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Abstract

In this paper a comprehensive survey of the different methods of generating discrete
probability distributions as analogues of continuous probability distributions is
presented along with their applications in construction of new discrete distributions.
The methods are classified based on different criterion of discretization.

Keywords: Discrete analogue; Reliability function; Hazard rate function; Competing risk;
Exponentiated distribution; Maximum entropy; Discrete pearson; T-X method
1. Introduction
Sometimes in real life it is difficult or inconvenient to get samples from a continuous

distribution. Almost always the observed values are actually discrete because they are

measured to only a finite number of decimal places and cannot really constitute all

points in a continuum. Even if the measurements are taken on a continuous scale the

observations may be recorded in a way making discrete model more appropriate.

In some other situation because of precision of measuring instrument or to save space,

the continuous variables are measured by the frequencies of non-overlapping class inter-

val, whose union constitutes the whole range of random variable, and multinomial law is

used to model the situation.

In categorical data analysis with econometric approach existence of a continuous un-

observed or latent variable underlying an observed categorical variable is presumed.

Categorical variable is the observed as different discrete values when the unobserved

continuous variable crosses a threshold value. Therefore, the inference is based on ob-

served discrete values which are only indicative of the intervals to which unobserved

continuous variable belongs but not its true values. Hence this is a case where one

makes use of a discretization of the underlying continuous variable.

In survival analysis the survival function may be a function of count random variable

that is a discrete version of underlying continuous random variable. For example the

length of stay in an observation ward is counted by number of days or survival time of

leukemia patients counted by number of weeks. From these examples it is clear that the

continuous life time may not necessarily always be measured on a continuous scale but

may often be counted as discrete random variables.
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More over often the continuous failure time data generated from a complex sys-

tem poses more derivational problem than that of a discrete version of the under-

lying continuous one. Despite these discrete life time distributions played only a

marginal role in reliability analysis. Therefore, there is a need to focus on more

realistic discrete life time distributions (Rezaei Roknabadi et al. 2009). That is

discretization of a continuous lifetime model is an interesting and intuitively ap-

pealing approach to derive a discrete lifetime model corresponding to the continu-

ous one (Lai 2013).

From the above discussion it can be inferred that many a times in real world the ori-

ginal variables may be continuous in nature but discrete by observation and hence it is

reasonable and convenient to model the situation by an appropriate discrete distribu-

tion generated from the underlying continuous models preserving one or more import-

ant traits of the continuous distribution.

Deriving discrete analogues (Discretization) of continuous distribution has drawn at-

tention of researchers. In recent decades a large number of research papers dealing

with discrete distribution derived by discretizing a continuous one have appeared in a

scattered manner in existing statistical literatures.

There are several ways to derive discrete distribution from continuous ones. In the

current published literature we could find only two papers that dealt with surveys of

discrete analogues of continuous distributions though in a limited manner. These are

Bracquemond and Gaudoin (2003) who devoted a section on discrete life time dis-

tributions derived from continuous one in their survey on discrete life time distri-

butions and Lai (2013) who presented construction of discrete lifetime

distributions from continuous one in his paper concerning issues of construction

of discrete life time distribution

With above background the main motivation of this article is to present a com-

prehensive method-wise survey of the different techniques of discretization of con-

tinuous distributions, with examples of their applications in construction of

discrete analogues.

In the section 2 of this article discretization of continuous distributions are discussed

method wise including composite methods, which comprise two stages using two dif-

ferent methods in separate subsections. In section 3 a discussion on the discretization

highlighting its need, limitations and also a final conclusion is presented. Throughout

the paper continuous random variable to be discretized is denoted by X while its

discrete analogue by Y and with respect to discrete life time characteristics Kemp’s

(2004) convention is followed.
2. Discrete analogues
A continuous random variable may be characterized either by its probability density func-

tion (pdf), moment generating function (mgf), moments, hazard rate function etc. Basic-

ally cconstruction of a discrete analogue from a continuous distribution is based

on the principle of preserving one or more characteristic property of the

continuous one.

The various methods by which discrete analogue Y of a continuous random variable

X may be constructed can be classified as follows:
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I. Difference equation analogues of Pearsonian differential equation.

II. Probability mass function (pmf) of Y retains the form of the pdf of X and support

of Y is determined from full range of X.

III. Pmf of Y retains the form of the pdf of X and support of Y is determined from a

subset of the range of X.

IV. Survival function (sf ) of Y retains the form of the survival function of X and

support of Y is determined from full range of X.

V. Cumulative distribution function (cdf) of Y retains the form of the cdf of X and

support of Y is determined from a subset of the range of X.

VI.Hazard (failure) rate function of Y retains the form of the hazard (failure) rate

function of X.

VII. Moments of Y and X up to a certain order coincides.

VIII.Any interval domain, any theoretically possible mean–variance pair for Y

IX. Two stage composite methods

2.1 Discrete analogue of pearsonian system

Pearson (1895) starting with the difference equation

pk−pk−1
pk

¼ k−a
b0 þ b1k þ b2k

2 ð1Þ

defined the celebrated Pearsonian system of continuous distributions with pdf satisfy-
ing the differential equation

1
f
df
dx

¼ aþ x
c0 þ c1xþ c2x2

Though Pearson himself did not pursue the development of a discrete analogue of
his continuous system, the difference Eq. in (1) was used by Carver (1919, 1923). But

he too did not attempt a thorough examination of the discrete distributions arising

from Eq. (1).

Katz (1945, 1946, 1948, 1965) developed a discrete analogue of the Pearsonian system

of continuous distributions by using the relationship

pkþ1 ¼
aþ bk
1þ k

pk ; k ¼ 0; 1; 2; …

Where pk = P(Y = k). The main motivation of Katz was to discriminate between bino-

mial, Poisson and negative binomial distributions. Some notable related developments

following Katz are as follows:

Ord (1967a, b, c, 1968) discussed discrete analogue of the Pearson continuous system

by using the following difference equation:

pk−pk−1
pk

¼ a−k
aþ b0ð Þ þ b1−1ð Þk þ b2k k−1ð Þ

Discrete t distribution: Ord (1968) also derived discrete analogue of various types of

Pearsonian distributions. In particular, proposed discrete t distribution as a particular

case of type VII distribution. The pmf of his discrete t was
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pk ¼ αm=
Ym
j¼1

jþ k þ að Þ2 þ b2
� �

; k∈Z

Where 0 ≤ a ≤ 1, 0 < b <∞, m is a non negative integer, and αm is a normalizing con-

stant. (see Johnson et al. 2005 for detail).

Gurland and Tripathi (1975) and Tripathi and Gurland (1977), studied the extended

Katz family that satisfies the probability recurrence relation

pkþ1 ¼
aþ bk
cþ k

pk ; k ¼ 0; 1; 2; …

Sundt and Jewell (1981) investigated a family of distributions satisfying probability
recurrence relation
(See also Willmot, 1988)
pkþ1 ¼
aþ bþ ak

1þ k
pk ; k ¼ 0; 1; 2; …
2.2 Methodology-II

In this method the pmf of the discrete random variable Y is derived as an analogue of

the continuous random variable X with pdf f(x), −∞ < x <∞ as

P Y ¼ kð Þ ¼ f kð Þ=
X∞
j¼−∞

f jð Þ; k ¼ 0;�1;�2;⋯ ð2Þ

The distribution generated using this technique may not always have a compact form
due to the normalizing constant.

2.2.1 Good distribution

The first trace of this type of construction is seen in Good distribution (Good 1953)

having pmf

P Y ¼ kð Þ ¼ qkka=
X∞
j¼1

qjja; k ¼ 1; 2;⋯; α∈R ð3Þ

When a > − 1, this distribution can be derived as a discrete analogue of gamma distri-

bution by considering

f xð Þ ¼ 1
θβΓβ

xβ−1e−x=θ in Eq. (2) and replacing e− 1/θ = q and β − 1 = a.

This distribution was applied to model the population frequencies of species and the

estimation of population parameters.

This distribution was extensively studied by Kulasekara and Tonkyn (1992) and

Doray and Luong (1997).

The distribution in Eq. (3) is a special case of Hurwtiz-Lerch Zeta Distribution

(Zornig and Altmann 1995; Doray and Luong 1997; Gupta et al. 2008). For

Hurwtiz-Lerch Zeta functions see Gradshteyn and Ryzhik (2000). (see also section

11.2.20 of Johnson et al. 2005).

Another related distribution is the discrete Pareto distribution, also known as the

Riemann zeta distribution (see page 527, Johnson et al. 2005).

Jamjoom (2013) investigated order statistics of the above distribution (also investigated

by Alhazzani 2012) both in the “i.i.d.” and “identical but not independent” cases.
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2.2.2 General Dirichlet distribution

Using general Dirichlet series, Siromoney (1964) studied the general Dirichlet Series

distribution with pmf

P Y ¼ kð Þ ¼ ake
−λkθ

�X∞
j¼1

aje
−λjθ; k ¼ 1; 2;⋯;

Various distributions were seen as particular cases as follows:

� For λk = log(k), the distribution reduces to Dirichlet series distribution with pmf

P Y ¼ kð Þ ¼ akk
−θ
�X∞

j¼1

ajj
−θ; k ¼ 1; 2;⋯

� For ak = a and λk = log(k), the distribution reduces to Zeta distribution with pmf

P Y ¼ kð Þ ¼ k−θ=ζ θð Þ ; k ¼ 1; 2; … where ζ θð Þ ¼
X∞
j¼1

j−θ is the Riemann Zeta

function.

