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Abstract
The main purpose of this article is to characterize a class of bivariate continuous
non-negative distributions such that the sum of the components of underlying hazard
gradient vector is a linear function of its arguments. It happens that this class is a
stronger version of the Sibuya-type bivariate lack of memory property. Such a class is
allowed to have only certain marginal distributions and the corresponding restrictions
are given in terms of marginal densities and hazard rates. We illustrate the methodology
developed by examples, obtaining two extended versions of the bivariate Gumbel’s law.
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1 Introduction andmotivation
Marshall and Olkin (1967) introduced the classical bivariate lack of memory property (to
be denoted by BLMP1) via relation

SX1,X2(x1 + t, x2 + t) = SX1,X2(x1, x2)SX1,X2(t, t) (1)

for all x1, x2 ≥ 0 and t > 0, where SX1,X2(x1, x2) = P(X1 > x1,X2 > x2) is the joint sur-
vival function of non-negative continuous random vector (X1,X2). The functional Eq. (1)
tells us that, independently of t, the BLMP1 preserves the distribution of both (X1,X2)

and its residual lifetime vector Xt = [ (X1 − t,X2 − t) | X1 > t,X2 > t].
The only bivariate distribution with exponential marginals which possesses BLMP1 has

a joint survival function given by

SX1,X2(x1, x2) = exp{−λ1x1 − λ2x2 − λ3 max(x1, x2)}, x1, x2 ≥ 0, (2)

where λi ≥ 0, i = 1, 2, 3. The Marshall-Olkin (MO) bivariate exponential distribution (2)
is generated by the stochastic representation

(X1,X2) = [min(T1,T3), min(T2,T3)] , (3)

where Ti are independent and exponentially distributed random variables with param-
eters λi > 0, i = 1, 2, 3. Unless λ3 = 0, the distribution (2) exhibits singularity along
the line x1 = x2 and its contribution to SX1,X2(x1, x2) is α = P(X1 = X2) = λ3

λ1+λ2+λ3
,

e.g. Marshall and Olkin (1967). Hence, the MO bivariate exponential distribution is
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not absolutely continuous and does not have a probability density with respect to the
two-dimensional Lebesgue measure.
Apart fromMO bivariate exponential distribution, other known solutions of (1) are the

bivariate distributions obtained by Freund (1961), Block and Basu (1974), Proschan and
Sullo (1974), Friday and Patil (1977) and all distributions considered by Kulkarni (2006).
Consult Chapter 10 in Balakrishnan and Lai (2009) for a related discussion as well.
Johnson and Kotz (1975) introduced another version of the bivariate lack of memory

property (the local bivariate lack of memory property), which was rediscovered by Roy
(2002) and named BLMP2. The authors require conditional distributions {X1 | X2 > x2}
and {X2 | X1 > x1} to possess (preserve) the univariate lack of memory property. The only
absolutely continuous distribution with such a property is the Gumbel’s type I bivariate
exponential distribution given by

SX1,X2(x1, x2) = exp{−λ1x1 − λ2x2 − θλ1λ2x1x2}, x1, x2 ≥ 0 (4)

where λi > 0, i = 1, 2 and θ ∈[ 0, 1], see Gumbel (1960). It is negative quadrant dependent
since SX1,X2(x1, x2) ≤ SX1(x1)SX2(x2) for all x1, x2 ≥ 0.
If the first partial derivatives of SX1,X2(x1, x2) exist, one can define BLMP1 and BLMP2

alternatively. We will explore the conditional failure (hazard) rates defined by

ri(x1, x2) = ∂

∂xi
[− ln SX1,X2(x1, x2)] , i = 1, 2.

Marshall (1975) and Johnson and Kotz (1975) interpreted ri(x1, x2) as the conditional
failure rate of Xi evaluated at xi under condition that Xj > xj for i = 1, 2, i �= j.
Equivalently, the conditional hazard rates are the univariate hazard rates of conditional
distributions of each variate, given certain inequality of the remainder.
Marshall (1975) named the vector R(x1, x2) = (r1(x1, x2), r2(x1, x2)) the hazard gradi-

ent of the distribution (X1,X2). The hazard gradient vector R(x1, x2) (if exists) uniquely
determines the bivariate distribution by means of line integral

SX1,X2(x1, x2) = exp
{
−

∫
C
R(z)dz

}
, (5)

where C is any sufficiently smooth continuous path beginning at (0, 0) and terminating
at (x1, x2). Equation (5) holds provided that along the path of integration SX1,X2(x1, x2) is
absolutely continuous and R(x1, x2) exists for almost all x1 and x2, see Marshall (1975).
The term “almost all” means that the set where the partial derivative does not exist has
insignificant measure in the first quadrant, i.e. has a two-dimensional Lebesgue measure
zero. See details and a multivariate version in Marshall (1975).
All bivariate distributions which have first partial derivatives and possess BLMP1 are

characterized by the equation

r1(x1, x2) + r2(x1, x2) = a0

for almost all x1, x2 ≥ 0, where a0 is a non-negative constant, see Theorem 2 in Kulkarni
(2006). In particular, the last relation is valid for theMO bivariate exponential distribution
(2) with a0 = λ1 + λ2 + λ3 for all x1 �= x2, since

