019 0.026 -0.068 -0.039 -0.007 -0.021 -0.994 -0.630 0.005

0.006 0.017 0.024 0.013 0.010 0.002 0.166 0.202 -0.007

median − β0 -0.028 0.024 0.077 -0.042 -0.012 -0.018 -0.991 -0.635 -0.002

0.007 0.001 0.028 0.021 0.018 0.002 0.169 0.199 0.003

se 0.161 0.234 0.158 0.225 0.176 0.238 0.048 0.246 0.243

0.146 0.217 0.146 0.162 0.150 0.163 0.127 0.137 0.166

mean(ŝe) 0.164 0.233 0.158 0.227 0.177 0.222 0.039 0.170 0.231

0.146 0.209 0.145 0.159 0.147 0.155 0.137 0.125 0.159

cp 0.944 0.942 0.928 0.948 0.950 0.936 0.0 0.108 0.940

0.956 0.942 0.956 0.948 0.944 0.938 0.796 0.630 0.940

20%

censoring

100 mean − β0 0.021 0.020 -0.031 -0.041 0.044 0.002 -1.003 -0.455 0.023

0.001 0.014 0.018 0.036 0.013 0.005 0.155 0.163 0.011

median − β0 0.016 0.014 -0.029 -0.048 0.038 -0.013 -1.000 -0.466 0.003

-0.008 -0.001 0.011 0.029 0.005 0.003 0.151 0.159 0.005

se 0.248 0.339 0.234 0.322 0.272 0.364 0.071 0.467 0.360

0.211 0.305 0.210 0.224 0.212 0.229 0.180 0.241 0.235

mean(ŝe) 0.232 0.340 0.223 0.306 0.263 0.313 0.062 0.318 0.315

0.205 0.302 0.204 0.217 0.204 0.213 0.195 0.214 0.215

cp 0.936 0.956 0.934 0.912 0.966 0.894 0.0 0.550 0.904

0.938 0.956 0.938 0.934 0.952 0.936 0.924 0.862 0.928

300 mean − β0 -0.007 -0.009 -0.056 -0.032 -0.006 -0.011 -1.001 -0.617 0.015

-0.001 0.008 0.016 0.008 0.004 -0.004 0.152 0.023 -0.012

median − β0 -0.019 -0.016 -0.064 -0.040 -0.006 -0.022 -1.001 -0.613 0.001

-0.002 0.002 0.011 0.007 0.003 -0.005 0.154 0.024 -0.016

se 0.131 0.190 0.127 0.177 0.141 0.194 0.044 0.304 0.195

0.116 0.164 0.116 0.126 0.119 0.127 0.100 0.178 0.135

mean(ŝe) 0.131 0.187 0.260 0.179 0.142 0.179 0.034 0.219 0.179

0.116 0.166 0.150 0.125 0.117 0.122 0.110 0.161 0.124

cp 0.948 0.960 0.928 0.952 0.966 0.926 0.0 0.244 0.926

0.952 0.954 0.952 0.954 0.952 0.944 0.748 0.070 0.934

6 Real data analysis
6.1 Primary Biliary Cirrhosis data

We apply the proposed approach to the data from the Mayo Clinic trial in primary bil-
iary cirrhosis (PBC) of the liver conducted between 1974 and 1984. A total of 424 PBC
patients, referred to Mayo Clinic during that ten-year interval, met eligibility criteria for
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Table 2 Comparison of simulation results with σ = 0.8 and validation fraction 0.5