� Putting λk = k, e− θ = α, gives power series distribution with pmf

P Y ¼ kð Þ ¼ akα
k

�X∞
j¼0

ajα
j; k ¼ 0; 1; 2;⋯

� For ak = ka, e− θ = q and λk = − k reduces to Good distribution
� For ak = k, λk = − k2 and θ = 1/2 discrete Pearson distribution mentioned in Byers

and Shenton (1994) having pmf

P Y ¼ kð Þ∝ke−k2=2; k ¼ 1; 2;⋯

� The discrete Pearson III distribution of Haight (1957) is a special

case with ak = (k + ν)a and λk = k (page 532, Johnson et al. 2005) with pmf

P Y ¼ kð Þ ¼ e−k θ=½ k þ νð Þa
X∞
j¼0

e−j θ= jþ νð Þa� ��; k ¼ 0; 1; 2;⋯

Siromoney (1964) applied this distribution to model frequency distribution of the length

of wet spells during the period 1932-62 in a place called Tambaram in southern India.

2.2.3 Discrete normal distribution

A discrete normal distribution was investigated by many authors including Lisman and

Van Zuylen (1972); Kemp (1997); Liang (1999); and Szablowski (2001).
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The discrete normal distribution was derived as a discrete analogue of the normal

distribution (Kemp 1997) by considering f xð Þ ¼ 1
σ
ffiffiffiffi
2π

p exp − x−μð Þ2
2σ2

h i
; in Eq. (2) and sub-

stituting, e 1−2μð Þ=2σ2 ¼ λ and e−1=σ
2 ¼ q: The resulting pmf is given by

P Y ¼ kð Þ ¼ λkqk k−1ð Þ=2
�X∞

j¼−∞

λjqj j−1ð Þ=2; k ¼ 0;�1;�2;⋯ ð4Þ

This distribution is characterized by maximum entropy for specified mean and vari-
ance, and integer support on (−∞, +∞). It can be derived as the distribution of the dif-

ference of two related Heine distribution (Benkherouf and Bather 1988; see also

section 4.12.6 of Johnson et al. 2005 and references therein)

Weighted distribution of discrete normal with parameter (λ, q) with weight function

of the form πx is again discrete normal (πλ, q).

For λ = q1/2 and q = e− 2β the pmf in Eq. (4) reduces to that of Das Gupta (1993) ver-

sion of discrete normal distribution.

P Y ¼ kð Þ ¼ qk=2e−β k k−1ð Þ
�X∞

j¼−∞

qj=2e−β j j−1ð Þ; k ¼ 0;�1;�2;⋯

The distribution is log concave and unimodal like normal distribution.
Harris et al. (2001) applied this distribution in dynamic analysis of rural retail estab-

lishment count data.

2.2.4 Discrete exponential distribution

Sato et al. (1999) proposed discrete exponential distribution having similar looking

structure starting with the continuous exponential distribution having pdf

f xð Þ ¼ λe−λx; x > 0; α > 0; λ > 0:

The pmf of their discrete exponential distribution was

P Y ¼ kð Þ ¼ 1−e−λ
� �

e−λk ; k ¼ 0; 1; 2;⋯: ð5Þ

This is the geometric distribution with pmf
P(Y = k) = (1 − p)pk, k = 0, 1, 2,⋯, where p = e− λ.

Sato et al. (1999) applied this distribution to model defect count distribution in semi-

conductor deposition equipment and defect count distribution per chips.

It can be easily checked that the pmf in Eq. (5) can be derived as a discrete analogue

of exponential distribution by considering f(x) = λ e− λx, x > 0, in Eq. (2).

2.2.5 Discrete Gamma distribution

Sato et al. (1999) also briefly discussed the convolution of their discrete exponential

distribution to present a discrete Gamma distribution having pmf

P Y ¼ kð Þ ¼

Ym−1

i¼1

k þ ið Þ

m−1ð Þ! 1−e−λ
� �m

e−λk ; k ¼ 0; 1; 2;⋯:

This can be easily seen as the negative binomial with pmf
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P Y ¼ kð Þ ¼ mþ k−1
k

� 	
pk 1−pð Þm; k ¼ 0; 1; 2;⋯ when p ¼ e−λ:

Sato et al. (1999) applied this distribution to model defect count distribution in semi-
conductor deposition equipment and defect count distribution per chips.

2.2.6 Discrete log normal distribution

Considering f xð Þ ¼ 1
x σ

ffiffiffiffi
2π

p exp − lnx−μð Þ2
2σ2

h i
in Eq. (2), Bi et al. (2001) proposed a discrete

distribution with pmf

P Y ¼ kð Þ ¼ e−
ln k−μð Þ
2σ2 =k

X∞
j¼1

e−
ln j−μð Þ
2σ2 ; k ¼ 1; 2;⋯ ð6Þ

and called it discrete Gaussian exponential (DGX) distribution. It is easy to see that

Eq. (6) can be derived as a discrete analogue of log normal distribution.

This distribution reduces to a discrete generalised Zipf distribution in limit as μ→ −∞
(see Bi et al. 2001) with pmf

P Y ¼ kð Þ∝ 1
k
exp −

lnk−μð Þ
σ2


 �
∝k− 1−μ=σ2ð Þ

This distribution was applied to model four extremely skewed count data sets namely

Text data from the English Bible, Sales data from a large retailer chain, Telecommuni-

cations data customer data from an AT&T service of monthly usage volumes, and Click

stream data and browsing behavior of internet users.

2.2.7 Discrete half normal distribution

Kemp (2006) presented a discrete half normal distribution as a maximum entropy dis-

tribution for given mean and variance with support 0, 1, 2⋯. The pmf is given by

P Y ¼ kð Þ ¼ θkqk k−1ð Þ=2
�X∞

j¼0

θjqj j−1ð Þ=2; k ¼ 0; 1; 2;⋯:

This can be seen as discretization of continuous half normal in the same way as in
section 2.2.3. It can arises as a limiting q-hyper-Poisson-I (Kemp 2002) distribution

and also as a mixture of Heine distributions (Benkherouf and Bather 1988).

Khorashiadizadeh et al. (2012) referred this distribution as discrete truncated normal.

For an approximation result on this distribution see Byers and Shenton (1994).

2.2.8 Discrete Laplace (double exponential)

Inusah and Kozubowski (2006) proposed a discrete analogue of Laplace (Double expo-

nential) distribution having pmf

P Y ¼ kð Þ ¼ 1−p
1þ p

p kj j; k ¼ 0;�1;�2;⋯; 0 < p < 1; ð7Þ

This distribution inherits many properties of its continuous counterpart namely
unimodality, infinite divisibility, maximum entropy distrbution for given absolute mo-

ment. Also arises as the difference of two i.i.d. geometric random variables.
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This distribution can be derived as a discrete analogue of Laplace distribution by

considering

f xð Þ ¼ 1
2σ exp − xj j=σð Þ; in Eq. (2) and substituting, e− 1/σ = p.

Inusah and Kozubowski (2006) applied this distribution in modelling different

currency exchange rate data. Meyer et al. (2013) applied it for estimating Y-STR

haplotype frequencies.

2.2.9 Discrete Skew Laplace

Considering skew Laplace distribution with pdf

f xð Þ ¼ 1
σ

m
1þm2

exp −xm=σð Þ; x≥0
exp −x=mσð Þ; x < 0

�

as the base distribution, a discrete analogue was first proposed by Kozubowski and

Inusah (2006). It’s pmf is given by

P Y ¼ kð Þ ¼ 1−pð Þ 1−qð Þ
1−pq

pk ; k ¼ 0; 1; 2; 3; …
q kj j ; k ¼ 0;−1;−2;−3; …

�
ð8Þ

Where e− 1/σ = p and e− 1/kσ = q, p є (0, 1) and q є (0, 1).

For p = q Eq. (8) reduces to Eq. (7). Arises as the difference of two independently but

not identically distributed geometric random variables.

This distribution was also applied for modeling currency exchange rates.

Another discrete distribution that generalizes the discrete skew Laplace distribution was

proposed by Lekshmi and Sebastian (2014). This new Generalized Discrete Laplace dis-

tribution can be derived as the difference of two independently distributed negative

binomial (NB) random variables with same dispersion parameter.

2.2.10 Discrete generalized exponential distribution

The generalized exponential distribution of Gupta and Kundu (1999) has pdf

f xð Þ ¼ αλ 1−e−λx
� �α−1

e−λx; x > 0; α > 0; λ > 0:

A discrete analogue of this distribution was proposed by Nekoukhou et al. (2012)

with pmf

P Y ¼ kð Þ ¼ Cpk−1 1−pk
� �α−1

=
X∞
j¼0

α−1
j

� 	
−1ð Þj

1−p1þj
; k ¼ 1; 2; 3;⋯

X∞ α−1
� 	

−1ð Þj pj

Where C ¼

j¼0
j 1−p1þj

; e−λ ¼ p

Nekoukhou et al. (2012) applied this distribution to model rank frequencies of graph-

emes in a Slavic language called ‘Slovene’.