R(x1, x2) = (r1(x1, x2), r2(x1, x2)) =

⎧⎪⎨
⎪⎩

(λ1 + λ3, λ2), if x1 > x2,
does not exist, if x1 = x2,
(λ1, λ2 + λ3), if x1 < x2.
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Thus, the sum r1(x1, x2) + r2(x1, x2) is not defined along the line x1 = x2 having a
zero two-dimensional Lebesgue measure. The reason is that the conditional probability
P(Xi > xi | Xj > xj) i, j = 1, 2, i �= j, experiences a cusp at x1 = x2, i.e. it is continuous but
not differentiable at x1 = x2 and the corresponding failure rate ri(x1, x2) is not defined,
see Singpurwalla (2006), page 99.
In fact, Johnson and Kotz (1975) identify BLMP2 by a local “constancy” of the failure

rates ri(x1, x2), i = 1, 2, see their sections 3(iv) and 5.4. For distribution (4) one gets
ri(x1, x2) = λi + a1x3−i, i = 1, 2, where a1 is a non-negative constant. Thus, substituting
a0 = λ1 + λ2 and a1 = θλ1λ2, the sum of conditional hazard rates in BLMP2 case is
specified by

r1(x1, x2) + r2(x1, x2) = a0 + a1x1 + a1x2

for all x1, x2 ≥ 0.
It would be challenging to link BLMP1 and BLMP2 in a new class of bivariate continuous

distributions, to be denoted by L(x; a), satisfying relation

r(x1, x2) = r1(x1, x2) + r2(x1, x2) = a0 + a1x1 + a2x2 (6)

for almost all x1, x2 ≥ 0, where x = (x1, x2) and a = (a0, a1, a2) is a parameter vector with
non-negative elements, including the possibility a1 �= a2.
To show one more member of the class L(x; a), let us consider joint survival function

SX1,X2(x1, x2) = exp
{−λ1x21 − λ2x22 − λ3 max(x1, x2)

}
, x1, x2 ≥ 0, (7)

which has a singular component along the line x1 = x2 and meets (3). One can verify
that relation (6) is satisfied by setting a0 = λ3 > 0, a1 = 2λ1 > 0 and a2 = 2λ2 > 0.
The distribution given by (7) belongs to the generalized Marshall-Olkin (GMO) distri-
butions introduced by Li and Pellerey (2011). The random variables T1,T2 and T3 in (3)
are assumed to be independent in the class of GMO distributions, relaxing Marshall-
Olkin assumption of exponential marginality. It is direct to check that SX1,X2(x1, x2) ≥
SX1(x1)SX2(x2) for all x1, x2 ≥ 0, i.e. the bivariate distribution in (7) is positive quadrant
dependent.
Thus, one can find many examples of bivariate continuous distributions possessing

BLMP1 and BLMP2 represented by (1) and (4), respectively, as well as those exhibiting
positive or negative quadrant dependence that belong to the class L(x; a) specified by
(6). The class L(x; a) is composed of non-negative bivariate distributions which are abso-
lutely continuous or continuous with singularity along the line L = {x1 = x2 ≥ 0} such
that the sum of the components of underlying hazard gradient is a linear function of both
arguments x1 and x2.
It happens that the class L(x; a) (therefore both BLMP1 and BLMP2) is a particular case

of the Sibuya-type bivariate lack of memory property recently introduced by Pinto and
Kolev (2015c) as follows.

Definition 1. The non-negative continuous bivariate distribution (X1,X2) with
marginal survival functions SX1(x1) and SX2(x2) possesses Sibuya-type bivariate lack of
memory property (to be abbreviated S-BLMP), if and only if

SXt (x1, x2)
SX1t (x1)SX2t (x2)

= SX1,X2(x1, x2)
SX1(x1)SX2(x2)

(8)
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for all x1, x2, t ≥ 0, where SXt (x1, x2) is the joint survival function of residual lifetime
vector Xt and SXit (xi) are its marginal survival functions, i = 1, 2.

The S-BLMP is a new concept. Definition 1 tells us that the random vector (X1,X2) and
its residual lifetime vector Xt should share, for all t ≥ 0, the same dependence function
DX1,X2(x1, x2) introduced by Sibuya (1960) as follows

DX1,X2(x1, x2) = ln
SX1,X2(x1, x2)
SX1(x1)SX2(x2)

.

We will refer to DX1,X2(x1, x2) as “Sibuya’a dependence function” hereafter. It exhibits
interesting connections with important cases of dependencies, see Kolev (2016) for
related facts.
The article is organized as follows. In Section 2 we first discuss the S-BLMP and

justify our attention to its stronger version: the linear Sibuya-type BLMP introduced
by Pinto (2014), see Definition 2. We show its equivalence with the class L(x; a) and
present characterizations. Naturally, Theorems 1 and 2 are consequences of correspond-
ing statements in Pinto and Kolev (2015c). It will be recognized in Section 3 that only
certain marginal distributions of the class L(x; a) are allowed. The corresponding con-
ditions in terms of marginal densities and hazard rates are presented. Restrictions of
parameters a0, a1 and a2 are given in Theorem 3 and Proposition 1. As a result, one
would be able to generate members of the class L(x; a), some of them being extensions
of Gumbel’s law (4), see examples 1A and 3. A discussion and conclusions finalize the
paper.

2 A stronger version of S-BLMP
The marginal survival functions of residual lifetime vector Xt are given by

SX1t (x1) = SX1,X2(x1 + t, x2)
SX1,X2(t, t)

and SX2t (x2) = SX1,X2(x1, x2 + t)
SX1,X2(t, t)

.