n γ = 0 γ = 2

β̂N β̂ZW β̂EPL β̂ZW β̂ZW β̂EPL

50%

censoring

100 mean − β0 -0.369 -0.045 0.034 -0.961 -0.325 0.027

0.139 0.055 0.008 0.177 0.141 0.009

median − β0 -0.381 -0.052 0.021 -0.955 -0.368 0.010

0.028 0.051 0.008 0.164 0.140 0.002

se 0.206 0.374 0.457 0.076 0.549 0.450

0.260 0.287 0.338 0.243 0.325 0.332

mean(ŝe) 0.196 0.256 0.414 0.064 0.374 0.414

0.249 0.262 0.288 0.244 0.271 .293

cp 0.504 0.940 0.934 0.0 0.721 0.940

0.914 0.932 0.916 0.904 0.888 0.920

300 mean − β0 -0.392 -0.056 0.012 -0.965 -0.399 0.012

0.139 0.033 -0.011 0.175 0.147 -0.009

median − β0 -0.392 -0.055 0.004 -0.963 -0.395 0.004

0.139 0.044 -0.004 0.176 0.145 -0.002

se 0.114 0.198 0.255 0.044 0.325 0.254

0.142 0.156 0.170 0.129 0.180 0.171

mean(ŝe) 0.108 0.223 0.227 0.036 0.213 0.228

0.140 0.157 0.159 0.137 0.157 0.158

cp 0.068 0.932 0.932 0.0 0.520 0.932

0.830 0.946 0.934 0.770 0.808 0.936

20%

censoring

100 mean − β0 -0.368 -0.046 0.024 -0.969 -0.328 0.022

0.126 0.052 0.019 0.163 0.128 0.021

median − β0 -0.372 -0.052 0.020 -0.966 -0.354 0.016

0.122 0.053 0.020 0.168 0.124 0.015

se 0.165 0.272 0.360 0.064 0.450 0.348

0.202 0.213 0.240 0.186 0.238 0.238

mean(ŝe) 0.156 0.263 0.306 0.057 0.291 0.321

0.198 0.207 0.211 0.195 0.212 0.222

cp 0.352 0.966 0.912 0.0 0.658 0.916

0.918 0.942 0.928 0.910 0.878 0.924

300 mean − β0 -0.390 -0.048 0.013 -0.972 -0.388 0.021

0.123 0.026 -0.011 0.161 0.127 -0.015

median − β0 -0.393 -0.058 -0.004 -0.972 -0.399 0.013

0.123 0.028 -0.017 0.164 0.128 -0.016

se 0.092 0.159 0.195 0.039 0.262 0.200

0.115 0.123 0.131 0.102 0.138 0.133

mean(ŝe) 0.086 0.172 0.186 0.033 0.168 0.179

0.112 0.123 0.126 0.110 0.122 0.124

cp 0.018 0.954 0.924 0.0 0.412 0.924

0.792 0.944 0.934 0.716 0.784 0.942

the randomized placebo controlled trial of the drug D-penicillamine. The first 312 cases
in the data set participated in the randomized trial and contain largely complete data.
The additional 112 cases did not participate in the clinical trial, but agreed to have basic
measurements recorded and to be followed for survival. Six of those cases were lost to
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Table 3 Comparison of simulation results with β =[ln(2) 0.5]′, 50% censoring, σ = 0.2,
and validation fraction 0.25

n = 100 n = 200

β̂V β̂EPL β̂V β̂EPL

mean − β0 -0.142 0.056 -0.087 0.049

0.107 0.018 0.056 0.001

median − β0 -0.152 0.035 -0.125 0.011

0.091 -0.002 0.065 0.002

se 0.506 0.565 0.405 0.417

0.329 0.320 0.234 0.232

mean(ŝe) 0.513 0.618 0.380 0.410

0.306 0.333 0.220 0.224

cp 0.944 0.936 0.928 0.924

0.934 0.954 0.934 0.942

follow-up shortly after diagnosis, so the data here are on an additional 106 cases as well
as the 312 randomized participants.
A clinical background description and a more extended discussion for the trial and the

covariates recorded can be found in Dickson et al. (1989) and Markus et al. (1989). The
variables involved in our specify analysis include id: case number; days: number of days
between registration and the earlier of death, transplantation, or study analysis time; sta-
tus: status of censoring; bili: serum bilirubin (in mg/dl); chol: serum cholesterol (inmg/dl)
and Age: age in days.
In this analysis, we are particularly interested in the effect of patients’ serum cholesterol

