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1 Introduction

The two-parameter Birnbaum-Saunders (for short, BS) distribution was originally pro-
posed by Birnbaum and Saunders (1969a) as a failure time distribution to describe the
total time until the damage caused by the development and growth of a dominant crack
grows to a critical level that would cause fracture of failure. The random variable T is
said to follow the BS distribution with parameters & and g if its cumulative distribution

function (cdf) is given by

F(tla,ﬂ):cb|:1<\/?_\/g>j|, 0O<t<oo, a, B>0, (1)
o B t

where @ () is the cdf of the standard normal distribution, and the parameters « and g are
the shape and scale parameters, respectively. This distribution has been widely applied
to a variety of quality and reliability engineering problems. For example, Bhattacharyya
and Fries (1982) developed fatigue failure models and also discussed the intrinsic rela-
tion between the inverse Gaussian distribution and the BS distribution. Using the inverse
Gaussian approximation to the BS distribution, Park and Padgett (2006) developed var-
ious new cumulative damage models and degradation models. Lio and Park (2008)
developed a bootstrap control chart based on the BS distribution.
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Estimation of the BS parameters is of great interest to researchers and has recently
received much attention in the literature. Birnbaum and Saunders (1969b) firstly dis-
cussed the MLEs of o and B. Engelhardt et al. (1981) derived the asymptotic joint
distribution of the MLEs and showed that the MLEs are asymptotically independent.
Achcar (1993) studied the Bayesian estimators based on Jeffreys’ prior and the refer-
ence prior and adopted Laplace’s approximations to the posterior marginal distribution
of the parameters of interest. Ng et al. (2003) proposed the method-of-moment estimator
(MME) of the two parameters. All the above mentioned approaches, except for the MME,
have no explicit closed-form solutions, so some numerical approaches are often required
to obtain these estimators.

The quality of data is extremely important for parameter estimation and complete data
without any contamination is always preferred to achieve a high accuracy on parameter
estimation. Unfortunately, in the engineering sciences, there is no guarantee that the col-
lected data exactly follow the assumed model. In other words, reliability engineers often
face data with deviations from the assumed model especially when studying failure data.
Note that the commonly used estimators such as the MLEs are very sensitive to data con-
tamination and model departure that are often encountered in many practical situations.
Small deviations may induce a large impact on these estimators and a single outlier can
even make them break down. This phenomenon motivates many authors to study robust
estimation for various distributions; see, for example, Agostinelli et al. (2014), Boudt et al.
(2011), Lawson et al. (1997), among others. Of particular note is that many researchers
mainly focus on robust estimation for the Weibull distribution and that robust
estimation for the BS distribution is quite scant, even though the BS distribution
is prevalent in the engineering sciences as an effective model of studying fatigue
data.

It deserves mentioning that Dupuis and Mills (1998) developed the robust estimation
procedures based on an optimal bias-robust estimator (OBRE) of the BS distribution,
whereas the OBRE is not in explicit form and it may suffer from the problem of conver-
gence. These observations give rise to the need for some alternative estimators, which
should be easy to calculate for practitioners and are also quite robust against a certain
amount of data contamination. Recently, Wang et al. (2013) developed a new method
for robustly estimating the parameters of the BS distribution, whereas their method is
somewhat complicated for practitioners.

In this paper, we propose several alternative estimators for the BS distribution and
study the asymptotic properties of the proposed estimators and their breakdown points.
These estimators are explicit closed-form expressions of the sample observations and
are thus easy to calculate without involving any computational complexity. Several
of the proposed estimators have a very high breakdown point. Here, the breakdown
point, a criterion often used to measure robustness of an estimator, is defined as the
proportion of incorrect observations (i.e., arbitrarily small or large observations), the
estimators of o and B can handle before giving estimated values arbitrary close to zero
or infinity. As an illustration, the median has a breakdown point of 50 %, whereas
the mean has a breakdown point of 0 %. The results of numerical studies show that
the proposed estimators are attractive alternatives to the MLE in that they are quite
robust to data contamination and also highly efficient when the underlying model is
true.
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The remainder of this paper is organized as follows. In Section 2, we firstly present a
summary of the BS distribution and the MLEs, and then provide several alternative esti-
mators in explicit closed-form expressions. We also investigate the asymptotic properties
of these estimators along with their breakdown points. Section 3 contains an extensive
Monte Carlo simulation to compare the behavior of the proposed estimators and that
of the MLEs. In Section 4, we illustrate the practical application of all the estimators
under consideration through using a real dataset. Finally, some concluding remarks and

discussions are given in Section 5.

