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1 Introduction
The well known Chi-square and Fisher distributions were introduced already a long time
ago in (Fisher 1924a, b;1925; Hermert 1876; Pearson 1900), respectively. Since then, meth-
ods of statistical inference on variances are extensively studied under various aspects in
numerous papers, see e.g. (Mirvaliev 1987; Plackett 1983; Statlect 2016) and the recent
survey in (Bolboaca et al. 2011), for only to mention a few of them.
It is often natural to assume that expectations are unknown and thus to additionally

be estimated when studying variances. In some cases, however, it may be reasonable to
assume that expectations are known. Assume, for example, a company produces tubes of a
certain norm length. The production dependent deviations from this length may accord-
ing to (Bomsdorf 1989), p. 162 be considered as normally distributed with expectation
zero and unknown variance. If the company indicates to customers a certain variance of
tube length then one might be interested in proving this.
The successful fulfillment of manufacturing orders requires according to (Haidenhain

2011) machine tools with high thermal stability. Rapidly changing operating conditions
for machine tools, however, may lead to unknown variances of technical features having
a known expectation and make it difficult to constantly ensure accuracy in production
processes.
Moreover, comparing in another situation instrumental accuracy by measuring a cer-

tain standard several times with two gages may generate random samples having the same
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known mean and unknown variances which one might be interested then to compare
with each other.
If in such situations independent random variables X1, . . . ,Xn and Y1, . . . ,Ym follow

Gaussian laws with known expectations μ1,μ2 and unknown standard deviations σ1, σ2,
respectively, then, with σ̂ 2

1 = 1
n
∑n

1(Xi − μ1)2 being the maximum likelihood estimator

of the variance σ 2
1 , n
(

σ̂1
σ1

)2
follows a Chi-square density with n d.f., and (σ̂1/σ1)

2

(σ̂2/σ2)
2 follows

Fisher’s F-distribution with (n,m) d.f.
The aim of the present paper is to allow more general distributions of the sample vec-

tor, and to study exact distributions of generalized Chi-square and Fisher statistics being
based upon the maximum likelihood estimators of the model’s scaling parameters. The
multivariate sample distributions considered to this end are convex or radially concave
contoured. These two distribution classes are subclasses of the family of star-shaped
distributions.
The paper is organized as follows. Star-shaped distributions are introduced in Section 2.

A one sample non-standard scaling model for i.i.d. power exponentially distributed
random variables and a certain extension of it are introduced in Section 3.1. Confi-
dence estimation of and significance testing of hypotheses on the scaling parameter are
discussed in Sections 3.2 and 3.4 for p-power exponential and more general sample dis-
tributions, respectively. Preparations for the latter case are given in Section 3.3. A two
sample non-standard scaling parameter model ist studied then in Section 3.5 where esti-
mation and testing are dealt with. A brief comparison of norms and antinorms, generating
convex or radially concave level sets of the multivariate sample density, respectively, is
given in the Appendix.
Finally, we remark that an introduction to non-standard models and exact distribution

theory is given in (Richter 2012, 2014). For closely related studies on expectations and
variances based upon ln,p-norms and goodness of fitting using ln,p-norms for data sets
that follow a power exponential distribution, we refer to (Livadiotis 2007, 2012, 2014). For
a comparison of the variances of two dependent random variables, see (Wilcox 2015).

2 Star-shaped sample distributions
2.1 The general class

The most general non-standard distributions of the multivariate sample vector we are
considering in the present paper are star-shaped distributions.More specific distributions
are ln,p-symmetric and p-generalized elliptically contoured distributions considered, e.g.,
in (Richter 2012, 2014), respectively. Let K ⊂ Rn denote a star body with the origin being
an inner point, and let S be its topological boundary which will be called a star sphere.
The Minkowski functional of K is defined by hK (x) = inf{λ > 0 : x ∈ λK}, x ∈ Rn and
satisfies hK (x) = 1, x ∈ S. Assume that a random vector X defined on a probability space
(�,A,P) allows the stochastic representation

X d= R · US

where R is a non-negative random variable and US follows independently of R the S-
generalized uniform distribution ωS on S. Then X is called origin-including star-shaped
distributed. Note that X d= Y means that X and Y follow the same distribution law, and

ωS(A) = OS(A)

OS(S)
,A ∈ BS = Bn ∩ S
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where Bn denotes the Borel σ -field in Rn and OS the star generalized surface content
measure on BS. If μ stands for the Lebesgue measure on Bn and CPC(A) = {x ∈ Rn :
x/hK (x) ∈ A} is the central projection cone generated byA ∈ BS then the star generalized
surface content of A is formally defined for a particular class of star spheres S in (Richter
2007) and under the weak technical Assumption 1 for general star spheres in (Richter
2014) by

OS(A) = f ′
A(1) (1)

where

f ′
A(r) = d

dr
fA(r), fA(r) = μ(sector(A, r)), sector(A, r) = CPC(A) ∩ K(r)

and K(r) = r · K = {(rx1, . . . , rxn)T ∈ Rn : (x1, . . . , xn)T ∈ K}. Integral, or differential
geometric, characterizations of OS which can equivalently be taken as a definition of OS
are given for particular classes of star bodies in (Richter 2009, 2013) and for arbitrary
two-dimensional convex star bodies in (Richter 2015b). Note that, e.g., the well known
(Richter 2007) ln,p-generalized (non-Euclidean) surface content of the ln,p-unit sphere,

ωn,p =
2n�
(
1
p

)n
pn�
(
n
p

) , p > 0,

is equal to the Euclidean surface content, if and only if p = 2.
There are widespread miss-understandings w.r.t. this circumstance in the literature.