and age on the survival of the patients. This type of failure time data can be modeled by
the Cox proportional hazards models with an unknown baseline hazard function. How-
ever, about 31% outcomes of cholesterol were missing in this data set. Removing those
observations may lead to biased estimates and standard errors. We noted that the out-
comes of serum bilirubin were completely obtained with no missing values. Preliminary
analysis showed that there is a significant correlation between serum cholesterol and
bilirubin. Also, intuitively bilirubin has some additional effect on the hazard of failure and
we would like to use that information efficiently. To illustrate this effect, we performed
a complete Cox regression analysis for two different situations. We take the logarithmic
transformation of bilirubin for our study.
In Table 4, we observe that the coefficient and standard error estimates are quite differ-

ent for both the situations and the 95% confidence intervals for the coefficient of age are
nonoverlapping. We can conclude that serum bilirubin has some additional effect on the
hazard of failure. Hence, our proposed method can be applied to this dataset considering
serum bilirubin as the informative auxiliary covariate.

Table 4 Regression analysis of primary biliary cirrhosis (PBC) data study

Method Variable Parameter Standard error 95% Confidence interval

logbili < 1.6
CC

logchol 0.271 0.393 (-0.499, 1.040)

age 0.055 0.012 (0.031, 0.079)

logbili ≥ 1.6
ZW

logchol -0.635 0.345 (-1.312, 0.042)

age -0.005 0.016 (-0.037, 0.027)
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Table 5 displays the analysis results based on the Cox’s regression for the complete data
(CC), the method proposed by Zhou and Wang (2000) (ZW) and the proposed method
(EPL). The CCmethod uses only 284 complete-case observations and the other twometh-
ods use all 418 observations. Variable “logchol” denotes the logarithm of cholesterol. The
estimates of the coefficients and their standard errors are given in the table.
The regression analysis confirms that both serum cholesterol and age are significantly

related to the time to event. For estimating the effect of serum cholesterol and age,
there is a reasonable efficiency gain by using the two methods based on partial likeli-
hood approach over the complete case Cox regression analysis. But there is a discrepancy
between the estimates from complete data and Zhou andWangs estimate which could be
due to the fact that the latter method does not consider the additional effect contributed
by the auxiliary covariate. In our simulation we observed that the standard error of the
estimates were underestimated in Zhou and Wangs method when auxiliary variable was
informative. In the real data analysis also the standard error estimate for serum cholesterol
is underestimated. Moreover, the standard error estimates in our method is comparable
to Zhou and Wangs method whereas the calculation time is much less compared to their
method.

6.2 Serrum Ferritin Concentration in relation to preterm delivery study

We apply the proposed approach to the data on iron intake in relation to preterm deliv-
ery study from the University of North Carolina Hospitals at Chapel Hill. A total of 1520
women were included in the study. 17 of these women were lost to follow up. So the data
consist of 1503 individuals among which 270 individuals had their serrum ferritin con-
centration (FERRITIN) measured with an immunometric assay. However a crude score
for dietary iron intake (DTFE) was collected using a dietary food frequency questionnaire
for all the individuals.
A clinical background description and a more extended discussion for the trial and the

covariates recorded can be found in Savitz et al. (2001). The variables involved in our
specfic analysis include (i) id: case number; (ii) Gestation Time: The number of weeks
from pregnancy to delivery; (iii) DTFE: Dietary iron intake(in 100mg/dl); (iv) Ferritin:
Serum Ferritin (in 100 mg/dl); and (v) Age: age in years. By using the notations in the
proposed method, X is Ferritin, W is DTFE, and Z is Age.
In this analysis, we are particularly interested in the effect of patients’ serum ferritin

and age on the delivery of the patients. This type of failure time data can be modeled by
the Cox proportional hazards models.