Therefore, the relation (8) can be rewritten as

SX1,X2(x1 + t, x2 + t) = SX1,X2(x1, x2)SX1,X2(t, t)B(x1, x2; t), (9)

for all x1, x2, t ≥ 0, where the continuous function B(x1, x2; t) = SX1t (x1)SX2t (x2)
SX1 (x1)SX2 (x2) is such that

B(x1, x2; 0) = B(0, 0; t) = 1. The function B(x1, x2; t) is named “aging factor”, see page 457
in Balakrishnan and Lai (2009).
Without some simplifying assumptions on B(x1, x2; t) the class of bivariate distribu-

tions possessing S-BLMP is too cumbersome to be of use. General characterizations of
the S-BLMP in terms of functional equations involving Sibuya’s dependence function are
presented by Pinto and Kolev (2015c), see their Lemma 1 for example.
In order to get useful models, one should investigate a stronger version of S-BLMP. In

this paper we will perform a detailed analysis for a particular aging function of the form
B(x1, x2; t) = exp{−a1x1t − a2x2t}, where a1 and a2 are given nonnegative constants.
One can immediately recognize that in addition to relation (8) in Definition 1 one must
assume that

SXit (xi) = SXi(xi) exp{−aixit} for ai ≥ 0, i = 1, 2. (10)

Thus, we arrive to the stronger version of the S-BLMP, i.e. the linear Sibuya-type BLMP
introduced by Pinto (2014) as follows.
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Definition 2. The non-negative continuous bivariate distribution (X1,X2) possesses
linear Sibuya BLMP (to be abbreviated LS-BLMP), if and only if (8) and (10) are satisfied
for all x1, x2, t ≥ 0 and ai ≥ 0, i = 1, 2.

Therefore, the bivariate continuous distributions possessing LS-BLMP can be equiva-
lently represented by relation

SX1,X2(x1 + t, x2 + t) = SX1,X2(x1, x2)SX1,X2(t, t) exp{−a1x1t − a2x2t} (11)

for all x1, x2 ≥ 0 and t > 0. Really, let (11) be true. Put xi = 0 in (11) to get relations (10),
i = 1, 2. Substitute the exponent from (10) into (11) to obtain (8). Conversely, let (8) and
(10) be fulfilled. Use expression (10) in the left hand side of (8) to restore (11).
To justify the choice of specific form exp{−a1x1t − a2x2t} of the “aging factor” in (11),

let us consider a system composed by two elements with lifetimes represented by nonneg-
ative continuous random variables X1 and X2. Suppose that during the first t units of time
the system is protected by breakdowns (by warranty or insurance, say). It is reasonable to
assume that t < min(x1, x2). After those first t units of time the system can be affected
by two independent “fatal shocks” governed by homogeneous Poisson processes. Assume
finally that the i-th unit is damaged with intensity ait, i.e. the corresponding shock arrival
times are exponentially distributed, to be denoted Ti ∼ Exp(ait), i = 1, 2, see Fig. 1.
Therefore, the probability of the system survival SX1,X2(x1 + t, x2 + t) is given by (11).

Really, the right hand side in (11) is the probability SX1,X2(t, t) that both elements survive
the protected initial t units of timemultiplied by SX1,X2(x1, x2) exp{−a1x1t−a2x2t}, being
the probability of absence of shocks during the following xi units of time for the i-th
element, i = 1, 2.
The next characterization theorem gives the joint survival function of bivariate contin-

uous distributions possessing LS-BLMP.

Theorem 1. The continuous bivariate distribution (X1,X2) has LS-BLMP defined by
(11) for all x1, x2 ≥ 0 and t > 0 if and only if SX1,X2(x1, x2) is a non-degenerate bivariate
survival function given by

SX1,X2(x1, x2) =

⎧⎪⎨
⎪⎩
SX1(x1 − x2) exp

{−a0x2 − a1x1x2 − a2−a1
2 x22

}
, if x1 > x2 ≥ 0,

exp
{−a0x1 − a1+a2

2 x21
}
, if x1 = x2 ≥ 0,

SX2(x2 − x1) exp
{−a0x1 − a2x1x2 − a1−a2

2 x21
}
, if x2 > x1 ≥ 0,

(12)

where a0, a1, a2 ≥ 0 and SXi(xi) are the marginal survival functions, i = 1, 2.

Fig. 1 An interpretation of relation (11)
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Proof. Follows step by step the proof of Theorem 4 in Pinto and Kolev (2015c) with
Ai(x) = aix, i = 1, 2.

Theorem 1 tells us that (12) is the solution of the functional Eq. (11).
In Pinto and Kolev (2015c) is also shown that S-BLMP characterizes the distributions

belonging to the class defined by relation

r1(x1, x2) + r2(x1, x2) = a0 + A1(x1) + A2(x2), (13)

where a0 > 0 and the continuous integrable functions Ai(xi) are such that Ai(0) = 0 and
Ai(xi) > −a0 for all xi > 0, i = 1, 2.
One can deduce that when B(x1, x2; t) = exp{−a1x1t − a2x2t}, then relation (13)

transforms into (6), i.e. Ai(xi) = aixi, i = 1, 2 and we obtain the L(x; a) class.
When SX1,X2(x1, x2) is absolutely continuous, its vector hazard gradient R(x1, x2) exists

everywhere in the interior of the set

A = {
(x1, x2) ∈ R

2+ | SX1,X2(x1, x2) > 0
}
,

where R2+ is the first quadrant. In other words, relation (6) is well defined for all x1, x2 ≥
0. If it happens that SX1,X2(x1, x2) is continuous, its vector hazard gradient R(x1, x2) is
useful even when it does not exist everywhere in the interior of the set A, see Marshall
(1975). Because of possible singularity of the class L(x; a) along the line L having zero
two-dimensional Lebesgue measure, we will assume hereafter that first partial derivatives
of SX1,X2(x1, x2) exist and are continuous inA\L.
The next characterization theorem holds for bivariate continuous distributions belong-

ing to the class L(x; a) whose survival functions possess continuous first partial deriva-
tives, and hence continuous hazard gradient vector R(x1, x2), inA\L.