Among the various distribution described in section 2.2 above, discrete normal in

section 2.2.3, discrete half normal in section 2.2.7 and discrete Laplace distribution in

section 2.2.8 can also be classified as generated to preserve the maximum entropy

property of their continuous counterpart.
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2.3 Methodology-III

This is a modification of the method-II (Barbiero 2010). Here the discrete analogue is

derived to have a finite support.

Suppose X is a continuous random variable with pdf fX(x), −∞ < x <∞. Y is the

discrete analogue with the support consisting of k points to be derived from the range

of X. Let g = (1 − k)/2, k odd positive integer and yi = g − 1 + i, i = 1, 2,⋯, k.

For an example consider the case of discretizing X. Let ci ¼ Φ yið Þ; yi ¼ F−1
X cið Þ;

where Φ(yi) is the cdf of N(0, 1) and FX() is the cdf of the X.

Then the pmf of Y with support {y1, y2,⋯, yk} is given by

P Y ¼ yið Þ ¼ f X yið Þ
�Xk

i¼1

f X yið Þ; i ¼ 1; 2;⋯; k

Barbiero (2010) gave examples of discrete gamma with 5 points and Weibull with 9
points support.

This method generates discrete analogue of continuous distribution with limited sup-

port like beta distribution. Here if X is symmetrical then Y retains expected value of X

and pmf of Y retains the structure of the pdf of X.

For this method to be implemented the continuous cdf must be invertible, the sup-

port of the resulting discrete distribution may not be set of integers.

Barbiero (2010) has applied this method to estimate the reliability of systems for

which stress and strength are defined as complex functions, and whose reliability is not

derivable through analytic techniques.

2.3.1 Discrete power function distribution

The pdf of the continuous finite range power-function distribution having pdf

f xð Þ ¼ pxp−1=θp; 0 < x < θ; p > 0; θ > 0

was introduced by Mukherjee and Islam (1983). Lai and Wang (1995) discretized the

above distribution to derive a finite range discrete distribution with pmf

P Y ¼ kð Þ ¼ kα=c N ; αð Þ ; k ¼ 0; 1;⋯; N ; α > 0; α∈R

Xn
B nþ1ð Þ−B
Where c n; jð Þ ¼

k¼0

kα ¼ jþ1 jþ1

jþ1 ; Bm xð Þ is the ith Bernoulli Polynomial defined

as Bm xð Þ ¼
Xm
k¼0

Bk xð Þxm−k :

This distribution can model bathtub-shaped hazard rate as well as upside-down

bathtub-shaped mean residual life. They studied various other reliability properties and

applied this model to fit a mortality data.

2.4 Methodology-IV

Following Kemp’s (2004) convention here we consider the definition of the discrete sf

defined as SY(k) = P(Y ≥ k) and accordingly the cdf FY(k) = P(Y ≤ k) is related to the sf as

SY(k) = 1 − FY(k − 1).

If the underlying continuous random variable X has the survival function (sf ) SX(x),

then the random variable Y = ⌊X⌋ =largest integer less or equal to X will have the pmf
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P Y ¼ kð Þ ¼ P k≤X < k þ 1ð Þ
¼ FX k þ 1ð Þ−FX kð Þ ¼ SX kð Þ−SX k þ 1ð Þ; k ¼ 0; 1; 2; …

ð9Þ

[Since for continuous random variable X, P(X = x) = 0 and FX(k) = 1 − SX(k)]

The method can be viewed deriving a discrete concentration (Roy 2003) of the ran-

dom variable X and also as a process of time discretization (Bracquemond and Gaudoin

2003) in the context of X representing life. It is possibly the easiest method of

construction.

The resulting pmf will be in a compact form if the continuous sf is in compact form.

This method preserves the sf that is SY(k) = SX(k).

One limitation of this technique is the concentration on the left limit of the equal in-

tervals in which the support of the continuous random variable is partitioned.

Alternatively, by considering Y = ⌈X⌉ smallest integer greater than or equal to X one

can get a discrete version of X with following pmf that will preserve the cdf.

P Y ¼ kð Þ ¼ P X ¼ kð Þ ¼ P k−1 < X≤kð Þ
¼ P X≤kð Þ−P X≤k−1ð Þ ¼ FX kð Þ−FX k−1ð Þ; k ¼ 0; 1; 2; …

(see Lai 2012; Bracquemond and Gaudoin 2003).

It may be noted here that = ⌈X⌉ = ⌊X⌋ + 1.
2.4.1 Discrete exponential distribution

If the underlying distribution is exponential with sf

SX xð Þ ¼ P X≥xð Þ ¼ exp −θxð Þ;

then the pmf of its discrete version is given by

P Y ¼ kð Þ ¼ exp −θ kð Þ− exp −θ k þ 1ð Þð Þ ¼ qk−qkþ1 ¼ 1−qð Þqk ; k ¼ 0; 1; 2;…

where q = exp(−θ). This is the geometric distribution (Bracquemond and Gaudoin

2003).

2.4.2 Discrete Weibull distribution

Weibull distribution is widely accepted failure model but in practice, the failure data are

often measured in discrete time such as cycles, blows, shocks, or revolutions. Discrete

Weibull was proposed to find a discrete distribution corresponding to the Weibull.

If X ~ Weibull distribution with pdf and sf

f X xð Þ ¼ β

λ

x
λ


 �β−1
exp − x=λð Þβ

n o
and SX xð Þ ¼ exp − x=λð Þβ

n o

Considering the sf of the Weibull in the Eq. (9), and substituting q = exp[(−1/λ)β], Naka-
gawa and Osaki (1975) first proposed discrete Weibull distribution with pmf

P Y ¼ kð Þ ¼ qk
β

−q kþ1ð Þβ ; k ¼ 0; 1; 2;⋯; β > 0; 0 < q < 1 ð10Þ

If X1, X2,⋯, Xn are i.i.d. discrete Weibull in Eq. (10) then min(X1, X2,⋯, Xn) is also a
discrete Weibull. (see also Almalki (2014).
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Khan et al. (1989) and Kulasekara (1994) considered estimation of this distribution.

Englehardht and Li (2011) applied this distribution in modeling microbial counts. See

also Bakouch et al. (2012) and Khorashiadizadeh et al. (2012) for applications.

2.4.3 Discrete geometric Weibull distribution

Often we see systems possessing two phase life. First the stable phase having a constant

failure rate until the change point time τ followed by next step which is the wear out phase

with a larger increasing failure rate. Zacks (1984) considered the failure distribution in the

wear out phase as Weibull to obtain the sf of the exponential Weibull distribution as

SX xð Þ ¼ exp −λx− λ x−τð Þþ� �β
h i

; where Xþ ¼ max 0;Xð Þ:

The corresponding discrete version referred to as the discrete geometric Weibull was
proposed by Bracquemond and Gaudoin (2003) with pmf

P Y ¼ kð Þ ¼ exp −λ k−1ð Þ− λ k−τ−1ð Þþ� �β
− exp −λk− λ k−τð Þþ� �β

hh

2.4.4 Discrete normal distribution

Roy (2003) considered discrete normal distribution with pmf

P Y ¼ kð Þ ¼ Φ k þ 1−μð Þ=σð Þ−Φ k−μð Þ=σð Þ; k ¼ 0;�1;�2;⋯; σ > 0;−∞ < μ < þ∞

where Φ(.) is the cumulative distribution function (cdf) of standard normal distribution.

An application of the distributions for evaluating the reliability of complex systems

was elaborated as an alternative to simulation methods Roy (2003).

2.4.5 Discrete Rayleigh distribution

If X ~ Rayleigh distribution then its pdf and sf are respectively given by

fX(x) = (x/σ2) exp[−x2/2σ2] and sf SX(x) = exp[−x2/2σ2], x > 0.
Discrete Rayleigh distribution (Roy 2004) has pmf

P Y ¼ kð Þ ¼ θk
2

−θ kþ1ð Þ2 ; k ¼ 0; 1; 2;⋯; 0 < θ < 1:

This is a particular case of the discrete Weibull distribution of Nakagawa and Osaki
(1975) stated in section 2.4.2.

Roy (2004) applied this distribution in reliability modeling and in approximating

probability integrals arising out of a reliability analysis in continuous setting.

2.4.6 Discrete Maxwell distribution

If X ~ Maxwell distribution then its pdf and sf are respectively given by

f X xð Þ ¼ 4ffiffiffi
π

p 1
θ3=2

x2 e−x
2=θ and sf SX xð Þ ¼ 1− Γ 3=2; x2=θð Þ

Γ 3=2ð Þ ; x > 0:

Krishna and Pundir (2007) studied discrete Maxwell distribution having pmf

P Y ¼ kð Þ ¼ 4ffiffiffi
π

p 1

θ3=2
Q k; 2; θð Þ; k ¼ 0; 1; 2;⋯; θ > 0

kþ1
2

where Q k; 2; θð Þ ¼ ∫
k
u2e− u =θð Þdu:
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2.4.7 Discrete extended exponential distribution (Telescopic)

If X ~ extended exponential distribution then its pdf and sf are respectively given by

f X xð Þ ¼ αg=θ xð Þe−α g=θ xð Þ; and sf SX xð Þ ¼ e−α gθ xð Þ; α; x > 0:

Where gθ(x) is a strictly increasing function of x with gθ(0) = 0 and gθ(x)→∞ as

x→∞ (Rezaei Roknabadi 2000, 2006).