The reader should be aware that there is some literature where formulas are derived
which are called surface content and uniform distribution, respectively, however neither
defining in advance the notion of surface content nor referring to literature where such
definition is given.
The star generalized surface measure on the boundary of n-dimensional convex or radi-

ally concave star bodies is dealt with under different aspects in (Richter 2016, c, 2016). A
general result in (Richter 2016) says that

OS(A) =
∫

G(A)

ĥK̂ (N(x))dx

where

K̂ = {λx : x ∈ Grad(S), 0 ≤ λ ≤ 1}, Grad(S) = {∇hK (x), x ∈ S}
and

ĥK̂ (t) = inf
{
λ > 0 : t ∈ λK̂

}
, t ∈ pos K̂

is a certainmodification of theMinkowski functional of K̂ . Here, pos x = {λx : λ ≥ 0}, x ∈
Rn and posM = ⋃

x∈M
pos x.

If X is origin-including star-shaped distributed and ν ∈ st(K) where st(K) denotes the
set of all points w.r.t. which K is star-shaped then X − ν is also origin-including star-
shaped distributed. If, however, ν does not belong to st(K) then X − ν will be called just
star-shaped distributed. The first of these two cases is dealt with in (Richter 2014), Section
5.1 where non-concentric elliptically contoured distributions are introduced. Both cases
are considered when studying non-central Chi-square distributions in (Ittrich et al. 2000).
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For a density having non-concentric circular contours with centers on a straight line, see
(Arnold et al. 2008).

Example. Let a = (a1, . . . , an)T ∈ Rn be a vector having positive components, p ≥
1, and K =

{
x ∈ Rn :

( n∑
i=1

| xiai |p
)1/p

≤ 1
}
. Then, according to (Richter 2014), the star-

generalized surface content measure on the boundary S of K is

OS(A) = an
∫

G(A)

d(x1, . . . , xn−1)(
1 −

n∑
i=1

| xiai |p
)1−1/p , A ∈ BS. (2)

The special case p = 2 has been dealt with in (Richter 2013).

2.2 Norm contoured distributions

Note that a symmetric convex star body having the origin as an inner point can always be
generated by a norm, hK (.) = ||.||, and that according to (Richter 2015c)

OS(A) =
∫

G(A)

||N(x)||∗dx, A ∈ BS (3)

where G(A) =
{
ϑ ∈ Rn−1 : ∃ η = η(ϑ) s.t.

(
ϑT , η(ϑ)

)T ∈ A
}
and ||.||∗ denotes the norm

dual to ||.|| and N(ϑ) = (∇η(ϑ)T ,−1)T is the outer normal vector to S at (ϑT , η(ϑ))T . If
K is the star body from the Example in Section 2.1 then (3) takes the specific form (2).
Let us emphasize that the star generalized surface content of an arbitrary measurable

subsetA of the star sphere S is a sum of integrals, in general. If S+ and S−, however, denote
upper and lower half spheres of the norm sphere S, and K∗ = {y ∈ Rn : ||y||∗ ≤ 1}, then

OS(A) =
∫

G(A∩S+)

hK∗(N(x))dx +
∫

G(A∩S−)

hK∗(N(x))dx, A ∈ BS

where

G
(
A ∩ S+(−)

)
=
{
ϑ ∈ Rn−1 : ∃ η = η(ϑ) s.t.

(
ϑT , η
)T ∈ A ∩ S+(−)

}
.

For simplicity, and in accordance with Definition 1, Lemma 1 andCorollary 1 in (Richter
2014), however, OS(A) will be represented throughout this paper symbolically by a single
integral.
Finally note that formula (1) applies whenever it is possible to evaluate the volume of a

convex body. W.r.t. this research area we refer, e.g., to (Pisier 1989) and a discussion on
page 11 in (Richter 2011).
Note that K∗ is always a symmetric convex star body and defines therefore a metric

geometry in the sense of (Burago et al. 2001).

2.3 Antinorm contoured distributions

If K is radially concave w.r.t. a fan F = {C1,C2, . . .} and belongs to the particular class
AN1 of star bodies introduced in (Richter 2015c) then its Minkowski functional is an



Richter Journal of Statistical Distributions and Applications  (2016) 3:8 Page 5 of 16

antinorm, hK (.) = � . �. For the notion of antinorm, we refer to (Moszyńska and Richter
2012) and the Appendix. Let

hFK (u) =
∑
i
ICi(u) inf

{
uTy : y ∈ S ∩ Ci

}
,u ∈ Rn

be the anti-support function of K w.r.t. F and

Ko =
{
λ(u)u : 0 ≤ λ(u)hFK (u) ≤ 1,u ∈ S(n−1)

E

}
the anti-polar set of K where S(n−1)

E denotes the Euclidean unit sphere in Rn then
according to (Richter 2015c)

OS(A) =
∫

G(A)

hKo(N(x))dx (4)

where N(x) is the inner normal vector to S at x ∈ S.