Theorem 2. If the first partial derivatives of SX1,X2(x1, x2) exist and are continuous in
A\L, then relation (6) is fulfilled if and only if the joint survival function can be represented
by (12).

Proof. Follows step by step the proof of Theorem 2 in Pinto and Kolev (2015c) with
Ai(x) = aix, i = 1, 2.

Observe that if our base relation is (11), then the LS-BLMP can be characterized by the
joint survival function specified by (12), without the assumption of existence of hazard
gradient vector R(x1, x2) as in Theorem 2.
Applying the Sklar’s theorem to (12), one can obtain the survival copula corresponding

to the class L(x; a), see Pinto and Kolev (2015a).

Remark 1. (hazard vector elements in singularity and absolutely continuous cases).
The bivariate survival functions considered in Theorem 2 are not necessarily absolutely
continuous (and therefore not differentiable in A). In fact, we do not exclude the pos-
sibility of existence of a singular component along the line L = {x1 = x2 ≥ 0}, i.e.
it may happen that P(X1 = X2) > 0. In such a case, when (x1, x2) belongs to the set{
(x1, x2) ∈ R

2+ | x1 = x2 = x
}
the function SX1,X2(x1, x2) is not differentiable as well as the

hazard gradient vector R(x1, x2) does not exist. But if in Theorem 2 the continuity of the
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first partial derivatives of SX1,X2(x1, x2) holds true in A, then SX1,X2(x1, x2) is absolutely
continuous, see page 357 in Apostol (1974).

If the joint survival function SX1,X2(x1, x2) is degenerate (i.e. has degenerate marginal
distributions), from (12) we get

SdeX1,X2(x1, x2) =

⎧⎪⎨
⎪⎩
exp

{−a0x2 − a1x1x2 − a2−a1
2 x22

}
, if x2 < x1 = const,

exp
{−a0x − a1+a2

2 x2
}
, if x2 = x1 = x = const,

exp
{−a0x1 − a2x1x2 − a1−a2

2 x21
}
, if x1 < x2 = const.

Obviously, SdeX1,X2
(x1, x2) does not have differentiable failure rates.

Now we will identify members of the class L(x; a) with independent marginals. Hence,
when (X1,X2) ∈ L(x; a), we will find solutions of functional equation

SX1,X2(x1, x2) = SX1(x1)SX2(x2) for all x1, x2 ≥ 0.

Let rXi(xi) be hazard rates of random variables Xi, i = 1, 2. The independence between
X1 andX2 implies that ri(x1, x2) = rXi(xi), i = 1, 2. Therefore, relation (6) transforms into

r(x1, x2) = rX1(x1) + rX2(x2) = a0 + a1x1 + a2x2.

The last equation is equivalent to both

rX1(x1) = α1 + a1x1 and rX2(x2) = α2 + a2x2,

where α1 ∈ [ 0, a0] and α2 = a0 − α1. Thus, we obtain the following result.

Corollary 1. The vector (X1,X2) with independent marginals belongs the class L(x; a) if
and only if the marginal survival functions SXi(xi) have one of the following three possible
analytic forms

exp{−αixi}, exp{−0.5aix2i } or exp{−αixi − 0.5aix2i }, i = 1, 2,

where α1 + α2 = a0 with α1 ∈[ 0, a0] and ai ≥ 0, i = 1, 2.

Therefore, the class L(x; a) has only 9 members with independent marginals. It is inter-
esting to note that if SX(x) = exp{−αxi − 0.5ax2}, (see the third option in Corollary 1),
then X has a linear failure rate rX(x) = α1 + ax. These type of univariate distributions
have been introduced by Kodlin (1967), see Sen (2006) as well. Additionally, since the
two first analytic forms in Corollary 1 can be included in the third one (taking ai = 0 or
αi = 0), the members of the class L(x; a) with independent marginals can also be seen as
an extension of the (univariate) linear hazard rate model to the bivariate setup.
Let us note that the bivariate linear failure distribution introduced by Hangal and

Ahmadi (2011) belongs to the class L(x; a).
Finally, one can analyze relation (6) from a completely different point of view. Define

the function

ψ(x1, x2) = r(x1, x2) − a0 and set G1(x1) = ψ(x1, 0), G2(x2) = ψ(0, x2).

The linear functions Gi(xi) = aixi satisfy the functional equation

Gi(xi + yi) = Gi(xi) + Gi(yi) for allxi, yi ≥ 0, i = 1, 2.
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Therefore, Gi(x), i = 1, 2, are additive functionals and only continuous solutions of
Cauchy functional equation f (x + y) = f (x) + f (y), see Theorem 1.1 in Sahoo and
Kannappan (2011). In fact, we proved the following statement.

Lemma 1. The class L(x; a) of non-negative bivariate continuous distributions speci-
fied by relation (6) can be equivalently defined by linear (additive) functionals G1(x1) =
r(x1, 0)− a0 and G2(x2) = r(0, x2)− a0, being the only continuous solutions of the Cauchy
functional equation f (x + y) = f (x) + f (y).