Rezaei Roknabadi et al. (2009) obtained the pmf of their telescopic distribution by

discretizing the extended exponential distribution as

P Y ¼ kð Þ ¼ qgθ kð Þ−qgθ kþ1ð Þ; k ¼ 0; 1; 2;⋯; where q = e− α, 0 < q < 1

Rezaei Roknabadi et al. (2009) have shown that this family of distribution belongs to

IFR (increasing Failure Rate) class if any one of the following is true:

i. g�θ yð Þ ¼ gθ yþ 1ð Þ−gθ yð Þ is an increasing function of y.

ii. For every sequence qgθ iþyð Þ−qgθ yð Þ� �
; i ¼ 0; 1; 2;⋯ is decreasing

iii. For all j1, j2, k1, k2∈ {0, 1,⋯} such that j1 < j2 and k1 < k2

gθ(j1 − k1) − gθ(j2 − k2) ≤ gθ(j2 − k1) − gθ(j1 − k2). That is satisfying the Polya sequence of

order two for reliability function.

iv. {gθ(y)}, y = 0, 1,⋯ is convex.

Further by taking Tθ yð Þ ¼ 1
2 2gθ yþ 1ð Þ−gθ yð Þ−gθ yþ 2ð Þ� �

it was proved by that the

family is IFR (DFR) iff Tθ(y) > (<) 0 and CFR iff Tθ(y) = 0.

Following are some important distributions that belong to this family:

i. Discrete exponential

ii. Discrete Rayleigh

iii. Discrete Weibull

iv. Discrete Linear Exponential

v. Discrete Gompertz

This class of distribution was reinvestigated under the name discretized general

class of continuous distribution in the chapter IV of a Masters Thesis by Al-Masoud

(2013).

They obtained the following distributions as particular cases:

i. Discrete Modified Weibull Extension Distribution: By taking gθ(x) = exp(x/θ)β − 1.

The pmf is of the form

P Y ¼ kð Þ ¼ q−1 q exp k=θð Þβ−q exp kþ1ð Þ=θð Þβ
h i

; k ¼ 0; 1; 2;⋯

from which the discretized model of Chen (2000) is derived by putting θ = 1.

This can be seen as a discretized version of the Modified Weibull Extension of

Xie et al. (2002) having sf SX(x) = exp[λα{1 − exp(x/θ)β}], x > 0, λ > 0, θ > 0, β > 0 after

appropriate re-parameterization.
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ii. Discrete Modified Weibull Type I Distribution: By taking gθ(x) = (δ/α)x + xβ. The

pmf is given by

P Y ¼ kð Þ ¼ qαkþkβ−qα kþ1ð Þþ kþ1ð Þβ ; k ¼ 0; 1; 2;⋯

This distribution is discretized version of the Modified Weibull Type I Distribution
Sarhan and Zaindin (2009) having sf SX(x) = exp[−αx − λxβ}], x > 0, λ > 0, α, β > 0 after

appropriate re-parameterization. Al-Masoud (2013) derived and studied it in detail the

discretized linear failure rate distribution as a special case by putting β = 2.

iii.Discrete Modified Weibull Type II Distribution: By taking gθ(x) = eα xxβ. The pmf is

given by

P Y ¼ kð Þ ¼ qk
βeαk−q kþ1ð Þβeα kþ1ð Þ

; k ¼ 0; 1; 2;⋯

This is a discretized version of the Modified Weibull Type II Distribution Lai et al.

(2003) having sf SX(x) = exp[−λxβeαx}], x > 0, λ > 0, α, β > 0 after appropriate re-

parameterization. Reliability characteristics and parameter estimation of the above par-

ticular cases are also discussed in detail by Al-Masoud (2013).

The discrete modified Weibull distribution of Nooghabi et al. (2011) having pmf

P Y ¼ kð Þ ¼ qk
βck−q kþ1ð Þβckþ1

; k ¼ 0; 1;⋯; 0 < q < 1; c≥0; β > 0 is a particular case

when α = 1. The hazard rate function is increasing as well as bathtub shaped. (see

also Almalki 2014)

iv. Discrete Reduced Modified Weibull: By taking gθ xð Þ ¼ ffiffiffi
x

p
1þ bcxð Þ: Almalki

(2014) derived this distribution starting with continuous modified Weibull (Almalki

2014) having respective pdf and sf

f X xð Þ ¼ 1
2

ffiffiffi
x

p αþ β 1þ 2λxð Þeλx� �
e−α

ffiffi
x

p
−β

ffiffi
x

p
eλx ; x > 0; α; β; λ > 0

SX xð Þ ¼ exp −α
ffiffiffi
x

p
−β

ffiffiffi
x

p
eλx

� �
; x > 0; α; β; λ > 0
and ¼ q
ffiffi
x

p
1þbcxð Þ; x > 0; α; β; λ > 0

where q = e− α, b = β/α and c = eλ and 0 < q < 1, b > 0 and c ≥ 1. The corresponding pmf

is given by

P Y ¼ kð Þ ¼ q
ffiffi
k

p
1þbckð Þ−q

ffiffiffiffiffiffiffi
kþ1

p
1þbckþ1ð Þ; k ¼ 0; 1;⋯ ð11Þ

For b = 0 the distribution in Eq. (11) reduces to Discrete Weibull of Nakagawa
and Osaki (1975) (see section 2.4.2 of this paper). Almalki (2014) applied this distribu-

tion to fit four data sets and compared the results with discrete Weibull, discrete addi-

tive Weibull and discrete modified Weibull distributions (see also Almalki and

Nadarajah (2014).

2.4.8 Discrete Burr distribution

Krishna and Pundir (2009) studied discrete Burr distribution by considering X ~ Burr

distribution with pdf and sf

fX(x) = αβxα − 1/(1 + xα)β + 1, x > 0, α, β > 0 and SX(x) = (1 + xα)− β respectively.
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The pmf of their discrete Burr distribution is given by

P Y ¼ kð Þ ¼ θ
log 1þkαð Þ

− θ
log 1þ 1þkð Þαf g

; k ¼ 0; 1; 2;⋯; 0 < θ < 1 ð12Þ

Where θ = e− β. See also Khorashiadizadeh et al. (2012).
2.4.9 Discrete Pareto distribution

Krishna and Pundir (2009) derived the discrete Pareto distribution as a particular case

of their discrete Burr distribution putting α = 1 in the pmf in Eq. (12).

An application in reliability estimation in series system and a real data example on

dentistry using this distribution is also discussed.

2.4.10 Discrete inverse Weibull distribution

If X follows Weibull, then the distribution X− 1 is said to follow the inverse Weibull dis-

tribution. Jazi et al. (2010) proposed discrete inverse Weibull distribution by consider-

ing X ~ Inverse Weibull distribution with sf SX(x) = 1 − exp[−ax− β]. The pmf of inverse

Weibull distribution is given by

P Y ¼ kð Þ ¼ q; k ¼ 1

q
k−β

−q k−1ð Þ−β ; k ¼ 2; 3;⋯; β > 0; 0 < q < 1

�

Where q = e− a. They studied its distributional and reliability properties and parameter

estimation.

Application of this model in lifetimes of certain electronic devices was also considered

by Jazi et al. (2010).

2.4.11 Discrete Inverse Rayleigh distribution

Inverse Rayleigh distribution is a particular case of inverse Weibull distribution

when β = 2 with sf SX(x) = 1 − exp[−a/x2]. Hussain and Ahmad (2014) proposed

discrete inverse Rayleigh distribution with pmf

P Y ¼ kð Þ ¼ q1= xþ1ð Þ2−q1=x
2
; 0 < q < 1; k ¼ 0; 1; 2; … where θ ¼ e−a:

Hussain and Ahmad (2014) applied this distribution to model two real life count data.

2.4.12 Discrete Lindley distribution

If X ~ Lindley distribution then its pdf and sf are respectively given by

f X xð Þ ¼ θ2

1þ θ
1þ xð Þe−xθ and SX xð Þ ¼ e−xθ 1þ θ þ θxð Þ

1þ θ
; x > 0:

Gómez-Déniz and Calderin-Ojeda (2011) proposed a discrete Lindley distribution
having pmf

P Y ¼ kð Þ ¼ λk

1− logλ
λ logλþ 1−λð Þ 1− logλxþ1� �� �

; 0 < λ < 1; k ¼ 0; 1; 2; …

Bakouch et al. (2012) again re-investigated this distribution and studied many add-

itional properties of extensively.
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This distribution was applied to model the collective risk model when both number of

claims and size of a single claim are included in the model.

2.4.13 Discrete generalized exponential distribution

The generalized exponential distribution of Gupta and Kundu (1999) has pdf

f X xð Þ ¼ αλ 1−e−λx
� �α−1

e−λx and sf SX xð Þ ¼ 1− 1−e−λx
� �α

; x > 0; α > 0; λ > 0

Nekoukhou et al. (2011) proposed a discrete analogue of this distribution with
pmf given by

P Y ¼ kð Þ ¼ 1−pkþ1
� �α

− 1−pk
� �α ð13Þ

They applied this distribution to model a discrete data se related to accidents of 647

women working on Shells for 5 weeks.

This distribution was first mentioned in Jiang (2010) and later independently derived

as exponentiated-exponential–geometric distribution using T-X method in Alzaatreh

et al. (2012), as an exponentiated geometric in Chakraborty and Gupta (2015).