Example. Let the antinorm ball and sphere K and S, respectively, be formally defined
as in the preceding example but with p ∈ (0, 1], and let a still be a vector with positive
components. Then the S-generalized surface content measureOS satisfies representation
(2). Notice, however, that we are evaluating star generalized surface contents of subsets of
antinorm spheres, here, while star generalized surface contents of subsets of norm spheres
are considered in the preceding example. Notice that 1−1/p > 0 if p > 1 and 1−1/p < 0
if 0 < p < 1.

2.4 Continuous distributions

Let a function g : [ 0,∞) →[ 0,∞) satisfy the assumptions 0 < I(g) < ∞ where

I(g) =
∞∫
0
rn−1g(r)dr. Such function is called a density generating function (dgf ). A dgf

can be used modeling light or heavy distribution centers and tails. Moreover, it allows
even modeling complete level distributions. Well known examples are power-t exponen-
tial dgf gPE(r) = exp

{
− rp

p

}
, Kotz type dgf gK (r) = rM−1e−βrγ ,β , γ > 0, 2M + n > 2

and Pearson-VII-type dgf gPT7(r) = (1 + r
m
)−M ,M > n/2,m > 0 where I(gPE) =

pn/p−1�(n/p), I(gK ) = �((n+M−1)/γ )

γβ(n+M−1)/γ and I(gPT7) = mnB(M−n, n), respectively. Student-
and Cauchy-type dgf ’s are special cases of gPT7.
If the star-shaped distributed random vector X has a probability density (p.d.), ϕg,K ,ν

say, then

ϕg,K ,ν(x) = C(g,K)g(hK (x − ν)), x ∈ Rn.

Densities of this type have been considered in (Arnold et al. 2008; Fernández et al. 1995).
Here,

C(g,K) = 1/(I(g)OS(S)), (5)

and the p.d. of the generating variate R is

f (r) = I(0,∞)(r)rn−1g(r).
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The corresponding probability distribution allows the geometric measure representa-
tion


g,K ,ν(B) = 1
I(g)

∞∫
0

rn−1g(r)FS(B, r)dr, B ∈ Bn (6)

where

FS(B, r) = ωS

([
1
r
(B − ν)

]
∩ S
)
, r > 0

denotes the intersection proportion function (ipf ) of the set B.
If K is the Euclidean unit ball then K∗ = K and OS is the Euclidean surface content

measure. In this case, representation (6) has been considered already in (Richter 1985,
1991). For specific non-Euclidean cases, (6) has been considered in (Richter 2007, 2009,
2013, 2014).
Surveys of different types of applications of formula (6) are given for n = 2 in (Richter

2015b) and for arbitrary n in (Richter 2012, 2014). For two elementary applications, see
Section 2.6.

2.5 Building subclasses and class extensions

2.5.1 Building subclasses of distributions bymodeling R

Let us denote the probability law of the generating variate R by PR, and let ν be a σ -finite
measure on the Borel σ -fieldB(1) (or its restriction to the positive real line) such that PR

is absolutely continuous w.r.t. ν. If ν is the Lebesgue measure onB(1) then dPR
dν

(r) = f (r)
is the p.d. considered in Section 2.4. In Sections 2.2 and 2.3, PR can be chosen as the dis-
tribution of any non-negative random variable thus dPR

dν
being a mixture of an absolutely

continuous, a discrete and a singular component, in general.

2.5.2 Extending distribution classes by restricting U

We emphasize for the rest of this section that S circumscribes the origin as in inner point.
Let M be a measurable subset of the star sphere S. We call a random vector UM star-
generalized uniformly distributed on M (or the M-restriction of U) if UM follows the
distribution law

PUM(A) = OS(A)

OS(M)
, A ∈ BS ∩ M.

Note that US
d= U and that posM is not an absorbing set unless forM = S.

For an example of an M-restriction of U occuring in depth-based classification for
distributions with non-convex support, we refer to (Hlubinka and Vencalek 2013).
We call

DS(M) = {L{R · UM}, R is a non-negative random variable}
where L(Y ) means the distribution law of Y the class of directionally M-out-of-S
restricted distributions and

DS = {DS(M) : M is a measurable subset of the star sphere S}
the class of directionally out-of-S restricted distributions. Finally,

D = {DS : S is a star sphere}
is called the class of directionally out-of a star sphere restricted distributions in Rn.
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2.6 Two elementary types of applications of formula (6)

2.6.1 The ipf is the indicator function of an interval

Assume that the random vector X follows the continuous star-shaped distribution law

g,K ,ν , and let the statistic T : Rn →[ 0,∞) be defined by T(x) = hK (x − ν). The ipf of
the set B(t) = {x ∈ Rn : T(x) < t} allows then the representation

FS(B(t), r) = OS
([ 1

r (B(t) − ν)
] ∩ S
)

OS(S)
=
{
1 r ∈ I(t)
0 elsewhere

where S is still the boundary of K and I(t) is the particular interval [ 0, t). It follows from
(6) that

P(T(X) < t) = 
g,K ,ν
({
x ∈ Rn : hK (x − ν) < t

}) = 1
I(g)OS(S)

∞∫
0

rn−1g(r)I[0,t)dr.