3 Restrictions on themarginal densities or failure rates
Theorem 2 characterizes bivariate continuous distributions belonging to the classL(x; a),
i.e. having joint survival function SX1,X2(x1, x2) specified by relation (12), which imply
some more restrictions on the margins of these distributions. In other words, the corre-
sponding joint survival function is valid only for certain marginal distributions of X1 and
X2.
Here we will obtain the associated constraints in terms of marginal densities and hazard

rates. As a result, we will get the admissible values of the parameter vector a= (a0, a1, a2).
The methodology will be illustrated by several typical examples.

3.1 Marginal density restrictions

The next statement shows the corresponding parameter constraints in terms of marginal
densities when a1 + a2 > 0. The case a1 = a2 = 0, e.g. the BLMP1, is detailed studied by
Kulkarni (2006).

Theorem 3. Let Xi be a random variable with absolutely continuous density fXi(xi), i =
1, 2. Let a0, a1, a2 ≥ 0 and a1 + a2 > 0. Then SX1,X2(x1, x2) in (12) is a proper bivariate
survival function if and only if

A(xi, xj) − aixj + d
dxi

log fXi(xi − xj) + ai[ xjA(xi, xj) − 1]
SXi(xi − xj)
fXi(xi − xj)

≥ 0 (14)

where A(xi, xj) = a0+aixi+(aj−ai)xj for all xi ≥ xj ≥ 0, i �= j, i, j = 1, 2. The singularity
contribution into the joint survival function is given by

α = P(X1 = X2) = [
fX1(0) + fX2(0) − a0

]√
π

2(a1 + a2)

× exp
{

a20
2(a1 + a2)

}[
1 − Erf

(
a0√

2(a1 + a2)

)]
,

(15)

where Erf (x) = 2√
π

∫ x
0 exp{−t2}dt. In addition, the survival function specified by (12) is

absolutely continuous if and only if fX1(0) + fX2(0) = a0.

Proof. Let SX1,X2(x1, x2) be given by (12). Then, it is a proper if

∂2

∂x1∂x2
SX1,X2(x1, x2) ≥ 0,

After some algebra the last condition transforms into inequality (14).
Since SX1,X2(x1, x2) may have a singular component along the line x1 = x2, then

α = P(X1 = X2) ∈ [ 0, 1] . The bivariate survival function SX1,X2(x1, x2) in (12) will be
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proper if and only if both the absolutely continuous part SacX1,X2
(x1, x2) and the singular

part SsiX1,X2
(x1, x2) are survival functions and

SX1,X2(x1, x2) = (1 − α)SacX1,X2(x1, x2) + αSsiX1,X2 (max{x1, x2})
for α ∈ [0, 1]. An equivalent expression in terms of joint densities is given by

fX1,X2(x1, x2) = (1 − α)f acX1,X2(x1, x2) + αf siX1,X2(max{x1, x2}),
where

(1 − α)f acX1,X2(x1, x2) = ∂2

∂x1∂x2
SX1,X2(x1, x2).

To ensure existence of SX1,X2(x1, x2)we should evaluate the probability α which is equiv-
alent to impose that 1 − α = P(X1 > X2) + P(X2 > X1) ∈[ 0, 1] , so one has to calculate
the probabilities in the last sum. We have

P(X1 > X2) =
∫ ∞

0

∫ u

0
(1 − α)f acX1,X2(u, v) dv du.

Computing the inner integral I(u) = ∫ u
0 (1 − α)f acX1,X2

(u, v) dv we get

I(u) = −fX1(0) exp
{
−a0u − a2 + a1

2
u2

}
− a1u exp

{
−a0u − a2 + a1

2
u2

}
+ fX1(u).

Therefore,

P(X1 > X2) = ∫ ∞
0 I(u) du

= −fX1(0)
∫ ∞
0 exp

{−a0u − a2+a1
2 u2

}
du − a1

∫ ∞
0 u exp

{−a0u − a2+a1
2 u2

}
du + 1.

(16)

In order to solve integrals in (16), we use the following two expressions taken from
Gradshteyn and Ryzhik (2007) for positive constants c and d:∫ ∞

0
exp{−cu2 − du} du = 1

2

√
π

c
exp

{
d2

4c

}[
1 − Erf

(
d

2
√
c

)]
,

(see equation 3.322.2 on page 336), and∫ ∞

0
u exp{−cu2 − du} du = 1

2c
− d

4c

√
π

c
exp

{
d2

4c

}[
1 − Erf

(
d

2
√
c

)]
,

(see equation 3.462.5 on page 365).
Substituting c = a1+a2

2 and d = a0 we obtain from (16)

P(X1 > X2) = a2
a1 + a2

−
[
fX1(0) − a0a1

a1 + a2

] √
π

2(a1 + a2)
exp

{
a20

2(a1 + a2)

}

×
[
1 − Erf

(
a0√

2(a1 + a2)

)]
.

In a similar way we get

P(X2 > X1) = a1
a1 + a2

−
[
fX2(0) − a0a2

a1 + a2

] √
π

2(a1 + a2)
exp

{
a20

2(a1 + a2)

}

×
[
1 − Erf

(
a0√

2(a1 + a2)

)]
.
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From the last expressions and (16) we arrive to (15). To conclude the proof, observe that
SX1,X2(x1, x2) in (12) is absolutely continuous if and only if α = 0, which is equivalent to
required condition fX1(0) + fX2(0) = a0.