2 Parameter estimation
If a random variable T follows the BS distribution with the cdf in (1), then T has the
probability density function (pdf) given by

B 1 8 1/2 B 3/2 1 t B
f“'“'*‘”—maﬁ[(t) #(5) |erl - (5 5 2)

It is well known that this distribution has many attractive properties. (i) The scale
parameter B is the median of the distribution, that is, F(8) = &(0) = 0.5
(i) it is positively skewed, with degree of skewness decreasing with «; (iii) for any con-

stant k > O, it follows that kT ~ BS(x, «fB); (iv) its reciprocal property (Saunders
1974) holds, that is, T~1 ~ BS(x, f71); and (v) if we make the transformation T =
B [1 +2X2 42X + X2V 2], then X is normally distributed with mean zero and variance

2
o’ /4.

We firstly provide a brief review to the MLEs of the BS distribution. Let 7 =
{t1,t2,--- ,t,} be a random sample of size n from the BS distribution. The sample

arithmetic and harmonic means are given by
1 & 1 & B
s= thi and r= |:Zti_1j| )
= "
respectively. Let /1(-) be the harmonic mean function given by
1o o
hix) = [n Z;<x+ m‘l} :
=

Then the MLE of 8, denoted by ﬁMLE, can be obtained as the unique positive root of

the following equation

B2 — Bl2r+ h(B)) + 1 s+ h(B)] =0. ()
Once MLE js obtained, the MLE of o, denoted by &MLE is given by
AMLE
gME_ S P
ﬂMLE r

Because the uniqueness of the solution for Eq. (2) is guaranteed in the interval (r, s),
a one-dimensional root search is adopted in this paper to compute the MLEs instead of
their methods; see, for example, Lio and Park (2008).

Although the MLEs enjoy several optimal properties, they have no explicit expressions
and are highly sensitive to model departure that often occurs in practice. These obser-
vations motivate us to develop alternative estimators. Specifically, we propose several
alternative estimators in the following two subsections. One is dedicated to developing
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two estimators of B; the other is to develop two estimators of «. The proposed estimators
are explicit closed-form expressions in terms of the sample observations and can thus be
easily computed in practical situations. Furthermore, it can be shown that some of them
are asymptotically normally distributed and have the highest breakdown point of 50 %.

2.1 The estimators of the parameter 8

Since the parameter S is the median of the BS distribution which satisfies F(8) = ®(0) =
0.5, the median is a natural choice as an estimator of 8. We denote the sample median
estimator of 8 by

M = median {t;, 2, - - , £} .

The above median estimator is quite robust and has the highest breakdown point of
50 %. From the asymptotic normality of the median estimator, it can be shown that

Vi (7 - ) 2 (0. 9.

Rieck and Nedelman (1991) investigated the relationship between the BS distribution

and the sinh-normal distribution and showed that if a random variable T ~ BS(«, f),
then Y = log(T) has the sinh-normal distribution with the cdf and pdf given by

F@|Wa):¢[2smh(y_ﬂ>] 3)
o 2

and

fOolwa) = 1 cosh (}/—z,u) exp |:—(122 sinh ()/—2M)i| , (4)

aN2m

respectively. This distribution has a shape parameter « and a location parameter . =
log(B), which is just the natural logarithm of the scale parameter of the BS distribu-
tion. One appealing advantage of using the above relationship is that we transform the
asymmetric BS distribution to the symmetric sinh-normal distribution. It is well known
that in the location framework, the Hodges and Lehmann (1963) estimator (for short, HL)
of (Hodges and Lehmann 1963) has greater efficiency than does the sample median for
symmetric distributions. Thus, it appears to be more beneficial to adopt the HL estima-
tor for the parameter 1 under the sinh-normal distribution, instead of the sample median
of the original BS distribution. The HL estimator is defined as the median of n(n — 1)/2
pairwise averages of observations and can be written as