Table 5 Regression analysis of primary biliary cirrhosis (PBC) data

Method Variable Estimates of parameters Standard error 95% Confidence interval

CC
logchol 0.853 0.214 (0.432, 1.273)

age 0.048 0.010 (0.029, 0.067)

ZW
logchol 1.142 0.154 (0.840, 1.444)

age 0.047 0.007 (0.033, 0.061)

EPL
logchol 0.851 0.215 (0.429, 1.273)

age 0.044 0.007 (0.029, 0.058)
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However, outcomes for serum ferritin were missing in this data set. Removing those
observations can lead to biased or inefficient estimates. We noted that the outcomes of
dietary iron intake were completely obtained with no missing values.
Table 6 displays the analysis results based on the the CC method, the ZWmethod, and

the proposed EPL method. The CC method used only 270 complete-case observations
and the other two methods used all 1503 observations.
The regression analysis using the new method confirms that both serum ferritin and

age are significantly related to the time to event. For estimating the effect of serum ferritin
and age, there is also a reasonable efficiency gain by using the two methods based on
partial likelihood approach over the complete case cox regression analysis. The estimate
of serrum ferritin is lower by the EPL method. The estimate is significantly different from
zero with p-value 0.020. In contrast, the p-value from CCmethod in estimation of serrum
ferritin is 0.06.

7 Conclusion
We have introduced an EPL estimation method for Cox’s models with informative aux-
iliary covariates and established asymptotic normality of our estimator. The proposed
proposed methodology allows for multivariate auxiliary covariates W without suffering
the curse of dimensionality.
We used the same bandwidth as suggested by Zhou andWang (2000) in our estimation.

Though it performs reasonably well, one can develop a bandwidth selection criteria like
generalized cross-validation for an improved estimation. It is desirable to increase the
efficiency of the estimation. In future, we can consider the optimization of α or introduce
some weight structure in the score equation to achieve robustness. Further, it is worthy
extending our approach to model multivariate failure time.

Endnote
aAll numerical results in this paper are obtained using the software MATLAB and the

codes are available (Additional file 1).

Appendix 1: Condition (A)
For the risk function ri(β , t) (as well as for r̂i(β , t), γi(β , t), φ̂i(β , t) and φi(β , t)), we
denote by r(j)i (β , t) the jth derivative of ri(β , t) with respect to β , j = 0, 1, 2, where
r(0)i means the function itself. Define S(0)(β , t) = n−1∑n

i=1 Yi(t)ri(β , t), S(1)(β , t) =
(∂/∂β)S(0)(β , t), S(2)(β , t) = (∂/∂β)S(1)(β , t), s(0)(β , t) = E[Yi(t)ri(β , t)] , s(1)(β , t) =
(∂/∂β)s(0)(β , t), s(2)(β , t) = (∂/∂β)s(1)(β , t). Let �(φ)(u) = φ(1)(β ,u)

φ(β ,u)
− s(1)(β ,u)

s(0)(β ,u)
,

Table 6 Regression analysis of Iron intake in relation to preterm delivery study

Method Variables Estimates of parameters Standard error p-value Hazard ratio

CC
ferritin 0.2451 0.1306 0.060 1.278

age 0.009 0.0108 0.402 1.009

ZW
ferritin 0.2236 0.076 0.004 1.251

age 0.0102 0.0043 0.018 1.010

EPL
ferritin 0.1797 0.0771 0.020 1.197

age 0.0159 0.0036 0.000 1.016
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I(β)=−
∫ 1

0

⎡
⎣r(2)(β ,u)

r(0)(β ,u)
−
{
r(1)(β ,u)

r(0)(β ,u)

}⊗2

− s(2)(β ,u)

s(0)(β ,u)
+
{
s(1)(β ,u)

s(0)(β ,u)

}⊗2
⎤
⎦ s(0)(β ,u) dN(u),

Q =
∫ 1

0
�(φ)(u)Y (u)[ γ (β ,u) − φ(β ,u)] λ0(u)du,

Q∗ =
∫ 1

0
�(φ)(u)Y (u)θ(Z,u;α)λ0(u)du.