Now, a density formula can be derived from the representation

P(T(X) < t) = 1
I(g)OS(S)

∫
I(t)

rn−1g(r)dr.

Similar results hold for arbitrary intervals I(t). For a specific application of the present
type we refer to the calculation of generalized Chi-square densities.

2.6.2 The ipf is constant

Let FB(t)(r) = C(t) where C(t) ∈ (0, 1) does not depend on r. Then it follows from (6)
that P(T < t) = C(t), and T is called a g-robust statistic. For specific such applica-
tions we refer to the geometric derivation of generalized Student and Fisher distributions.
The notion of robustness considered here was studied already in (Fang et al. 1990) for
elliptically contoured distributions.
Several other types of sets for which the ipf has been calculated already in the past can

be found in some of author’s papers surveyed in (Richter 2012, 2014).

3 Inference on scaling parameters
3.1 The power exponential sample distribution

3.1.1 A basic scaling parametermodel

Let the i.i.d. random variables X1, . . . ,Xn follow the power exponential (or p-generalized
Gaussian or p-generalized Laplace) density fp(.;μ, σ), where p > 0 and EX1 = μ are
known, and

fp(x;μ, σ) = Cp
σ

exp
{
−|x − μ|p

pσ p

}
, −∞ < x < ∞. (7)

Note that Cp = p1−1/p/(2�(1/p)) and V (X1) = σ 2�
(
3
p

)
/�
(
1
p

)
. Let X0 follow the

p.d. of the standardized p-generalized normal distribution, fp(.; 0, 1). Then X1 satisfies the
representation X1

d= μ + σX0. The quantity σ is called a scaling parameter.

3.1.2 Norm and antinorm contoured sample distributions

The density of the sample vector X = (X1, . . . ,Xn) is
n∏

i=1
fp(xi;μ, σ) = Cn

p
σ n exp

{
−

n∑
i=1

|xi − μ|p
pσ p

}
, x = (x1, . . . , xn) ∈ Rn.
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The density super level sets
{
x ∈ Rn :

n∏
i=1

fp(xi;μ, σ) ≥ t
}
, t > 0 are generated by the

functional

x → |x|p =
( n∑

i=1
|xi|p
)1/p

which is a norm if p ≥ 1 and an antinorm if 0 < p ≤ 1. Here, K = Bp = {x ∈ Rn : |x|p
≤ 1}.
For getting a more concrete idea of the shape of this density let us recall that the

boundaries of the two-dimensional density super level sets are the star circles{
(x1, x2)T ∈ R2 : |x1|p + |x2|p = rp

}
, r > 0.

The star discs circumscribed by these p-circles are convex if p ≥ 1 and radially concave
if 0 < p ≤ 1. For the latter notion, we refer to (Moszyńska and Richter 2012). Similar
properties hold in the case of arbitrary finite dimension.
In the geometric measure representation (6), the star generalized surface content mea-

sure allows for every p > 0 and every measurable subset A of the upper (or lower) half of
the star sphere S the representation

OS(A) =
∫

G(A)

(
1 −

n−1∑
1

|xi|p
)(1−p)/p

dx (8)

for p ≥ 1 and p ∈ (0, 1] being each time a special case of (3) and (4), respectively.

3.1.3 Extended scaling parametermodel

Let now X1, . . . ,Xn be i.i.d. random variables following the densities

fp
(
x;μi, σ 2a2i

) = Cp
σai

exp
{
−|x − μi|p

p(σai)p

}
, x ∈ R, i = 1, . . . , n (9)

where EXi = μi ∈ R, p > 0, ai > 0 are known, and σ > 0 is unknown. Note that

V(Xi) = σ 2a2i
�(3/p)
�(1/p)

and that Xi allows the representation

Xi
d= μi + σaiX0

where X0 has the p.d. fp(.; 0, 1) and σ is a common scaling parameter.

3.2 Inference on a single scaling parameter

3.2.1 Basic scaling parametermodel.

The maximum likelihood estimator of σ in the model (7) is the sufficient statistic

σ̂ = mle(σ ) =
(
1
n

n∑
i=1

|Xi − μ|p
)1/p

.

Note that

E(σ̂ p) = σ p andV(σ̂ p) = p
n

σ 2p,

σ̂ p thus being an unbiased and consistent estimator for σ p. The distribution of σ̂ can be
derived, e.g., on using formula (6) with the help of formula (8). The result follows below
from the consideration for the extended scaling parameter model (9).
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In the sense of Section 2.6, it is an elementary problem to evaluate the S-generalized
surface content of subsets of S according to (8) in the present case because we are deal-
ing here with a set the ipf of which is just the indicator function of an interval. This way
it is proved (within a more general framework) in (Richter 2009) (and with a slight mod-
ification already in (Richter 2007)) that n(σ̂ /σ )p follows the χp-(or p-generalized χ2-)
distribution with n d.f., n(σ̂ /σ )p ∼ χp(n) where Y ∼ Q means that the random variable
Y follows the probability distributionQ. The p.d. of the χp(n) distribution is according to
(Richter 2007, 2009)

fn,p(t) = tn/p−1e−t/p

pn/p�(n/p)
I(0,∞)(t). (10)

Although assigning in its derivation the number ωn,p the Euclidean interpretation
instead of the right non-Euclidean one, density (10) was derived later again in (Livadiotis
2012). For a considerable generalization of this density, see (14) below and (Richter 2009).
We denote the quantile of order q ∈ (0, 1) of the χp(n) distribution by χ

p
q (n). Thus, by def-

inition P
(
n
(
σ̂ /σ
)p

< χ
p
q (n)
) = q. Note that the χp(n) distribution is a particular Gamma

distribution having parameters n
p and 1

p . The quantiles of this distribution can therefore
be computed using the inverse Gamma function being available in standard software.