%+w}

it = median; .; { (5)

which can easily be calculated using the /l.loc(-) function in the package of ICSNP in R
language; see R Development Core Team (2011). Also, this estimator has 29 % breakdown
point, which means that it remains consistent even if about 29 % percent of the data have
been contaminated. In addition, as stated by Rousseeuw and Croux (1993), ‘the Hodges-
Lehmann estimator might be viewed as a “smooth” version of the median’ It can be shown
that this estimator is asymptotically normally distributed, namely,

- D 1
N —M)_>N<Or W);

where f(x) is the pdf of the sinh-normal distribution in (4). Also, it is immediate from the
above that the estimator i converges in probability to 1 = log(B), that is, it LN “w.
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Based on the HL estimator in (5), we obtain the back-transformed estimator of the BS

parameter B, denoted by AL, which is simply given by
A . + .
B = exp(it) = exp |:mediani<j <yl 5 y]>:| . (6)
This estimator also has a breakdown point of 29 %. Note that the estimator AL approx-

imately follows the log-normal distribution and that the estimator ML is biased, but
consistent for j.

In what follows, we will adopt the above two estimators of 8 to develop the estimator of
a due to their simplicity and computational ease as well as high breakdown points.

2.2 The estimators for the parameter o
Here, we proposed two robust estimators for the shape parameter «.

Let {t1, L, - - , t,} be arandom sample from the BS distribution with the cdf in (1). Note
that ®~1(0.75) — ®~1(0.25) = 1.34898 is the distance between the two quartiles of the
standard normal distribution, the interquartile range (IQR). The sample IQR is equal to
the difference between the third sample quartile (Qs) and the first sample quartile (Q;).
To have a normal consistency, we consider the following estimator of « given by

SR _ IQR())
J 1.34898°
IQR

The estimator &j

indicating that it remains consistent even if about 25 % percent of the data have been con-

j=12,
is in simple closed-form with a higher breakdown point of 25 %,

taminated. Furthermore, by using the Bahadur’s representation theorem (Ghosh 1971),
we have

(g = a) BN «@?), j=12

where ¢ is a constant approximately equal to 2.48,/1.3492 ~ 1.363. The quartile estimator
&;QR converges in probability to the parameter ¢, that is, &;QR 2, for j=12.

We observe from Eq. (3) that by letting Y = log(T’), we change the estimation problem
of the shape and scale parameters to that of the location and scale parameters. We advo-
cate the use of (reference) estimator (shortly RC) for the estimator of «. The RC estimator

is given by

aX¢ =b {Ilogt; —logtl; i < j}

] (Ohe

where b is a constant factor equal to 1/(+~/2®1(5/8)) & 2.2219 to achieve consistency for
standard deviation of « in the case of the normal distribution above, and k = (g) ~ (g) /4
with 7 = [1/2] 4+ 1 being roughly half the number of observations. The RC estimator is
an explicit expression and can be easily calculated using the Q,(-) function in the package
of robustbase in R language. In addition, it has the highest breakdown point of 50 % and a
very high normal efficiency about 82 % under the normal distribution. An analogous scale
estimator, called the Shamos estimator proposed by Shamos (1976) and studied by Bickel
and Lehmann (1976), can also be adopted for «. However, the Shamos estimator has only
a29 % breakdown point and 86 % efficiency which is slightly higher than the RC estimator.
Readers interested in full details of the Shamos estimator should refer to these papers.
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3 Monte Carlo simulations
To illustrate the proposed method, we consider Monte Carlo simulation studies with one
without contamination and the other involving different kinds of contaminations.