The following conditions are needed for the theoretical results in the paper:

(1)
∫ 1
0 λ0(s)ds < ∞.

(2) Pr(Y (1) = 1|V ) > 0 for any validation set V .
(3) There exists an open subset B, containing the true value β0 of β , of the Euclidean

spaceRp. In addition, r(2)i (β , t) with elements (∂2/∂βi∂βj)r(β , t) exists and is continuous
on B for each t ∈[0, 1], uniform in t, and φ(β , t) is bounded away from 0 on B×[ 0, 1].
Furthermore, I(β) is positive definite.
(4)

E
{

sup
B×[0,1]

|Y (t)r(j)(β , t)|} < ∞, j = 0, 1, 2,

E

⎧⎨
⎩ sup

B×[0,1]
|Y (t)

(
r(1)(β , t)
r(β , t)

)⊗2j

r(β , t)|
⎫⎬
⎭ < ∞, j = 1, 2,

E

⎧⎨
⎩ sup

B×[0,1]
|Y (t)

(
r(2)(β , t)
r(β , t)

)⊗j

r(β , t)|
⎫⎬
⎭ < ∞, j = 1, 2.

Also observe that, s(0)(β , t) = E[Y (t)r(β , t)]= E[Y (t)r∗(β , t)] .
(5) Let FY (t),Z be the joint distribution of (Y (t),Z), and f (t, z) = (∂/∂z)FY (t),z(1, z).

For each t ∈[0, 1], both f (t, z) and φ(β , t) have the 2nd continuous derivative almost
everywhere.
(6) h → 0, nhd+4 → 0 and nhd(log n)−2 → ∞, as n → ∞.

Appendix 2: Technical Proofs
Proof of Proposition 3.1. The argument employed here is similar to that for Theorem 1
of Jiang et al. (2011). Note that ν̂j − νj = ∑

i∈V ωi(νi − νj) + ∑
i∈V ωi(ζi − νi). By stan-

dard nonparametric regression techniques (see for example Härdle 1990; Fan and Gijbels
1996), it can be shown that the first term above contributes to bias and is Op(h2), which
is of order op(1/

√
nhd), if one uses an undersmoothing bandwidth such that nhd+4 → 0,

so that ν̂j − νj = ∑
i∈V ωi(ζi − νi) + op(1/

√
nhd). Similarly, ψ̂j − ψj = ∑

i∈V ωi(ξi − ψi) +
op(1/

√
nhd). Then the asymptotic normality can be obtained by using the Cramé-Wald

device and directly computing the asymptotic mean and variance (see, for example the
Lemma 6.3 in Jiang and Mack 2001).

Proof of Proposition 3.2. Note that from (3.8)√
nhd[ ν̄j − νj] =

√
nhd[ ν̂j − νj]

−ρ∗(Zj, t)
σ1(Zj, t)
σ2(Zj, t)

√
nhd[ (ψ̂j − ψj) + (ψ̄j − ψj)] (1 + op(1)).
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The asymptotic normality of
√
nhd(ν̄j − νj) is obtained by the Slutsky’s theorem and the

asymptotic normality of
√
nhd(ν̂j − νj),

√
nhd(ψ̂j − ψj) and

√
nhd(ψ̄j − ψj).

Lemma 7.1. Under Condition (A),

sup
β∈B

||n−1∂Û(β , 1)/∂β − (−I(β))|| P−→ 0.

Proof. By simple algebra, we have

n−1∂Û(β , 1)/∂β =
∫ 1

0
n−1

n∑
i=1

⎡
⎣ r̂(2)i (β , t)
r̂(0)i (β , t)

−
(
r̂(1)i (β , t)
r̂(0)i (β , t)

)⊗2

− Ŝ(2)(β , t)
Ŝ(0)(β , t)

+
(
Ŝ(1)(β , t)
Ŝ(0)(β , t)

)⊗2
⎤
⎦ dNi(t).