2.4.14 Discrete gamma distribution

The Gamma distribution with parameters n and θ having pdf

f X xð Þ ¼ 1

θkΓn
xn−1e−x=θ and sf SX xð Þ ¼ 1

θnΓn

Z ∞

x
un−1e−u=θdu ¼ 1

Γn
Γ n; x=θð Þ

Z∞ Z∞

Where Γ n; x=θð Þ ¼ 1

θn

x

un−1e−u=θdu ¼
x=θ

un−1e−udu

Chakraborty and Chakravarty (2012) defined a discrete gamma distribution with the

pmf

P Y ¼ kð Þ ¼ 1=Γnð ÞΓ n; k=θ; k þ 1ð Þ=θð Þ ; k ¼ 0; 1;⋯; n > 0; θ > 0

Where Γ(n, k/θ, (k + 1)/θ) = Γ(n, k/θ) − Γ(n, (k + 1)/θ).
The authors studied many properties including classification of failure rate and ap-

plied this distribution in empirical modelling of two discrete failure time data related to

computer break down and time to death of leukemia patients.

2.4.15 Discrete Burr-III distribution

Al-Huniti and Al-Dayian (2012) discussed Discrete Burr III Distribution starting with

the continuous one having the pdf and sf

f X xð Þ ¼ ckx−c−1 1þ x−cð Þ−d−1; x > 0; c; d > 0 and

SX xð Þ ¼ 1− exp −d log 1þ x−cð Þ½ � respectively:

The pmf of is given by

P Y ¼ kð Þ ¼ θ log 1þ 1þkð Þ−cf g−θ log 1þk−cf g; k ¼ 0; 1;⋯; where θ ¼ e−d:

They have established the characterization property that distribution of the minimum
order statistic from a sample of size n is Discrete Burr III distribution (c, θn) iff the

sample is from Discrete Burr III distribution (c, θ).
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Para and Jan (2014) reinvestigated exactly the same distribution.

2.4.16 Discrete log-logistic distribution

It is a special case of discrete Burr distribution obtained by putting θ = e− 1 in the pmf

in Eq. (13). Khorashiadizadeh et al. (2012).

2.4.17 Discrete generalized gamma distribution

The generalized gamma distribution with parameters k, θ, and c has pdf

f X xð Þ ¼ c= θcnΓkð Þð Þ xcn−1e− x=θð Þc ; t≥0; n; θ; c > 0

and sf SX(x) = (1/Γn)Γn((x/θ)
c) respectively.

Where Γn t=θð Þcð Þ ¼
Z ∞

t=θð Þc
vn−1e−vdv ¼ c=θcnð Þ

Z ∞

t
ucn−1e− u=θð Þndu

and Γn að Þ ¼
Z ∞

a
vn−1e−vdv being the upper incomplete gamma function.

Starting with a statistical mechanical set up Chakraborty (2015a) defined a discrete

generalized gamma distribution with the pmf

P Y ¼ kð Þ ¼ 1=Γnð ÞΓn k=θð Þc; k þ 1ð Þ=θð Þcð Þ ; k ¼ 0; 1;⋯; n > 0; θ > 0; c > 0

Where Γn k=θð Þc; k þ 1ð Þ=θð Þcð Þ ¼ c= θcnð Þð Þ
Z kþ1

k
ucn−1e− u=θð Þcdu :

A number of existing and new distributions are seen as particular cases the

discrete generalized gamma distribution dγ (n, θ, c) for various values of the pa-

rameters n, θ and c.

For

i. c = 1, discrete gamma distribution dγ (n,θ) (Chakraborty and Chakravarty 2012).

ii. n = 1, discrete Weibull distribution (Nakagawa and Osaki 1975).

iii. c = 1 and θ = 1, One parameter discrete gamma distribution dγ(n) with pmf

P(Y = k) = (1/Γn)Γ(n, k, (k + 1)) (Chakraborty and Chakravarty 2012).

iv. c = 1 and n = 1, geometric distribution with pmf P(Y = k) = qk − qk + 1 = (1 − q)

qk, k = 0, 1, 2,⋯, where q = e− 1/θ.

v. c = 2, a discrete hydrograph distribution with pmf

P Y ¼ kð Þ ¼ 2=θ2nΓk tcn−1 e− t=θð Þc :
vi. c = 2 and n← n/2, discrete generalized Rayleigh distribution

P Y ¼ k½ � ¼ 1=Γ n=2ð Þð ÞΓn=2 k=θð Þ2; k þ 1=θð Þ2� �
; k ¼ 0; 1;⋯; n > 0; θ > 0

vii.c = 2, k = 1, discrete Rayleigh distribution (Roy 2004).

viii.c = 2, n = 3/2 and θ←
ffiffiffi
θ

p
; discrete Maxwell-Boltzmann Krishna and Pundir (2007)

distribution with pmf

P Y ¼ k½ � ¼ 2=
ffiffiffi
π

p� �
Γ3=2 k2=θ; k þ 1ð Þ2=θ� �

; k ¼ 0; 1;⋯; θ > 0:
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ix. c = 2 and n = 1/2, discrete half-Normal distribution

P Y ¼ kð Þ ¼ Erf k
θ= Þ; k þ 1

�
θ

� �� ¼ Erf a; b½ � ¼ 2 Φ
ffiffiffi
2

p
b


 �
−Φ

ffiffiffi
2

p
a


 �h i
;


h

b > a > 0, θ > 0, where Φ(.) is the cdf of standard normal distribution.
x. Large n, μ = log θ + (1/c)log n and σ ¼ 1=c
ffiffiffi
n

p
; discrete lognormal distribution with pmf

P Y ¼ kð Þ ¼ Φ log k þ 1ð Þ−μð Þ=σf g−Φ log kð Þ−μð Þ=σf g ; k ¼ 0; 1; 2;…

Chakraborty (2015a) has shown that this distribution is IFR if c > 1 , DFR if k ≤

1, c < 1 and CFR if k = 1, c = 1 . Application of the distribution in modelling two

real life count data sets was also demonstrated by the author.

2.4.18 Discrete Logistic distribution

The logistic distribution with parameters μ(−∞ < μ <∞) and p (0 < p < 1) has pdf

f X xð Þ ¼ exp − x−μð Þ=βf g
β 1þ exp − x−μð Þ=βf g½ �2 and sf

SX x; p; μð Þ ¼ px−μ= 1þ px−μð Þ; x∈R; 0 < p < 1:

A random variable Y is said to have a discrete logistic distribution Chakraborty and
Chakravarty (2013) with parameter p (0 < p < 1) and −∞ < μ <∞, if its pmf has the form

P Y ¼ kð Þ ¼ 1−pð Þpk−μ
1þ pk−μð Þ 1þ pk−μþ1ð Þ ; k∈Z:

Chakraborty and Chakravarty (2013) applied this distribution to model a real life
count data in Z.

Khorashiadizadeh et al. (2012) considered the monotonic behavior of log odd ratio

for standard discrete logistic distribution and discrete truncated logistic distribution

and their relation with IFR class. They have also considered several other discrete life-

time distributions such as discrete Burr XII, Discrete log logistic (Krishna and Pundir

2009), Discrete Weibull (Nakagawa and Osaki 1975), discrete half normal Kemp et al.

(2006). Discrete truncated logistic distribution was also considered in Bracquemond

and Gaudoin (2003).

2.4.19 Another Discrete Skew Laplace distribution

Barbiero (2014) proposed an alternative discrete skew Laplace distribution by discretiz-

ing alternative parameterized skew Laplace distribution having respective pdf and sf

f X xð Þ ¼ logp logq
log pqð Þ

px; x≥0
q−x; x < 0

and

�

SX xð Þ ¼
logq

log pqð Þ p
x; x≥0

1−
logq

log pqð Þ q
−x; x < 0; 0 < p < 1; 0 < q < 1:

8>><
>>:

The resulting pmf is given by
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P Y ¼ kð Þ ¼ 1
log pqð Þ

logp q− kþ1ð Þ 1−qð Þ� �
; k ¼ ⋯;−2;−1

logq pk 1−pð Þ� �
; k ¼ 0; 1; 2;⋯

�

This distribution was applied to model two real life count data.

2.4.20 Discrete Gumbel distribution

The pdf and sf of the Gumbel (Type I) extreme value distribution is given by

f X xð Þ ¼ σ−1e− x−μð Þ=σ exp −e− x−μð Þ=σ
h i

x∈R ;−∞ < μ < ∞; σ > 0

and S(x) = 1 − exp[−e− (x − μ)/σ ] respectively.

Chakraborty and Chakravarty (2014) proposed a discrete Gumbel distribution by dis-

cretizing the Gumbel distribution with pmf

P Y ¼ kð Þ ¼ e−α p
kþ1

−e−α p
k
; k∈Z; 0 < p < 1; α > 0

After the re-parameterization p = e− 1/σ and α = p− μ.
They investigated the distributional, reliability and monotonic properties, different

parameter estimation methods.

Chakraborty and Chakravarty (2014) applied this distribution to model three real life

count data related to maximum flood discharges and annual maximum wind speeds

from literature.