Notice that if inequality (14) is fulfilled for some a0 = u > 0, then it is also satisfied for
all a0 ≥ u. Denote by

τ = the greatest lower bound of the set of possible values of a0 satisfying(14).

Depending on the marginal densities, it may happen in some special cases that τ >

fX1(0) + fX2(0), which contradicts (15) since always α = P(X1 = X2) ≥ 0, i.e. a0 ≤
fX1(0)+ fX2(0). Such high τ -values would be outside of the parameter spaceA of the class
L(x; a).
The range of possible values of a0 are shown in Proposition 1. It is crucial for the

construction of proper bivariate survival functions belonging to the class L(x; a) from
pre-specified marginal densities as we will see later.

Proposition 1. Suppose τ ≤ fX1(0) + fX2(0). If

a0 ∈ [
max{τ , max(fX1(0), fX2(0))}, fX1(0) + fX2(0)

]
, (17)

then Theorem 3 is fulfilled.

Proof. In the absence of singularity (whenever α = P(X1 = X2) = 0), one concludes
from (15) that fX1(0) + fX2(0) − a0 = 0. Therefore, always a0 ≤ fX1(0) + fX2(0), which is
the upper bound for a0 in (17).
The increase of the singular contribution into SX1,X2(x1, x2) implies increasing of the

probability α = P(X1 = X2) up to 1. Let us denote by

E(a0, a1, a2) = a0
√

π

2(a1 + a2)
exp

{
a20

2(a1 + a2)

} [
1 − Erf

(
a0√

2(a1 + a2)

)]
.

It is direct to check that 0 ≤ E(a0, a1, a2) ≤ 1. We may represent (16) as

P(X1 > X2) = 1 − fX1(0)
a0

E(a0, a1, a2) − a1
a1 + a2

[ 1 − E(a0, a1, a2)] .

The right hand side of the last equation is non-negative if fX1(0) ≤ a0. By analogy, from
the expression for P(X2 > X1) we obtain fX2(0) ≤ a0.
Notice that if a0 ∈[max{fX1(0), fX2(0)}, fX1(0)+ fX2(0)] then α ∈[ 0, 1] . Finally, the lower

bound in (17) can be obtained by taking into account the restriction on a0 imposed by
inequality (14) and possible related τ−values.

Remark 2. (absolutely continuous rule).Observe that whenever the upper bound aU for
a0 given by (17) is attainable, i.e. if aU = a0 = fX1(0) + fX2(0), one obtains an abso-
lutely continuous bivariate distribution for which (6) is valid. Therefore, Eq. (15), besides
representing the constraint a1 + a2 > 0, also offers a way to identify the presence of
singularity.
For absolutely continuous distributions belonging to the class L(x; a), it may happen

that the lower and upper bound in (17) coincide, being even zero when fX1(0) = fX2(0) =
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0, or equivalently, when rX1(0) = rX2(0) = 0, indicating that a0 = 0. For example, con-
sider a joint distribution given by SX1,X2(x1, x2) = exp{−0.5a1x21 − 0.5a2x22}. Observe that
both fX1(0) = fX2(0) = 0 implying a0 = 0 and α = P(X1 = X2) = 0. This special abso-
lutely continuous bivariate distribution with independent marginals case may be treated
as an “exception”, compare with Corollary 1.
Finally, note that all members of the class L(x; a) with independent marginals are

absolutely continuous.

Remark 3. (singularity of the BLMP1 models). In the particular case a1 = a2 = 0, the
condition (14) transforms into inequality (ii) of Theorem 5.1 inMarshall andOlkin (1967).
In addition, the possible interval values of a0 in (17) are compatible with those given by
Kulkarni (2006) in her Remark 1.

Remark 4. (singularity of the GMOmodels). Let us consider the joint survival function of
(Y1,Y2) belonging to the class of GMOdistributions and represented by (7), with ai = 2λi,
i = 1, 2, and λ3 = a0. It is direct to check that

P(Y1 = Y2) = a0
√

π

2(a1 + a2)
exp

{
a20

2(a1 + a2)

} [
1 − Erf

(
a0√

2(a1 + a2)

)]
.

Observe that the right hand side in the last equation is just the function E(a0, a1, a2)
used in the proof of Proposition 1.

We noted in the proof of Theorem 3 that if the survival function SX1,X2(x1, x2) given
by (12) is proper then ∂2

∂x1∂x2 SX1,X2(x1, x2) should be non-negative. This condition is
equivalent to the requirement

SX1,X2(x1, y1) + SX1,X2(x2, y2) − SX1,X2(x1, y2) − SX1,X2(x2, y1) ≥ 0

for any two points (x1, y1) and (x2, y2) in R
2+ such that x1 ≤ x2 and y1 ≤ y2. For example,

if x1 ≤ x2 ≤ y1 ≤ y2 and a2 = 0 we conclude from (12) that the last inequality regarding
the joint survival function is equivalent to

SX2(y1 − x1) − SX2(y2 − x1)
SX2(y1 − x2) − SX2(y2 − x2)

≤ exp
{
−(x2 − x1)

[
a0 + a1

2
(x2 + x1)

]}
.

In general, such constraints between marginal survival functions are not easily verified.
Relations (14) and (15) in Theorem 3 give alternative conditions in terms of absolutely
continuous marginal densities fXi(x), i = 1, 2. However, depending on the complexity of
the analytical form of the densities involved, it may be difficult to check these restrictions.