3.1 Numerical results without contamination
We carry out Monte Carlo simulations to compare the performances of the estimators
under consideration. We take the sample size n = 10, 50, 100, and the shape parameter
a = 0.5,1.0,2.0. Since B is the scale parameter, its value was kept fixed at 8 = 1.0, without
loss of any generality.

Inverting the cdf of the BS distribution F(T | «,8) = p given by (3), we obtain the
following inverse cdf of the form

o1, L -1 2 -1 2 2
T=F'(p= ay/Bo (p)+\/ot/3(<1> ®) +4,3).

Hence, random numbers following the BS distribution can be generated by using a
direct inverse method, that is, 7 = F~!(U) with U ~ Uniform(0, 1). Replicate each case

10,000 times. In each simulation, we compute the average biases of each estimator under
consideration with its corresponding square root of the mean square error (RMSE) given

by
1 & 2 1 2
RMSE, = |- > (& —ar)’ and RMSEg= |3 (Bi—pr)"
i=1 i=1

The results based on M and AL are presented in Tables 1 and 2, respectively. Several
conclusions from the numerical results can be drawn as follows.

(i)  The average bias and RMSE of all the estimators significantly decrease as n
increases. As expected, for large sample sizes, the performance of the proposed
estimators and that of the MLEs are very close in terms of the average bias and
RMSE.

(i)  The RC estimator &jRC for j = 1,2 outperforms others in terms of the average bias
for all the considered cases. Note also that estimation of « using the HL estimator
AL is superior than the one using the median estimator M in terms of the RMSE.
(iii)  For the cases without contamination, the estimator ﬁMLE performs the best as
expected. We observe that the performance of the HL estimator A1 is better than
that of the median estimator BM. All the estimators of 8 become closer together as

n increases.

3.2 Numerical results with contamination

In practice, there is no guarantee that the collected data exactly follow the BS distribu-
tion, especially when considering fatigue data. Specifically, data contamination may occur
due to several reasons such as the measurement errors, departure from the true model,
etc. Accordingly, it becomes necessary to investigate the performance of the estimators
under a scenario in which data are contaminated with outliers. In a similar way as done by
(Dupuis and Mills 1998), we compare the performances of the proposed estimators and
that of the MLEs based on the following four possible models.
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Table 1 Average bias and RMSE (in parentheses) of estimates for o and

Estimator of « Estimator of B

n GMLE &¥QR ahc AMLE AV
10 0.5 —0.039 —0.065 —0.000 —0.012 —0.022
(0.117) 0.172) (0.150) (0.156) (0.192)
1.0 —0.087 —0.136 —0.017 —0.040 —0.080
(0.235) (0.343) (0.298) (0.299) (0412)
20 —0.186 —0.273 —0.088 —0.105 —0.331
(0.4871) (0.726) (0.597) (0.534) (1.065)
50 0.5 —0.007 —0.015 —0.000 —0.002 —0.003
(0.051) (0.081) (0.059) (0.068) (0.086)
1.0 —0.017 —0.029 —0.003 —0.008 —0.017
(0.101) (0.163) 0.116) (0.128) 0.179)
20 —0.035 —0.060 —0.021 —0.018 —0.060
(0.206) (0.334) (0.238) (0.195) (0.379)
100 0.5 —0.004 —0.007 —0.001 —0.001 —0.002
(0.036) (0.058) 0.041) (0.048) (0.063)
1.0 —0.008 —0.014 —0.001 —0.004 —0.007
(0.070) (0.116) (0.080) (0.088) (0.124)
20 —0.019 —0.028 —0.011 —0.010 —0.033
(0.144) (0.234) (0.163) (0.135) (0.260)

Model1 A model with no contamination.

Model 2 A model with 5% of severe contamination; the upper 5% of order statistics
are multiplied by 5.

Model 3 A model with 5% of severe contamination; the lower 5 % of order statistics
are multiplied by 1/5.