3.2.2 Confidence intervals for σ p

The random intervals[
|X − μ1n|pp
χ
p
1−α1

(n)
,
|X − μ1n|pp

χ
p
α2(n)

]
,
[

|X − μ1n|pp
χ
p
1−α(n)

,∞
)

and
(

−∞,
|X − μ1n|pp

χ
p
α(n)

]
(11)

are level 1 − α two-sided, and one-sided upper and lower confidence intervals for σ p,
respectively, with α = α1 + α2 in the two-sided case, and where 1n = (1, . . . , 1)T ∈ Rn.
If p = 2 then χ

p
q (n) is the common quantile of order q of the Chi-square distribution

with n d.f., χ2
q (n). The case p = 1 is dealt with in (Kotz et al. 2001), formula (2.6.112),

where, however, 2/χ2
1−α/2(2n) is used instead of 1/χ1

1−α/2(n). Tables 2, 3, 4 and 5 present
quantiles χ

p
q (n) for several values of n, p and q.

3.2.3 Significance testing

If one wants to test the hypothesis H0 : σ = σ0 versus the two-sided alternative HA : σ �=
σ0 then the decision rule of a level-α significance test is defined as to reject H0 if

n∑
i=1

∣∣∣∣Xi − μ

σ0

∣∣∣∣p ∈ (−∞,χp
α2(n)
)⋃(

χ
p
1−α1

(n),∞
)
, (12)

where α = α1+α2, 0 < αi < 1/2, i = 1, 2. Tests for one-sided hypotheses are analogously
constructed.

3.2.4 Extended scaling parametermodel

In the model (9), the maximum likelihood estimator of the common scaling parameter σ

is

mle(σ ) = σ̂ = 1
n1/p

|X − ν|a,p
where ν = (μ1, . . . ,μn)T and

|x|a,p =
( n∑

i=1

∣∣∣∣ xiai
∣∣∣∣p
)1/p,

x ∈ Rn.
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The p.d. of X is called a p-generalized axes aligned elliptically contoured density having
the contour defining star body K = Ba,p = {x ∈ Rn : |x|a,p ≤ 1}, see (Richter 2014). This
density, as well as σ̂ allow functional representations

fX(x) = Cn
p

σ na1 · . . . · an gPE(hσBa,p(x − ν)), x ∈ Rn

and

σ̂ = 1
n1/p

hBa,p(X − ν).

For the derivation of the density of n
(

σ̂
σ

)p
, we start from the equation

P
(
n
(

σ̂

σ

)p
< t
)

= 
gPE ,Ba,p,0n
(
t1/pBa,p

)
.

We recall that the intersections B ∩ Sa,p(r), r > 0, where Sa,p(r) = rSa,p and S = Sa,p is
the boundary of K = Ba,p are called sometimes the ‘indivisibles’ of a set B.
The geometric disintegration method behind formula (6) divides integration into first

an integration on a part of a generalized sphere and second an integration w.r.t. r :

P
(
n
(

σ̂

σ

)p
< t
)

= 1
I(gPE)

∞∫
0

rn−1gPE(r)FSa,p
(
t1/pBa,p, r

)
dr

where according to Section 2.6

FSa,p
(
t1/pBa,p, r

) = I[0,t1/p](r).

Thus

P
(
n
(

σ̂

σ

)p
< t
)

= 1
I(gPE)

t1/p∫
0

rn−1gPE(r)dr, t > 0.

Note that this result does not depend on a = (a1, . . . , an)T . Finally,

n
(

σ̂

σ

)p
∼ χp(n).

If one replaces the functional |.|pp by |.|pa,p in the definitions of the intervals (11) then the
new intervals are confidence intervals for σ p in the extended scaling parameter model (9).

3.3 The p-generalized Student’s sample distribution and beyond

We study here the distribution of the statistic n
(

σ̂
σ

)p
if the distribution of the sample

vector X = (X1, . . . ,Xn)T is not the n-dimensional power exponential one but any other
element of the family of ln,p-symmetric distributions. Before doing this, let us recall that
one of the most famous non-normal spherically contoured distributions is the Student’s
t-distribution because of its heavy tails and the remarkable property that all its marginal
distributions have a density generating function of the same known type. Moreover, note
that the components of a spherically contoured vector are uncorrelated but not indepen-
dent unless in the Gaussian case. All these properties hold also true for the p-generalized
Student’s t-distribution with f degrees of freedom which was studied for dimension one
in (Richter 2007) and for arbitrary finite dimension n in Arellano-Valle and Richter (2012).
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In the latter case, the dgf may be chosen as

gSt(n,p,f )(r) =
(
1 + rp

f

)− f+n
p

, r > 0,

and the density of X is

tn,p(x; f ) = Dn,p,f

(
1 + |x|pp

f

)− f+n
p

, x ∈ Rn,

where Dn,p,f = ( p
2 )

n
�
(
n+f
p

)
�
(
f
p

)(
�
(
1
p

))n
f n/p

. It follows that the density of the statistic n
(

σ̂
σ

)p
is then

f χ
n,gSt ,p(t) = t

n
p−1

f
n
p B
(
n
p ,

f
p

) (
1 + tp

f

) f+n
p
, t ∈ R. (13)