Note that for j = 0, . . . , 2

sup
B×[0,1]

||r̂(j)i (β , t) − r(j)i (β , t)|| P−→ 0, (7.14)

and

sup
B×[0,1]

||Ŝ(j)
i (β , t) − s(j)i (β , t)|| P−→ 0, (7.15)

uniformly for i = 1, . . . , n if h → 0 and nhd → ∞. It follows that

n−1∂Û(β , 1)/∂β =
∫ 1

0
n−1

n∑
i=1

⎡
⎣ r(2)i (β , t)
r(0)i (β , t)

−
(
r(1)i (β , t)
r(0)i (β , t)

)⊗2

− s(2)(β , t)
s(0)(β , t)

+
(
s(1)(β , t)
s(0)(β , t)

)⊗2
⎤
⎦ dNi(t) + op(1)

= −I(β) + op(1),

uniformly in β ∈ B.

Proof of Theorem 4.1. The proof is argued in the framework of the multivariate
counting processes, the martingale theory, and the techniques commonly used in non-
parametric regression. Following the same routine as in Zhou and Wang (2000), the
consistency of β̂EPL can be derived by using the Inverse Function Theorem (Rudin 1964;
Andersen and Gill, 1982) and the argument by Foutz (1977). In the following, we give
only the asymptotic normality in Theorem 4.1. The main techniques we employed are
Taylor’s expansion of the score function corresponding to the estimated likelihood func-
tion (3.10), Lenglart inequality, the martingale central limit theorem (see e.g. Fleming and
Harrington 1991), and nonparametric regression techniques.
By using counting process notation, the score function corresponding to the estimated

partial likelihood function (3.10) at time point t can be written as

Û(β , t) =
n∑

i=1

∫ t

0
�(r̂i)(β ,u)dMi(u) +

n∑
i=1

∫ t

0
�(r̂i)(β ,u)ri(β0,u)Yi(u)λ0(u)du,

(7.16)
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where

�(r̂i)(u) = r̂(1)i (β ,u)

r̂i(β ,u)
−

∑n
i=1 Yi(u)r̂1)i (β ,u)∑n
i=1 Yi(u)r̂i(β ,u)

.

By (7.16), β̂EPL solves the equation Û(β , 1) = 0. By Taylor’s expansion, one gets

n−1/2Û(β , 1) = −n−1 ∂Û(β∗, 1)
∂β

√
n(β̂EPL − β0), (7.17)

where β∗ is between β̂EPL and β0. By Lemma 7.1 and consistency of β̂EPL,

−n−1 ∂Û(β∗, 1)
∂β

P−→ I(β0).

Therefore, to prove the asymptotic normality in the theorem it suffices to show that
n−1/2Û(β , 1) is asymptotically normal withmean 0 and variance�(β0) = (1−ρ)�1(β0)+
ρ�2(β0), which is evidenced in Lemma 7.4 below.

Proof of Theorem4.2.Using similar arguments to Theorem 4.1, we establish the result.

Lemma 7.2. Under Condition (A),

n−1/2
n∑

i=1

∫ 1

0

(
r̂(k)i (β ,w) − r(k)i (β ,w)

)2
Yi(w)ri(β ,w)λ0(w) dw

p→ 0, k = 0, 1

n−1/2
n∑

i=1

∫ 1

0

(
Ŝ(k)(β ,w) − S(k)(β ,w)

)2
Yi(w)ri(β ,w)λ0(w) dw

p→ 0, k = 0, 1.

Proof. The result can be obtained by following the same argument as that for
Lemma 2.4 of Zhou and Wang (1999).

Lemma 7.3. Under Condition (A), the second term of Û(β , t) in (7.16) admits the
following decomposition

n−1/2
n∑

i=1

∫ 1

0
�(r̂i)(β ,w)Yi(w)ri(β0,w)λ0(w) dw

= −n−1/2
n∑

i=1

∫ 1

0
�(ri)(β ,w)Yi(w)[r̂i(β ,w) − ri(β ,w)] λ0(w)dw + op(1).