Table 2 Average bias and RMSE (in parentheses) of estimates for o and B

Estimator of a Estimator of B
n o GMLE &\ZQR ac AMLE AHL
10 0.5 —0.039 —0.066 —0.000 —0.012 —0.014
0.117) 0.171) (0.149) (0.156) (0.164)
1.0 —0.087 —0.141 —0.017 —0.040 —0.048
(0.235) (0.340) (0.297) (0.299) (0.332)
20 —0.186 —0314 —0.078 —0.105 —0.165
(0.4871) (0.700) (0.595) (0.534) (0.714)
50 0.5 —0.007 —0.015 —0.000 —0.002 —0.002
(0.051) (0.081) (0.059) (0.068) (0.071)
1.0 —0.017 —0.031 —0.003 —0.008 —0.010
(0.101) (0.162) (0.116) (0.128) (0.139)
20 —0.035 —0.071 —0.018 —0.018 —0.029
(0.206) (0.330) (0.238) (0.195) (0.256)
100 0.5 —0.004 —0.004 —0.000 —0.001 —0.001
(0.036) (0.058) (0.041) (0.048) (0.051)
1.0 —0.008 —0.015 —0.001 —0.004 —0.004
(0.070) (0.115) (0.080) (0.088) (0.096)
20 —0.019 —0.034 —0.009 —0.010 —-0.016

(0.144) (0.233) (0.163) (0.135) (0.176)
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Model4 A model with 5% of more extreme contamination from a point mass
distribution at 50.

The reference distribution is the BS distribution with the parameterso¢ = 0.5and 8 = 1.
We generate 10,000 samples of size n = 100 according to the above four scenarios and
then calculate the average bias and RMSE of each estimator. The results are shown in

Table 3. Some conclusions can be drawn as follows.

(i) For Model 1, that is, there is no contamination, the RC estimator &}«RC forj=1,2
performs the best for estimating « in terms of the average bias; the MLE g is the
best one for estimating 8, but the HL estimator BHL behaves much similarly.

(i)  For Models 2, 3, and 4, that is, contamination presents in the dataset, we observe
that contamination induces a large influence on the average bias and RMSE of the
non-robust estimators including the MLEs, especially in the presence of extreme
outliers such as the fourth scenario, whereas it has a smaller impact on the
proposed estimators.

(iii) ~ For the scale parameter estimation, the HL estimator ML outperforms the median
estimators in terms of the RMSE, whereas both are quite robust against data

contamination.

Which of the two robust estimators, the HL estimator or the median estimator, is prefer-
able for the parameter $ in the analysis of real lifetime data? Numerical results show that
for all the cases considered in this paper, the HL estimator AL outperforms the median
estimator M in term of the RMSE. Additionally, the estimator of o developed based on
BHL also slightly outperforms the one using AM in most cases. We thus have a prefer-
ence to recommend the HL estimator for 8. It should be mentioned that other simulation
results with respect to several other values of the parameter « and different sample sizes
have also been conducted, and the conclusions are quite similar and are thus not provided

here for brevity.

Table 3 Average bias and RMSE (in parentheses) of estimates for « and 8 with n = 100 under the

four models

Estimator of a Estimator of B
GMLE &\]QR &$C &leR &2RC /§MLE BM }§HL
Model 1
—0.0038 —0.0068 —0.0001 —0.0040 —0.0001 0.0013 0.0024 0.0014
(0.0353) (0.0583) (0.0405) (0.0445) (0.0405) (0.0483) (0.0625) (0.0504)
Model 2
0.3424 —0.0068 0.0075 0.9484 0.0075 0.2512 0.0024 0.0040
(0.3452) (0.9570) (0.3742) (0.0583) (0.0426) (0.2593) (0.0625) (0.0511)
Model 3
0.3423 —0.0068 0.0075 0.0139 0.0075 —0.1983 0.0024 —0.0011
(0.3451) (0.0583) (0.0426) (0.0448) (0.0426) (0.2026) (0.0625) (0.0507)
Model 4
0.8931 0.0253 0.0523 24594 0.0523 1.0944 0.0364 0.0501

(0.8936) (0.0659) (0.0693) (2.4607) (0.0693) (1.0957) (0.0751) (0.0736)
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Table 4 Fatigue lifetime data by Birnbaum and Saunders (1969b)