If, however, the density of the sample vector X is an arbitrary ln,p-symmetric one having
dgf g,

f (x) = C(g, p)g(|x|p), x ∈ Rn,

then, according to Richter (2009),

f χ
n,g,p(t) = t

n
p−1g(t)
pIn,g,p

, t ∈ R, (14)

where In,g,p =
∞∫
0
rn−1g(rp)dr.

This density can be considered as a (p, g)-generalization of the classical Chi-square den-
sity with n d.f., or as a g-generalization of the p-generalized Chi-square density fn,p in (10).
We denote the quantile of order q of the χ

p
g (n)-distribution by χ

p
g;q(n), 0 < q < 1, that is

χ
p
g (n)
(
χ
p
g;q(n)
) = q. Note that χ

p
gPE ;q(n) = χ

p
q (n).

Let a random variable following density (14) be denoted by Rp. Note that tables of
quantiles of the distribution of R are recently provided in Müller and Richter (2016) for
n ∈ {1, 2, 3}, p ∈ { 12 , 1, 3} and different dgfs g of power-exponential and Student’s type as
well of Pearson type 2.

3.4 Inference for generalized sample distributions

If the sample vector X is distributed according to an ln,p-symmetric distribution, see e.g.
(Richter 2009), with a dgf g being different from the power exponential one, g �= gPE ,
then X1, . . . ,Xn are not further independent. In this case of ln,p-dependent observation
variables, it is possible to study decision rules for exact inference on scaling parameters as
before. Confidence and significance levels of the analogously defined estimators and tests,
however, change in dependence of the actual shape of g. It is an immediate consequence
from the equation

P
(

χ
p
g,α2(n) < n

(
σ̂

σ

)p
< χ

p
g,1−α1

(n)

)
= 1 − α1 − α2

that the level-α confidence intervals in (11) extend to the present g-generalized case if
all quantiles χ

p
q (n) are replaced with χ

p
g;q(n). Similarly, the same replacement of quantiles

g-generalizes the level-α tests considered in (12).
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3.5 The ratio of two scaling parameters

3.5.1 The p-generalized Fisher statistic and Fisher distribution

Let X1, . . . ,Xn and Y1, . . . ,Ym be completely independent random variables with

Xi having p.d. fp(.;μ1, σ1), i = 1, . . . , n and Yi having p.d. fp(.;μ2, σ2), i = 1, . . . ,m

where p > 0 and the expectations μ1,μ2 are known and the scaling parameters σ1, σ2
are unknown. With the notation X = (X1, . . . ,Xn)T ,Y = (Y1, . . . ,Ym)T , the n + m-
dimensional random vector

(
XTYT)T follows the distribution 
g,K ,ν where the dgf is

the power exponential one, g(r) = gPE(r) = I(0,∞)(r) exp
{
− rp

p

}
, the star body K is the

p-generalized ellipsoid

K = Bp,σ1,σ2 =
{(

xTyT
)T ∈ Rn+m : |

(
xTyT
)T |p,σ1,σ2 ≤ 1

}
,

and the shift vector ν is
(
μ11Tn μ21Tm

)T ∈ Rn+m. Here,

|
(
xTyT
)T |p,σ1,σ2 =

(
|x|pp
σ
p
1

+ |y|pp
σ
p
2

)1/p
,
(
xTyT
)T ∈ Rn+m.

Let, in accordance with Section 3.2,

σ̂
p
1 = 1

n
|X − μ11n|pp, σ̂

p
2 = 1

m
|Y − μ21m|pp, (15)

and put

T = (σ̂1/σ1)p

(σ̂2/σ2)p
. (16)

Note that, for t > 0,

P(T < t) = 
gPE ,Bp;σ1,σ2 ,ν

({(
xTyT
)T ∈ Rn+m :

| x−μ11n
σ1

|pp
| y−μ21m

σ2
|pp

<
n
m
t
})

= 
gPE ,Bp;1,1,0
(
Cn,m;p(t)

)
where

Cn,m;p(t) =
{(

xTyT
)T ∈ Rn+m :

|x|pp
|y|pp

<
n
m
t
}

denotes a cone in Rn+m. The ipf of this cone is studied in Richter (2009). It is shown there
thatCn,m;p(t) belongs to the second elementary type of sets considered in Section 2.6, thus

P(T < t) = FSa,σ1,σ2 (Cn,m;p(t), 1), t > 0

does not depend on the dgf g. To be specific,

FSa,σ1,σ2 (Cn,m;p(t), 1) = p

B
(
n
p ,

m
p

) π/2∫
arccot

(
( n
m t)1/p

)
(cosϕ)n−1(sinϕ)m−1

((cosϕ)p + (sinϕ)p)n/p dϕ.