2.4.21 Discrete Additive Weibull distribution

If X1 and X2 are independent Weibull with sf exp −λ1xθ1
� �

and exp −λ2x
γ
2½ � respectively,

then the distribution of X =min{X1, X2} is referred to as the additive Weibull distribu-

tion having sf

SX xð Þ ¼ exp −λ1xθ−λ2xγ
� �

; x > 0; θ; γ; λ1; λ2∈ 0;∞ð Þ:
¼ qx

θ

1 q
xγ
2 ; x ¼ 0; 1;⋯ where q1 ¼ e−λ1 ; q2 ¼ e−λ2 :

Bebbington et al. (2012) introduced the discrete additive Weibull distribution with

four parameters. The sf and the pmf of this distribution are respectively given by

SY kð Þ ¼ qk
θ

1 qk
γ

2 ; x ¼ 0; 1;⋯ and

PY kð Þ ¼ qk
θ

1 qk
γ

2 −q kþ1ð Þθ
1 q kþ1ð Þγ

2 ; k ¼ 0; 1;⋯; 0 < q1; q2 < 1; θ; γ > 0

This distribution is IFR if θ ≥ 1 and γ > 1 (θ > 1 and γ ≥ 1), DFR if θ ≤ 1 and
γ < 1 (θ < 1 and γ ≤ 1) and is bathtub shaped if θ < 1 < γ (γ < 1 < θ) (see also Almalki

2014).

2.4.22 Discrete power distribution

Chakraborty and Chakravarty (2015) proposed a versatile new discrete distribution as a

discrete analogue of the two sided power distribution of Van Drop and Kotz (2002a, b).

The pmf of the discrete power distribution is given by
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P Y ¼ kð Þ ¼
k−aþ 1ð Þn− k−að Þn
b−að Þ m−að Þn−1 ; k ¼ a; aþ 1; …; m−1

b−kð Þn− b−k−1ð Þn
b−að Þ b−mð Þn−1 ; k ¼ m; mþ 1; …; b−1

8>>><
>>>:

Where a, b and a ≤m ≤ b are integers, and n is any positive real number. Some of its
important distributional and reliability properties were investigated. Estimation

methods of parameters were presented.

For more on general continuous triangular and two-sided power distributions see

Zocchi and Kokonendji (2013) and for application of discrete triangular distribution in

kernel estimation for discrete functions see Kokonendji and Zocchi (2010).

2.5 Methodology-V

If the underlying continuous random variable X has the cdf FX(x) = Pr(X ≤ x) then the

pmf of the discrete analogue Y is given by

P Y ¼ kð Þ ¼ FX k þ δð Þ−FX k− 1−δ½ �ð Þ; 0 < δ < 1 ð14Þ

Where the parameter 0 < δ < 1 is so chosen that the first two raw moments of X and
Y remains close (Roy and Dasgupta 2001). Except for a shift in the location by δ the

pmf in Eq. (14) preserves the form of the original cdf.

For example if X follows a normal and some other symmetrical unimodal distribution

the optimal choice of δ is 0.5 so that the pmf in Eq. (14) reduces to

P Y ¼ kð Þ ¼ FX k þ 0:5ð Þ−FX k− 1−0:5½ �ð Þ

The choice of number of point of discretization is derived from a compromise be-

tween the accuracy and computational load of the results. Hence for reducing compu-

tational overload number of points should be small say 3 and for increasing accuracy

the number of points should be large say 9.

Applied in approximating system reliability of complex systems under stress-

strength model.

Note that for δ = 0 and δ = 1 the Eq. (14) reduces to the discrete analogues of X sim-

ple defined by Y = ⌈X⌉ and Y = ⌈X⌉ − 1 with respective pmfs

P Y ¼ kð Þ ¼ FX kð Þ−FX k−1ð Þ and P Y ¼ kð Þ ¼ FX k þ 1ð Þ−FX kð Þ:

2.5.1 Discrete Ade’s distribution
Suppose that W has a gamma distribution with parameters n, and θ, has pdf

fW(w) = (θk/(Γn)) wn − 1e− θ w , w ≥ 0; n, θ > 0. Then

X ¼ 0; if 0≤w≤1
logwð Þb; if w≥1

�

follows Ade’s distribution with parameters n, θ, b.

The discrete Ade’s distribution of Perry and Taylor (1985) is defined as

P Y ¼ kð Þ ¼ P 0≤X < 0:5ð Þ; if k ¼ 0
P i−0:5≤X < iþ 0:5ð Þ; if k ¼ i; i ¼ 1; 2;⋯

�

Perry and Taylor (1985) fitted this distribution to 22 entomological data sets with en-

couraging results.
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2.6 Methodology-VI

This method preserves the hazard rate function. If the underlying continuous random

variable X has the sf SX(x) = P(X ≥ x) and hazard rate function λX(x) = fX(x)/SX(x) then

the sf of the discrete analogue Y is given by

P Y≥kð Þ ¼ 1−λX 1ð Þð Þ 1−λX 2ð Þð Þ⋯ 1−λX k−1ð Þð Þ; k ¼ 1; 2;⋯; m

The corresponding pmf is then given by

P Y ¼ kð Þ ¼ 1−λX 1ð Þð Þ 1−λX 2ð Þð Þ⋯ 1−λX k−1ð Þð Þ 1− 1−λX kð Þð Þ½ �
¼ 1−λX 1ð Þð Þ 1−λX 2ð Þð Þ⋯ 1−λX k−1ð Þð ÞλX kð Þ:

P Y ¼ kð Þ ¼
λX 0ð Þ; k ¼ 0
1−λX 1ð Þð Þ 1−λX 2ð Þð Þ⋯ 1−λX k−1ð Þð ÞλX kð Þ; k ¼ 1; 2;⋯; m
0; else

8<
:

Note that here the range of Y that is value of m is determined so as to satisfy the con-

dition that 0 ≤ λX(x) < 1 and multiply every P(Y = k) by a positive normalizing constant

to ensure the total probability equals to 1. Such a choice of is not going to affect the

functional form of the failure rate. This approach though was highlighted by Roy and

Ghosh (2009) was in fact used by Stein and Dattero way back in 1984 and preserves

failure (hazard) rate function.

Bracquemond and Gaudoin (2003) though maintained that failure distribution with

bounded support appears unrealistic from the point of view of applications since one

cannot sure to ascertain that a system will necessarily fail in less than m counts.

2.6.1 Discrete Weibull

Hazard rate function of X ~ Weibull distribution is given by

λX xð Þ ¼ cxβ−1; x > 0

Stein and Dattero (1984) presented a discretization of Weibull distribution with pmf

P Y ¼ kð Þ ¼ ck
β−1Yk−1

j¼1

1−cjβ−1
� �

; k ¼ 1; 2;⋯;m; β > 0; 0 < c≤m ð15Þ

where the parameter m is determined in such a way that 0 ≤ λX(x) < 1.

m ¼ c− 1= β−1ð Þ½ � ; if β > 1
þ∞; if β≤1

�

where ⌊X⌋ = largest integer less or equal to X. For this distribution the hazard and sf
rate function are respectively given by

λY kð Þ ¼ ckβ−1; k ¼ 1; 2;⋯; m
0; k ¼ 0 or k > m

�

and SY kð Þ ¼
Yk−1
j¼1

1−c jβ−1
� �

; k ¼ 1; 2;⋯; m:

Note that the distribution in Eq. (15) and the discrete Weibull defined in Eq. (10) co-
incides and reduces to geometric distribution when c = 1 − q and β = 1. Khan et al.

(1989) dealt with the estimation of the parameters of this distribution.
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A connection is shown to the famous Birthday Problem and to the lifetime of a series

system of components.

2.6.2 Discrete Rayleigh

The continuous Rayleigh distribution has

SX xð Þ ¼ exp −x2=2σ2
� �

and λX xð Þ ¼ x=σ2; x > 0:

So the effective support of the discrete Rayleigh will have to be determined from the
condition that 0 ≤ λX(x) < 1 which in this case implies 0 ≤ x < σ2. Thus if we take σ2 = 2,

the range of X will be 0 ≤ X < 2.

2.6.3 Discrete Lomax

The continuous Lomax distribution has

SX xð Þ ¼ 1þ x=βð Þ−α and λX xð Þ ¼ α= βþ xð Þ; x > 0:

So the effective support of the discrete Lomax (Roy and Ghosh 2009) will have to be
determined from the condition that 0 ≤ λX(y) < 1 which in this case implies y ≥ α − β.

For details regarding above method of construction see Roy and Ghosh (2009) who

have applied the above two distributions to approximate the reliability of complex sys-

tems approximating reliability under a stress strength model where exact determination

of survival probability is analytically intractable.