Proof. The proof uses the same argument as that for Lemma 2.5 of Zhou and Wang
(1999). By the Taylor expansion

f (x, y) = f (x0, y0) + ∂f (x, y)
∂x

∣∣∣
x0,y0

(x − x0)

+∂f (x, y)
∂y

∣∣∣
x0,y0

(y − y0) + O
(
(x − x0)2 + (y − y0)2

)
,

if ∂2f
∂x2 ,

∂2f
∂y2 , and

∂2f
∂x∂y are finite. Then

r̂(1)

r̂
= r̂(1)

r
− r(1)(r̂ − r)

r2
+ O

[
(r̂ − r)2 +

(
r̂(1) − r(1)

)2]
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Ŝ(1)

Ŝ(0)
= Ŝ(1)

S(0) −
S(1)

(
Ŝ − S(0)

)
S(0)2 + O

[(
Ŝ − S(0)

)2 +
(
Ŝ(1) − S(1)

)2]
.

Note that
∑

i �r̂i(u)r̂i(u)Yi(u) = 0. It follows that the left side of the result in the lemma
can be expressed as

n−1/2
n∑

i=1

∫ 1

0
�(r̂i)(β ,w)Yi(w)ri(β ,w)λ0(w) dw

= −n−1/2
n∑

i=1

∫ 1

0
�(r̂i)(β ,w)Yi(w)[ r̂i(β ,w) − ri(β ,w)] λ0(w) dw

= −n−1/2
n∑

i=1

∫ 1

0
�(ri)(β ,w)Yi(w)[r̂i(β ,w) − ri(β ,w)] λ0(w) dw + op(1),

where the last equality is from Lemma 7.2. Therefore the result holds.

Lemma 7.4. Under Condition (A),

n−1/2Û(β , 1) L−→ N
(
0, (1 − ρ)�1(β) + ρ�2(β)

)
.

Proof. Note that r̂i − ri = (1 − ηi)
(
φ̄i − φi

)
. Applying the first order approximation

x/y = x0/y0 + (x − x0)/y0 − (y − y0)x0/y20 + O
(
(x − x0)2 + (y − y0)2

)
to r̂(1)/r̂ and

Ŝ(1)/Ŝ(0) around (r(1), r) and (s(1), s(0)), respectively, and by Lemma 7.3 the second term
of n−1/2Û(β , 1) in (7.16) becomes

�(ri)(β ,w)Yi(w)[r̂i(β ,w) − ri(β ,w)] λ0(w) dw + op(1)

= −n−1/2
∑
j∈V̄

∫ 1

0

(
φ̄j − φj

)
�(φj)(u)Yj(u)λ0(u)du + op(1)

= In1 + op(1). (7.18)

Note that φ̂j(β , t) = ν̂j(β1, t) exp
{
β ′
2Zj(t)

}
. Since

φ̄j − φj = (φ̂j − φj) − exp
{
β ′
2Zj(u)

}
ρ∗

α(Zj,u)
σ1(Zj,u)

σ2(Zj,u)

(
ψ̂j − ψ̄j

)
(1 + op(1))

=
∑
i∈V

ωi(γi − φj) − exp{β ′
2Zj(u)}

[∑
i∈V

ωi(ξi − ψj)ρ
∗
α(Zj,u)

σ1(Zj,u)

σ2(Zj,u)

−
∑

i∈V∪V̄
ω̄i(ξi − ψj)ρ

∗
α(Zj,u)

σ1(Zj,u)

σ2(Zj,u)

⎤
⎦ (1 + op(1)) + op

(
1√
n

)

=
∑
i∈V

ωi

[
(γi − φj) − exp

{
β ′
2Zj(u)

}
ρ∗

α(Zj,u)
σ1(Zj,u)

σ2(Zj,u)
(ξi − ψj)

]
(1 + op(1))

+
∑

i∈V∪V̄
ω̄i(ξi − ψj) exp

{
β ′
2Zj(u)