70 90 96 97 99 100 103 104 104 105 107 108 108 108 109 109 112
112 113 114 114 114 116 119 120 120 120 121 121 123 124 124 124 124
124 128 128 129 129 130 130 130 131 131 131 131 131 132 132 132 133
134 134 134 134 134 136 136 137 138 138 138 139 139 141 141 142 142
142 142 142 142 144 144 145 146 148 148 149 151 151 152 155 156 157
157 157 157 158 159 162 163 163 164 166 166 168 170 174 196 212

4 Anillustrative example
We illustrate the practical application of the proposed estimators using a real data exam-
ple. The dataset from Birnbaum and Saunders (1969b) is the fatigue lifetime of 6061 — 76
aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per
second. The dataset consists of 101 observations with maximum stress per cycle 31,000
psi and is presented in Table 4.

The parameter estimates of « and 8 by all the methods under consideration are pre-
sented in Table 5. As mentioned in Section 3, we have a preference over the HL estimator
BHL for B, and thus we just analyze the results based on this estimator for simplicity. It
can be seen from Table 5 that in the case of no contamination, most of the proposed esti-
mators are in good agreement with the MLEs and that the estimators (&gc, ﬁHL) are
slightly different.

To evaluate robustness of the proposed methods, we follow the same scenario by Dupuis
and Mills (1998) and assume that the 51st observation ¢5; was misrecorded as 633, instead
of 133. It is desirable that the estimated shape and scale parameters should be very similar
under the two scenarios, because we already know that the observation ¢5; is a record-
ing error. However, it has been observed from Table 5 that the MLEs are heavily distorted
by this single outlier and resulted in @M'E = 0.2415 and BMLE — 134.7689, far from
the MLEs with ¢t5; = 133, whereas the proposed robust estimators (&gc, BHL) and

&;QR, B HL) still provided more reasonable results, which are quite close to the estimated
values with t5; = 133.

In Fig. 1, we plot the estimated parameters with the same data but where we replace
the 51st observation ¢5; by a range of values between 1 and 700. We observe that chang-
ing the value of #5; induces a large impact on the behavior of the MLEs, whereas it has
little influence on the proposed robust estimators. As expected, the proposed estimators
(&;QR, ﬁHL> and (&gc, 3HL) have some built-in protection against a certain amount
of deviation due to data contamination or the measurement errors. In conclusion, the
performance of all the proposed estimators is quite satisfactory.

Table 5 Comparison between the developed estimators and the MLE through fatigue lifetime data
by Birnbaum and Saunders (1969b)

Table 4 data Misrecorded data
Method o B o B
(@MLE, BMLEy 0.1704 131.8188 0.2415 134.7689
@R, gMy 0.1454 133.0000 0.1555 134.0000
(@&%e, My 0.1601 133.0000 0.1677 134.0000
@R, gHY 0.1454 1326047 0.1555 132.8834
(@&5€, g 0.1601 1326047 0.1677 132.8834
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Fig. 1 Estimates for the BS parameters for the fatigue life data in (Bimbaum and Saunders 1969b), where the
51st observation is replaced by t5; = 1,2,---,700

5 Concluding remarks

In this paper, we have developed the two families of the estimators for the BS distribu-
tion, which are quite robust to data contamination. Unlike the MLEs, these estimators
have simple closed-form expressions with higher breakdown points. For estimation of 8,
we have a preference for the use of the HL estimator BHL, because numerical results show
that it remains more accurate than the median estimator /§M. Of all the considered esti-
mators for « using the estimator 1L, we recommend the RC estimator aXC, since it hasa
good trade-off between efficiency and robustness. It deserves to be mentioned that other
proposed estimators of « are also attractive alternatives to the MLE in that they are highly
efficient when the underlying model is true.

In summary, we have a preference for the RC and HL estimators (&gc, BHL) for esti-
mating («, B), because it has been shown to be simple, very effective, and quite robust
against model departure that often occurs in many practical situations. Note that cen-
sored data occur commonly in the field data from reliability tests, so a possible extension
of the proposed estimators for the censored data will be investigated in the future.
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