2.6.4 Another Discrete Weibull

This method ensures that the alternative discrete hazard rate function of the discrete

analogue is exactly same the hazard rate of the underlying continuous one. Alternative

discrete hazard rate was defined by Roy and Gupta (1992) as λ�Y kð Þ ¼ log

SY kð Þ=SY k þ 1ð Þ½ �: This definition overcomes some of the problems classical definition

of discrete hazard rate (see also Lai 2013). Consequently, the discrete alternative cumu-

lative hazard rate defined as

H�
Y kð Þ ¼

Xk
i¼1

λ�i kð Þ obeys H�
Y kð Þ ¼ − log 1−FY kð Þ½ �:

It can be easily checked that

λ�Y kð Þ ¼ log SY kð Þ=SY k þ 1ð Þ½ � ¼ − log SY k þ 1ð Þ=SY kð Þ½ �
¼ − log 1−P Y ¼ kð Þ=SY kð Þ½ � ¼ − log 1−λY kð Þ½ �

Hence λY kð Þ ¼ 1− exp −λ� kð Þ� �
:
Y

In this method of discretization if the underlying continuous random variable X has

hazard rate function λX(x), then the hazard rate function of the discrete analogue Y is

given by λY(k) = 1 − exp[−λX(k)] that is by taking λ�Y kð Þ ¼ λX kð Þ: The pmf is the ob-

tained by equation

P Y ¼ kð Þ ¼ 1−λY 1ð Þð Þ 1−λY 2ð Þð Þ⋯ 1−λY k−1ð Þð ÞλY kð Þ:

For example, if X~ Weibull distribution with hazard rate function λX(x) = c xβ− 1, x > 0
and a discrete analogue is obtained by Padgett and Spurrier (1985) with pmf of the discrete

Weibull is given by
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P Y ¼ kð Þ ¼ 1−e−c k
β−1


 �Yk−1
j¼1

e−c j
β−1


 �
¼ 1−e−c k

β−1

 �

e

−c
Xk−1
j¼1

jβ−1

; k ¼ 1; 2;⋯; β∈R; c∈Rþ

¼ 1−e−c kþ1ð Þβ−1

 �

e

−c
Xk
j¼1

jβ−1

; k ¼ 0; 1; 2;⋯; β∈R; c∈Rþ

−c kβ−1 � β−1 þ
For this distribution λY kð Þ ¼ 1−e and λY kð Þ ¼ ck ; k ¼ 1; 2;⋯; β∈R; c∈R :

Lai (2013) also derived a discrete inverse Weibull using this method. See also Almalki

(2014); Lai (2013) and Bracquemond and Gaudoin (2003).

Barbiero et al. (2013) discussed parameter estimation by different methods for this

distribution in details with applications of real data fitting showing how the type III

discrete Weibull distribution can fit real data.

2.7 Methodology-VII

This is a process proposed by Luceno (1999) of approximating a continuous random

variable X having pdf f(x), a ≤ x ≤ b by a discrete random variable Y taking values y1, y2,

⋯, yMN having pmf P(Y = yj) = pj; j = 1, 2…,MN such that both X and Y have same finite

rth moment for r = 0, 1,⋯, 2N − 1 and their cdf coincides at least at M + 1 points. Here

the support of random variable Y i.e., {y1, y2,⋯, yMN} is roots of polynomial equation of

Nth degree and not necessarily be the integers. As such derived distribution is not

discrete in the sense of having integer support. So this is rather a way of approximating

a pdf fX(x) by a pmf {pj}, j = 1, 2,…,MN which retain common moments and cdf value

at the points of discretization. A list of approximation of some classical probability dis-

tribution proposed by Luceno (1999) is given in Table 1 below:

The gamma (t, α) distribution has mean t/ α and variance t/ α2; the superscript

Gauss-Hermite (GH), Gauss-Laguerre (GLa), Gauss-Jacobi (GJ) and Gauss-Legendre

(GLe) refer to the polynomial names; the subscript j varies in {1, 2,…,N}.

This method may require solution of system of non-linear equations in addition to

the requirement of the existence of moments of the continuous distribution.

2.8 Methodology-VIII

Hagmark (2008) presented a method for constructing nonnegative integer-valued ran-

dom variables with any interval domain, any theoretically possible mean–variance pair,

and different shapes using basic tool of a mean preserving discretization method in

which the discretization of a nonnegative initial random variable X with cdf FX(x) is de-

fined as the count variable Y with cdf
Table 1 Approximation of some classical probability distribution

Distribution Abscissa Probability Weight Polynomial

N(μ, σ2) μþ σ x GHð Þ
j

1ffiffi
π

p w GHð Þ
j exp(−x2), −∞ < x <∞ GH

gamma (t, α) 1
α x

GLað Þ
j

1
Γt w

GLað Þ
j xt−1

′
exp −xð Þ; 0 < x < ∞ GLa

beta (α, β) 1þx GJð Þ
jð Þ
2

t1−α−β w GJð Þ
j

beta α;βð Þ
1−xð Þα−1
1þxð Þ1−β ;−1 < x < 1 GJ

uniforn(a, b) aþ b−a
2 1þx GLeð Þ

jð Þ
1
2w

GLeð Þ
j 1, − 1 < x < 1 GLe
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FY yð Þ ¼ P Y≤yð Þ ¼
Zyþ1

y

FX yð Þdx

He has shown that under this construction

(i) E(X) = E(Y) and (ii) Var(X) ≤ Var(Y) ≤ Var(X) + min{E(X), 1/4}.

Note that FY(y) is actually the average of FX(.) in the interval (n, n + 1) under assumption

of uniform distribution in that interval. Hagmark (2008) asserted that every count variable

is a discretization of an initial continuous random variable which is seldom unique. He

gave example initial continuous distribution of which Poisson distribution is a discretized

version and algorithms to generate discrete distributions using this method.

2.9 Two stage composite methods

2.9.1 Discretized Exponentiated models

In this method the discrete analogue of the continuous random variable X having cdf

FX(x) and sf SX(x) is derived as a discrete random variable Y having pmf

P Y ¼ kð Þ ¼ SX kð Þα−SX k þ 1ð Þα; y ¼ 0; 1; 2; …; α > 0

Thus basically first the continuous distribution function is exponentiated and the
resulting exponentiated continuous distribution is then discretized by using the

methodology-IV.

For example, by exponentiating the cdf of the continuous exponential distribution Gupta

and Kundu (1999) derived generalized exponential distribution having pdf, cdf and sf

f x xð Þ ¼ αλ 1−e−λx
� �α−1

e−λx; x > 0; α > 0; λ > 0:

FX xð Þ ¼ 1−e−λx
� �α

and SX xð Þ ¼ 1− 1−e−λx
� �α

respectively:

Writing q = e− λ, a discrete analogue of this distribution can be obtained with pmf

P Y ¼ kð Þ ¼ 1−qkþ1
� �α

− 1−qk
� �α

; k ¼ 0; 1; 2;⋯ ð16Þ
Which is the distribution mentioned in Eq. (13) and again later in Eq. (20). (see Mudholkar
et al. (1995) for exponentiated Weibull).

Remark 1. One can use the exponentiation of sf and then discretize to get different

analogues. Also one can use other methodologies instead of method III to generate dif-

ferent discrete analogues of the exponentiated continuous distributions.

2.9.2 Two-fold competing risk models

In this method (Jiang 2010) first two continuous random variables X1 and X2 having sfs

SX1 xð Þ and SX2 xð Þ are combined to produce a new random variable X having sf

SX xð Þ ¼ SX1 xð ÞSX2 xð Þ:
Then a discrete analogue Y of X is derived from SX(x) by using methodology-IV. The

resulting pmf is

P Y ¼ kð Þ¼ SX kð Þ−SX k þ 1ð Þ ¼ SX1 kð ÞSX2 kð Þ−SX1 k þ 1ð ÞSX2 k þ 1ð Þ
¼ SX1 kð ÞPX2 Y ¼ kð Þ þ SX2 kð ÞPX1 Y ¼ kð Þ−PX1 Y ¼ kð ÞPX2 Y ¼ kð Þ; k ¼ 0; 1; 2; …; α > 0
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Where PXi Y ¼ kð Þ ¼ SXi kð Þ−SXi k þ 1ð Þ is the discrete analogue of the continuous

random variable X1. Clearly, the random variable X is equal to minimum {X1, X2}.

Discrete additive Weibull distribution discussed in the section 2.4.21 can be seen as

an example of this construction.

Remark 2.

i. Obviously, one can generalize this to more than two i.e. manifold competing risk

models model.

ii. Discretized exponentiated method can be seen as a particular case of this method

when the X’s are identical.

2.9.3 Marshall and Olkin followed by method-III

In this method first the sf SX(x) of a continuous random variable X is generalized by

adding an extra parameter α using Marshall and Olkin (1997) scheme then discretize

by using the methodology-IV. The generalized sf is then

SX x; αð Þ ¼ αSX xð Þ
1− 1−αð ÞSX xð Þ ð17Þ

and the corresponding pmf of the discrete analogue by method-IV is
P Y ¼ kð Þ ¼ SX k; αð Þ−SX k þ 1; αð Þ ¼ α SX kð Þ−SX k þ 1ð Þf g
1− 1−αð ÞSX kð Þg 1− 1−αð ÞSX k þ 1ð Þgff ð18Þ

2.9.3.1 Generalization of the geometric distribution Gómez-Déniz (2010) proposed

and studied a new generalization of the geometric distribution by using this scheme of

discretization. They started with X following exponential distribution with sf SX(x) =

exp(−θ x) = qx, where q = e− λ and used the construction in Eq. (18) generalize the geo-

metric distribution with pmf

P Y ¼ kð Þ ¼ αqk 1−qð Þ
1− 1−αð Þqkþ1g 1− 1−αð Þqkf Þf g ; k ¼ 0; 1; 2;⋯

2.9.3.2 Discrete half normal Gómez-Déniz et al. (2014) proposed a discrete version of

the half-normal distribution by using this scheme of discretization and investigated its

generalization with applications.