}
ρ∗

α(Zj,u)
σ1(Zj,u)

σ2(Zj,u)
(1 + op(1)) + op

(
1√
n

)
,
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the first term in (7.18) can be rewritten as

In1 = −n−1/2
∑
j∈V̄

∫ 1

0
�(φj)(u)Yj(u)λ0(u)

×
{∑
i∈V

ωi

[
(γi − φj) − exp

{
β ′
2Zj(u)

}
ρ∗

α(Zj,u)
σ1(Zj,u)

σ2(Zj,u)
(ξi − ψj)

]

+
∑

i∈V∪V̄
ω̄i(ξi − ψj) exp

{
β ′
2Zj(u)

}
ρ∗

α(Zj,u)
σ1(Zj,u)

σ2(Zj,u)

⎫⎬
⎭ du(1 + op(1)) + op(1)

≡ Jn1 + Jn2 + op(1).

Note that

n−1
v

∑
i∈V

Yi(t)Kh(Zi − Zj) = f (t,Zj)(1 + op(1)),

n−1
∑

i∈V∪V̄
Yi(t)Kh(Zi − Zj) = f (t,Zj)(1 + op(1)),

ωi(t,Zj; h) = f −1(t,Zj)(1 + op(1)) n−1
v Yi(t)Kh(Zi − Zj),

ω̄i(t,Zj; h) = f −1(t,Zj)(1 + op(1)) n−1Yi(t)Kh(Zi − Zj),

uniformly for j = 1, . . . , n. Then

Jn1 = − 1√
n
∑
j∈V̄

∫ 1

0
�(φj)(u)Yj(u)λ0(u)f −1(u,Zj) ×

1
nv

∑
i∈V

Yi(u)Kh(Zi − Zj)

[
(γi − φj) − exp{β ′

2Zj(u)}

×ρ∗
α(Zj,u)

σ1(Zj,u)

σ2(Zj,u)
(ξi − ψj)

]
du + op(1)

= − 1√
n
n − nv
nv

∑
i∈V

[
Qi − Q∗

i
] + op(1),

Jn2 = − 1√
n
∑
j∈V̄

∫ 1

0
�(φj)(u)Yj(u)λ0(u) exp{β ′

2Zj(u)}ρ∗
α(Zj,u)

σ1(Zj,u)

σ2(Zj,u)

×1
n

∑
i∈V∪V̄

Yi(u)Kh(Zi − Zj)(ξi − ψj)f −1(u,Zj)du + op(1)

= − 1√
n
n − nv

n
∑

i∈V∪V̄
Q∗
i + op(1).

Therefore, the second term of n−1/2Û(β , 1) in (7.16) equals

− 1√
n
n − nv
nv

∑
i∈V

[Qi − Q∗
i ]−

1√
n
n − nv

n
∑

i∈V∪V̄
Q∗
i + op(1).
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Hence, n−1/2Û(β , 1) can be expressed as

n−1/2
∑
i∈V̄

[∫ 1

0

{
φ

(1)
i (β ,u)

φi(β ,u)
− s(1)(β ,u)

s(0)(β ,u)

}
dMi(s) − n − nv

n
Q∗
i

]
+ op(1)

+ n−1/2
∑
i∈V

[∫ 1

0

{
r(1)i (β ,u)

ri(β ,u)
− s(1)(β ,u)

s(0)(β ,u)

}
dMi(s) − n − nv

nv
(Qi − Q∗

i
n − nv

n
)

]
.

For the 1st and 3rd terms above, each of them is a sum of independently distributed terms
with mean zero from the nonvalidation and validation subsamples, respectively. The 1st
term converges weakly to a gaussian process with covariance (1−ρ)�1(β0). The 3rd term
is asymptotically normal with mean zero and variance ρ�2(β0). By independence of the
two terms, n−1/2Û(β , 1) P−→ N(0,�(β)) with �(β) = (1 − ρ)�1(β) + ρ�2(β).
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