Hence, the p.d. of T is

fn,m;p(t) = (n/m)n/ptn/p−1

B(n/p,m/p)(1 + nt/m)(n+m)/p I(0,∞)(t).
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The distribution law of T, denoted by Fn,m(p), is called in Richter (2009) the
p-generalized Fisher distribution with (n,m) d.f. Finally, it turns out that

T = mσ
p
2 |X − μ11n|pp

nσ
p
1 |Y − μ21m|pp

∼ Fn,m(p).

Let us denote the q’th order quantile of the p-generalized Fisher distribution having
(n,m) d.f. by Fn,m;q(p), q ∈ (0, 1).

3.5.2 Confidence intervals

Two-sided, possibly asymmetric, and one-sided upper and lower confidence intervals for
σ
p
1

σ
p
2
are, correspondingly,

ξ

[
1

Fn,m;1−α1(p)
,

1
Fn,m;α2(p)

]
, ξ

[
1

Fn,m;1−α(p)
,∞
)

and ξ

(
−∞,

1
Fn,m;α(p)

]
where ξ [ e, f ]= {ξ · s : e ≤ s ≤ f } and

ξ = m|X − μ11n|pp
n|Y − μ21m|pp

.

3.5.3 Significance test

For deciding

H0 : σ1 = σ2 vs.HA : σ1 �= σ2 (17)

we use the distribution of T if H0 is true to construct a level α significance test. In this
case, T = m

n
|X−μ11n|pp
|Y−μ21m|pp . Reject H0 if T < Fn,m;α2(p) or if T > Fn,m;1−α1(p), respectively,

where α1 > 0,α2 > 0,α1 + α2 = α < 1.

Proposition 1. If sample sizes n and m are equal then this rule is equivalent to rejecting
H0 if the likelihood ratio statistic is smaller than a constant c ∈ (0, 1) chosen s.t.

P(reject H0 although H0 is true) = α.

To show this, let us consider the likelihood function

L(σ1, σ2) = (n+m) lnCp−n ln σ1−m ln σ2− 1
pσ p

1

n∑
i=1

|xi−μ1|p− 1
pσ p

2

m∑
i=1

|yi−μ2|p.

The maximum likelihood estimators of the scaling parameters are given in (15). If σ1 =
σ2 = σ , say, then L∗(σ ) = L(σ , σ) is the likelihood function for estimating σ , and

σ̂ = mle(σ ) =

⎛⎜⎜⎝
n∑

i=1
|xi − μ1|p +

m∑
i=1

|yi − μ2|p

n + m

⎞⎟⎟⎠
1/p

.

The likelihood ratio is

Q =
sup

σ1=σ2
L (σ1, σ2)

sup
σ1>0,σ2>0

L (σ1, σ2)
= L∗ (σ̂ )

L
(
σ̂1, σ̂2
)

=
(

(n + m)n+m

nnmm

)1/p |x − μ11n|pn|y − μ21m|pm(|x − μ11n|pp + |y − μ21m|pp
)(n+m)/p .
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Let ξ = |x − μ11n|pp/2 and η = |y − μ21m|pp/2. Because n = m it follows that Q ≤
t, t ∈ (0, 1) iff l(ξ) ≥ 0 where l(ξ) = ξ2 + pξ + q, p = −2η/tp/(2m) and q = η2. The two
positive solutions of the equation l(ξ) = 0 are

ξ1 = −p/2 + (p2/4 − q)1/2 = η

tp/(2m)

(
1 + (1 − tp/m)1/2

)
,

and

ξ2 = −p/2 − (p2/4 − q
)1/2 = η

tp/(2m)

(
1 − (1 − tp/m

)1/2)
where η > 0. Because l(.) is a convex function, the rejection area of Ho is the set of all ξ
satisfying ξ ≥ ξ1 or ξ ≤ ξ2. The latter inequalities are equivalent to

|x − μ11n|pp
|y − μ21m|pp

≥ 2
(
1 + (1 − tp/m)1/2

)
tp/m

− 1

and

|x − μ11n|pp
|y − μ21m|pp

≤ 2
(
1 − (1 − tp/m)1/2

)
tp/m

− 1.

This proves the equivalence of the considered decision rules.

Remark 1. As we have seen in this section, inferring on the scaling parameters ratio in
ln,p-symmetric sample distributions can be done in a g-robust way. For a discussion of this
property see Richter (2009), and note that it goes back in the case p = 2 to Fang et al. (1990).

4 Conclusions
As to shortly summarize the results of this paper, we derived exact confidence intervals
and significance tests for single scaling parameters and ratios of two such parameters if
the n-dimensional sample vector follows a norm or antinorm contoured ln,p-symmetric
distribution. This assumption includes modeling heavy and light tails of the sample vec-
tor’s distribution as well as independence and ln,p-dependence sampling. Certain classical
results are (g, p)-generalized in the present work. The additional methodological benefit
coming from the present paper may be estimated having a look at Richter (2012) where a
rather general frame of future work is sketched.

Appendix
Table 1 gives a brief comparison of norms and antinorms at the hand of the func-
tional |.|q, q ∈ R. Note that Nq = {x ∈ Rn : |x|q = 0} and Hi ={
(x1, . . . , xn)T ∈ Rn : xi = 0

}
, i = 1, . . . , n are hyper planes in Rn.