3.2 Marginal failure rates restrictions

The next result offers another set of equivalent constraints for parameters of L(x; a), but
in terms of marginal failure rates rXi(x), i = 1, 2.

Theorem 4. Let the marginal failure rates rXi(x), i = 1, 2, be differentiable functions
and for some nonnegative constants a0, a1 and a2, with a1 +a2 > 0, the following relations
hold
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0 ≤ rXi(xi) ≤ a0 + aixi; (18a)

rXi(xi − xj)[A(xi, xj) − aixj − rXi(xi − xj)]

+ d
dxi

rXi(xi − xj) + ai[ xjA(xi, xj) − 1]≥ 0,
(18b)

with A(xi, xj) = a0 + aixi + (aj − ai)xj, for xi ≥ xj ≥ 0, i, j = 1, 2, i �= j;

a0 ∈ [
max{τ , max(rX1(0), rX2(0))}, rX1(0) + rX2(0)

]
, (18c)

where τ denotes the greatest lower bound of the set of values of a0 for which the inequality
(18b) is satisfied.
Then the joint survival function SX1,X2(x1, x2) given by (12) is proper with marginals

SXi(xi) = exp
(− ∫ xi

0 rXi(u)du
)
, xi ≥ 0, i = 1, 2. The joint distribution is absolutely

continuous if and only if a0 = rX1(0)+ rX2(0), otherwise it possesses a singular component.

Proof. Let SX1,X2(x1, x2) be given by (12) and let the univariate failure rates rXi(xi) be
differentiable functions, i = 1, 2. Suppose that x2 ≥ x1 ≥ 0. Then substituting x1 = 0 in

r1(x1, x2) =
{
rX1(x1 − x2) + a1x2, if x1 > x2 ≥ 0,
a0 + (a1 − a2)x1 + a2x2 − rX2(x2 − x1), if x2 > x1 ≥ 0

one gets r1(0, x2) = a0+a2x2−rX2(x2) ≥ 0 and therefore rX2(x2) ≤ a0+a2x2. By analogy,
we conclude that rX1(x1) ≤ a0 + a1x1 if x1 ≥ x2 ≥ 0 and (18a) is established.
All other relations are consequence of Theorem 3.

Conditions (18a), (18b) and (18c) in Theorem 4 imply several simple practical steps that
help to fix the permissible parameter space of coefficients a0, a1 and a2 in L(x; a). We
discuss them in the next remark.

Remark 5. (parameter space of the class L(x; a)). Inequality (18a) says that the bivariate
distributions from the class L(x; a) satisfying (6) cannot have marginal distributions with
failure rates rXi(xi) above the line a0 + aixi for i = 1, 2. For example, distributions with
univariate failure rate of the form ax2i , for a > 0 are unable to meet (6).
In addition, since rXi(.) is a failure rate, then

∫ ∞
0 rXi(u)du = ∞ and because of (18a) the

support of Xi, i = 1, 2, cannot be bounded from above, i.e. has to be the entire half line
[ 0,∞).
To summarize, the parameter space for the coefficients a0, a1 and a2 satisfying (6) in

terms of marginal failure rates is given by

{a0 ∈ [
max{τ , max(rX1(0), rX2(0))}, rX1(0) + rX2(0)

]
, a1, a2 ≥ 0, a1 + a2 > 0},

because rXi(0) = fXi(0) for i = 1, 2. Finally, note that admissible values for coefficients a1
and a2 may be further limited as a consequence of inequality (18b) from Theorem 4, see
Example 2.
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The converse of Theorem 4 also holds for non-degenerate distributions and the
statement is given below.

Proposition 2. If SX1,X2(x1, x2) is non-degenerate bivariate survival function given by
Eq. (12) and has differentiable marginal failure rates then it must satisfy conditions (18a)
to (18c) in Theorem 4.

Proof. Follows step by step the proof of Proposition 1 in Kulkarni (2006).

The rules established in Theorem 4 may serve as a useful guide for constructing
bivariate distributions possessing property (6). The building scheme may be relaxed
under additional available information regarding monotone behavior of marginal failure
rates. In fact, the class of bivariate distributions L(x; a) may have arbitrary combina-
tion of marginal failure rates: increasing, decreasing, constant, bathtub, etc., implying
corresponding restrictions for the parameter space, of course.

3.3 Examples

The next two examples illustrate how relations in Theorem 4 can be applied to construct
bivariate distributions from L(x; a) with given marginal failure rates.

Example 1. (constant failure rate marginals). Assume that

SXi(x) = exp{−λix}, i.e. Xi ∼ Exp(λi) λi > 0, i = 1, 2.

Then fXi(x) = λi exp{−λix}, rXi(x) = λi and fXi(0) = rXi(0) = λi, i = 1, 2. From (18c)
we obtain the first restriction: max(λ1, λ2) ≤ a0 ≤ λ1 + λ2.
Let x1 ≥ x2. Since a1 ≥ 0, inequality (18b) transforms into

0 ≤ a1 ≤ (λ1 + a1x2)[ a0 − λ1 + a1(x1 − x2) + a2x2] ,

for all x1 ≥ x2 ≥ 0. The function (λ1 + a1x2)[ a0 − λ1 + a1(x1 − x2) + a2x2] is non-
decreasing and its minimum is equal to λ1(a0 − λ1) when x1 = x2 = 0. Therefore, 0 ≤
a1 ≤ λ1(a0 − λ1).
To find the greatest lower bound τ for which condition (18c) in Theorem 4 is true, is

equivalent to verify when λ2(a0 − λ2) + λ2a0a1x2 + λ2a0a1x22 ≥ 0. The last inequality is
satisfied when a0 ≥ λ2. But we got this lower bound for a0 already.
Analogously, when x2 ≥ x1 we obtain 0 ≤ a2 ≤ λ2(a0 − λ2).
Summarizing, the parameter space is

max(λ1, λ2) ≤ a0 ≤ λ1 + λ2, a1 + a2 > 0 and 0 ≤ ai ≤ λi(a0 − λi), i = 1, 2.