First taking SX(x) =ΦX(x) where ΦX(x) is the cdf of N(0, σ) in Eq. (17) a generalization

of the normal distribution is obtained with sf

SX xð Þ ¼ α 1−ΦX xð Þf g
1− 1−αð Þ 1−ΦX xð Þf g ;−∞ < x < ∞

Then the sf for the corresponding distribution in R+ which can be considered as a

generalization of the half-normal distribution is given by

SX xð Þ
SX 0ð Þ ¼

1þ αð Þ 1−SX xð Þf g
1− 1−αð Þ 1−SX xð Þf g ; x > 0
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Now employing the methodology-IV the pmf of discrete generalized half normal dis-

tribution is obtained as

P Y ¼ kð Þ ¼ 1þ αð Þ ΦX k þ 1ð Þ−ΦX kð Þf g
1− 1−αð Þ 1−ΦX kð Þð Þg 1− 1−αð Þ 1−ΦX k þ 1ð Þð Þgff

In particular for α = 1, we get the discrete half normal distribution Chakraborty
(2015a) with pmf

P Y ¼ kð Þ ¼ 2 ΦX k þ 1ð Þ−ΦX kð Þ½ �

2.9.4 T-X method
Suppose FX(x), hX(x) and HX(x) = − log(1 − FX(x)) be respectively the cdf, the hazard

rate function and cumulative hazard rate function of any random variable X. fT(t) and

FT(t) be the pdf and cdf of another continuous random variable T defined on (0, ∞).
The cdf of the random variable Y having T-X family of distributions defined by Alzaatreh

et al. (2012) is then given by

FY yð Þ ¼
Z− log 1−FX yð Þð Þ

0

f T tð Þdt ¼ FT − log 1−FX yð Þð Þf g;

when X is a continuous random variable the corresponding pdf of the T-X family can
be obtained as

f Y yð Þ ¼ f X yð Þ
1−FX yð Þ f T − log 1−FX yð Þð Þð Þ ¼ hX yð Þ f T HX yð Þð Þ:

If X is a discrete random variable, the T-X family is a family of discrete distribution

transformed from the non-negative continuous random variable T. The pmf of the T-X

family of discrete distribution can be found as

P Y ¼ kð Þ ¼ FY kð Þ−FY k−1ð Þ
¼ FT − log 1−FX kð Þð Þf g−FT − log 1−FX k−1ð Þð Þf g; k ¼ 0; 1; 2; …

ð19Þ

As such we can see that this method is essentially employing discretization method

on the T-X pdf to generate new discrete distribution.

If X is a geometric random variable with cdf FX(x) = 1 − px + 1 , x = 0, 1, 2, …, then T-X

family in Eq. (19) is referred to as the T-geometric family with pmf

¼ FTf− log pkþ1
� �

−FTf− log pk
� �

¼ FT − k þ 1ð Þ logpf g−FT −k logpf g; k ¼ 0; 1; 2; …
ð20Þ

In particular if X is a geometric random variable with parameter p = e− 1 = 0.3679,
then pmf of the T-geometric family reduces to P(Y = k) = FT(k + 1) − FT(k), k = 0, 1, 2, …

(see section 2.5).

Alzaatreh et al. (2012) proved many properties of this family including the unimodal-

ity of the T -geometric family given that the non-negative continuous random variable

T is unimodal with a unique mode.

For example if the random variable T follows the exponentiated-exponential distribu-

tion (Gupta and Kundu 1999) with cdf
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FT tð Þ ¼ 1−e−λt
� �α

; t > 0; α > 0; λ > 0

then T-geometric family in Eq. (20) leads to the exponentiated exponential–geometric

distribution (EEGD) with pmf

P Y ¼ kð Þ ¼ 1−pλ kþ1ð Þ

 �α

− 1−pλ k
� �α

; k ¼ 0; 1; 2; …: ð21Þ

On replacing pλ by θ, we will have

P Y ¼ kð Þ ¼ 1−θkþ1� �α
− 1−θ k� �α

; 0 < θ < 1; k ¼ 0; 1; 2; …:

Note that, if α = 1, i.e. the random variable T has exponential distribution, and then
the EEGD reduces to the geometric distribution. Also observe the similarity of Eq. (21)

with Eqs. in (13) and (16).

2.9.5 Generalization of the T-X method

Let fT(t) be the pdf of a continuous random variable T defined on [a, b] and W(.) be a

absolutely continuous and monotonically non-decreasing function with W(0)→ a and

W(1)→ b. Then the cdf of the generalized T-X family of distributions defined by

Alzaatreh et al. (2013) is given by

f Y yð Þ ¼
ZW F yð Þð Þ

0

f T tð Þdt ¼ FT W FX yð Þð Þ½ �;

If X is a non-negative discrete random variable, then the pmf of this generalized T-X
family of discrete distribution can be found as

P Y ¼ kð Þ ¼ FT W FX kð Þð Þf g−FT W FX k−1ð Þð Þf g; k ¼ 0; 1; 2; … ð22Þ

Obviously Eq. (22) reduces to Eq. (19) when W(x) = − log(1 − x).

Akinsete et al. (2014) considered T as the Kumaraswamy (1980) distribution with cdf

FT(t) = 1 − (1 − tα)β, 0 < t < 1, α > 0, β > 0, X as the geometric random variable with cdf

FX(x) = 1 − px + 1 , x = 0, 1, 2, … and W(x) = x in Eq. (21) to propose the Kumaraswamy-

geometric distribution with pmf

P Y ¼ kð Þ ¼ 1− 1−pk
� �αh iβ

− 1− 1−pkþ1
� �αh iβ

; k ¼ 0; 1; 2; …: ð23Þ

Note that for β = 1, Eq. (23) reduces to Eq. (21). Akinsete et al. (2014) also proved
that this distribution can also be derived by considering log-Kumararswamy distribu-

tion instead of Kuamarswamy distribution and taking W(x) = − log(1 − x).

2.9.6 Method of discretization after transmutation

Chakraborty (2015b) recently introduced the idea of discretization of transmuted continu-

ous distributions. A random variable Z is said to be constructed by the quadratic rank

transmutation map method of Shaw and Buckley (2007) by transmuting another random

variable X with cdf FX() if the cumulative distribution function (cdf) of Z is given by

FZ zð Þ ¼ 1þ αð ÞFX zð Þ−α FX zð Þð Þ2;−1 < α < 1
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So given a cdf FX(x) of a continuous random variable X, it is first transmuted to FZ(z)

by adding an extra parameter α using Shaw and Buckley (2007) scheme then discretized

by using the methodology-IV. The corresponding pmf of the new discrete distribution

is then given by

P Y ¼ kð Þ ¼ 1þ αð Þ FX k þ 1ð Þ−FX kð Þ½ �−α FX k þ 1ð Þð Þ2− FX kð Þð Þ2� �

For example considering FX(x) = 1 − β e− βx, the pdf and cdf of the transmuted exponential

distribution derived using the quadratic rank transmutation by Shaw and Buckley (2007)

are respectively given by

f Z zð Þ ¼ βe−βz 1−αð Þ þ 2αβe−2βz; z > 0; β > 0;−1 < α < 1

FZ(z) = (1 + α)(1 − e− βz) − α(1 − e− βz)2, z > 0, β > 0, − 1 < α < 1 (Shaw and Buckley, 2007).
Now using the methodology-IV the pmf of the discrete analogue Y of transmuted ex-

ponential, is obtained as

P Y ¼ kð Þ ¼ FZ k þ 1ð Þ−FZ kð Þ
¼ 1−αð Þqk 1−qð Þ þ αq2k 1−q2ð Þ; k ¼ 0; 1; 2;⋯; 0 < q < 1;−1 < α < 1

with e− β = q. This is the transmuted geometric distribution proposed recently by Chak-
raborty (2015b) and studied in detail by Chakraborty and Bhati (2015).

3. Discussion and conclusions
3.1. Benefits of discretization of continuous probability distribution

When only an approximating discrete random variable is observable, estimation proce-

dures employing the hypothetical continuous random variables are sometime biased and

hence a discrete distribution is more appropriate for an observed data (Holland 1975).

Discretization of continuous distribution may be looked upon as a filtering process

which may help in reducing of noise present in the data. Especially data sets having a

high amount of background noise can gain from this process.

Discretization may bring in computational easiness.

3.2 Limitation of discretization of continuous probability distribution

When a continuous probability density function is discretized to a probability mass

function there will always be some loss of information. As such one should try to strike

a balance between the need for discretization and resulting loss of information or ac-

curacy. Also attention should be paid to select the best one among the available tech-

niques of discretization. Some of the criteria for selection mentioned in Bracquemond

and Gaudoin (2003) are simple and flexible expressions, physical basis for the distribu-

tion, interpretation of model parameter, and efficiency of estimators.

3.3 Concluding remarks

The discretization of a continuous distribution using different methods has attracted

renewed attention of researchers in last few years. Though a large number of such distri-

butions are now available in the literature, still new discrete analogues are being added to

the existing collection. There is still enough scope to contribute new discrete ver-

sions using different methods since not all methods received same attention of

the researchers. This article is aimed at providing up to date information on this
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vibrant research topic. Future research in this area may be to search for different

constructions that might ensure preservation of multiple characteristics of the con-

tinuous distribution in its discretized version, developing inferential procedures for

these discrete analogues etc. among others. We have not discussed detail properties

of the methods and discretized distributions presented in this survey as those can

accessed from the respective original references.
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