Table 1 Norms and antinorms

Parameter q ∈[ 1,∞) ∈ (0, 1] ∈ (−∞, 0)

Functional |.|q Norm Antinorm Semi-antinorm, z �= 0

Unit ball Bq Convex Radially concave Radially concave

w.r.t. standard fan in Rn w.r.t. standard fan in Rn

Inverse image of 0 Nq {0} {0} ∪d
1Hi
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Table 2 Quantiles χ
p
q (n), p = 3.3

q \ n 1 2 3 4 5 10 15 20 25 30

0.005 0.00 0.00 0.01 0.05 0.12 1.14 2.92 5.17 7.73 10.51
0.01 0.00 0.00 0.02 0.08 0.20 1.47 3.51 6.00 8.77 11.76
0.025 0.00 0.01 0.06 0.18 0.37 2.08 4.54 7.39 10.49 13.78
0.05 0.00 0.02 0.12 0.32 0.60 2.75 5.58 8.75 12.15 15.71
0.1 0.00 0.06 0.26 0.58 0.99 3.70 6.98 10.55 14.29 18.16
0.9 2.95 5.19 7.07 8.78 10.39 17.70 24.42 30.86 37.12 43.25
0.95 4.56 7.17 9.30 11.20 12.98 20.93 28.13 34.96 41.57 48.02
0.975 6.31 9.21 11.53 13.60 15.52 24.00 31.61 38.79 45.70 52.42
0.99 8.75 11.96 14.50 16.75 18.82 27.91 35.98 43.55 50.81 57.85
0.995 10.67 14.07 16.75 19.11 21.29 30.78 39.16 47.00 54.49 61.74

Table 3 Quantiles χ
p
q (n), p = 2.5

q \ n 1 2 3 4 5 10 15 20 25 30

0.005 0.00 0.00 0.03 0.12 0.26 1.68 3.84 6.43 9.29 12.36
0.01 0.00 0.01 0.06 0.18 0.37 2.06 4.46 7.27 10.33 13.57
0.025 0.00 0.02 0.13 0.33 0.61 2.72 5.50 8.63 11.99 15.50
0.05 0.00 0.05 0.23 0.52 0.89 3.42 6.53 9.95 13.56 17.31
0.1 0.01 0.13 0.43 0.84 1.33 4.36 7.88 11.64 15.55 19.57
0.9 2.83 4.86 6.60 8.20 9.72 16.70 23.19 29.43 35.51 41.50
0.95 4.15 6.49 8.43 10.20 11.86 19.38 26.28 32.87 39.26 45.52
0.975 5.56 8.13 10.24 12.15 13.93 21.92 29.17 36.06 42.71 49.21
0.99 7.50 10.32 12.62 14.68 16.60 25.11 32.77 40.00 46.96 53.72
0.995 9.01 12.00 14.41 16.57 18.58 27.44 35.37 42.83 50.00 56.95

Table 4 Quantiles χ
p
q (n), p = 0.75

q \ n 1 2 3 4 5 10 15 20 25 30

0.005 0.02 0.19 0.50 0.92 1.40 4.35 7.76 11.43 15.25 19.19
0.01 0.03 0.25 0.62 1.08 1.61 4.74 8.31 12.10 16.04 20.08
0.025 0.06 0.36 0.82 1.36 1.96 5.37 9.16 13.14 17.24 21.43
0.05 0.10 0.49 1.02 1.64 2.29 5.96 9.94 14.08 18.33 22.65
0.1 0.17 0.68 1.31 2.00 2.73 6.69 10.89 15.22 19.64 24.10
0.9 2.14 3.64 5.01 6.32 7.59 13.63 19.43 25.10 30.68 36.22
0.95 2.71 4.34 5.82 7.21 8.55 14.89 20.91 26.77 32.52 38.20
0.975 3.27 5.02 6.58 8.04 9.45 16.04 22.25 28.27 34.17 39.99
0.99 4.00 5.88 7.53 9.08 10.57 17.45 23.88 30.09 36.16 42.12
0.995 4.55 6.51 8.23 9.84 11.37 18.45 25.04 31.38 37.55 43.62

Table 5 Quantiles χ
p
q (n), p = 0.5

q \ n 1 2 3 4 5 10 15 20 25 30

0.005 0.05 0.34 0.77 1.29 1.86 5.18 8.88 12.79 16.83 20.96
0.01 0.07 0.41 0.89 1.45 2.07 5.54 9.37 13.39 17.52 21.73
0.025 0.12 0.54 1.10 1.73 2.40 6.11 10.12 14.29 18.56 22.89
0.05 0.18 0.68 1.31 1.99 2.71 6.63 10.80 15.10 19.48 23.93
0.1 0.27 0.87 1.58 2.33 3.11 7.26 11.61 16.07 20.59 25.16
0.9 1.94 3.34 4.64 5.89 7.10 12.95 18.60 24.14 29.62 35.06
0.95 2.37 3.88 5.26 6.57 7.85 13.94 19.77 25.47 31.09 36.64
0.975 2.79 4.38 5.83 7.21 8.54 14.84 20.82 26.66 32.39 38.05
0.99 3.32 5.02 6.55 8.0 9.39 15.92 22.09 28.08 33.95 39.74
0.995 3.72 5.49 7.07 8.57 10.0 16.69 22.99 29.08 35.04 40.91
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