We will consider two possible cases:
1A.The bivariate survival function will be absolutely continuous if a0 = λ1+λ2. Hence,

ai = θiλ1λ2 for θi ∈ (0, 1] , i = 1, 2. With these specific parameters we get from (12) the
representation

SX1,X2(x1, x2) =
⎧⎨
⎩
exp

{
−

[
λ1x1 + λ2x2 + λ1λ2x2(θ1x1 + θ2−θ1

2 x2)
]}

, if x1 ≥ x2,

exp
{
−

[
λ1x1 + λ2x2 + λ1λ2x1(θ2x2 + θ1−θ2

2 x1)
]}

, if x2 ≥ x1,

(19)
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which may be named Generalized Gumbel’s bivariate exponential distribution.
Observe, that fixing θ1 = θ2 = θ in the last relation we obtain as a particular case the

Gumbel’s type I bivariate exponential distribution (4).
1B. A bivariate survival function with absolutely continuous and singular components

can also be constructed when a0 < λ1 + λ2. Suppose λ1 > λ2 and let a0 = λ1. Notice
that with this parameter choice the restrictions in (18c) are fulfilled. Hence we obtain
a1 = 0 and a2 = θλ2(λ1 − λ2), where θ ∈ (0, 1] . Substituting these parameter values in
(12) we get

SX1,X2(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
exp

{
−

[
λ1x1 + θλ2(λ1−λ2)

2 x22
]}

, if x1 ≥ x2,
exp {− [(λ1 − λ2)x1 + λ2x2]}
× exp

{
−

[
θλ2(λ1 − λ2)x1(x2 − x1

2
)
]}, if x2 ≥ x1.

In what follows, we will build a bivariate distribution with increasing marginal failure
rates.

Example 2. (increasing failure rate marginals). Consider

SXi(x) = exp
{−λix2 − λ3x

}
for x ≥ 0, λi > 0, λ3 > 0, i = 1, 2.

Since fXi(x) = (2λix + λ3) exp
{−λix2 − λ3x

}
, then rXi(x) = 2λix + λ3, i = 1, 2, and

the marginals have increasing failure rate. First limitations on the parameter space come
from inequalities (18a) and (18c), i.e. a0 ≥ λ3 and ai ≥ 2λi, i = 1, 2.
When x1 ≥ x2 ≥ 0, from (18b) we get a nonnegative increasing in x1 and x2 function

2λ1 − a1−[ 2λ1(x1 − x2) + λ3 + a1x2] [ (2λ1 − a1)(x1 − x2) + λ3 − a0 − a2x2]≥ 0

with a minimum at the point (0, 0). Hence we obtain a1 ≤ 2λ1 + λ3(a0 − λ3).
Analogously, for x1 ≥ x2 ≥ 0, we get 2λ2 ≤ a2 ≤ 2λ2 + λ3(a0 − λ3).
Summarizing, we have the constraints

λ3 ≤ a0 ≤ 2λ3 and 2λi ≤ ai ≤ 2λi + λ3(a0 − λ3), i = 1, 2.

2A. If a0 = 2λ3 we obtain an absolutely continuous bivariate survival function. In this
case ai = 2λi + θiλ

2
3, θi ∈ [ 0, 1] , i = 1, 2 and letting these values in (12) one gets

SX1,X2(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
{− [

λ1x21 + λ3x1 + λ2x22
]}

× exp
{
−

[
λ3x2 + λ23x2(θ1x1 + θ2 − θ1

2
x2)

]}, if x1 ≥ x2,

exp
{− [

λ2x22 + λ3x2 + λ1x21
]}

× exp
{
−

[
λ3x1 + λ23x1(θ2x2 + θ1 − θ2

2
x1)

]}, if x2 ≥ x1.

Observe that the expression of the joint survival function involves a complete sec-
ond degree polynomial in the exponent. In addition, notice that θ1 = θ2 = 0 implies
independence between X1 and X2.
2B.A bivariate survival function having absolutely continuous and singular component

can also be captured substituting

a0 = (1 + θ0)λ3, θ0 ∈ [ 0, 1), ai = 2λi + θ0θiλ
2
3 and θi ∈ [ 0, 1] , i = 1, 2
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in (12). Let θ0 = 0 in the corresponding expression to get relation (7), i.e the distribution
from the class of GMO distributions, see Li and Pellerey (2011).

Example 3. (“min” operation based construction). Let the survival function of the bivari-
ate random vector (Y1,Y2) follow Gumbel’s type I bivariate exponential distribution given
by (4) which is a member of the class L(x; a). Assume that Y3 ∼ Exp(λ3) is independent
of (Y1,Y2). Therefore, (X1,X2) =[min(Y1,Y3), min(Y2,Y3)] belongs to L(x; a) as well and
its survival function is given by

SX1,X2(x1, x2) =
{
exp{−(λ1 + λ3)x1 − λ2x2 − θλ1λ2x1x2}, if x1 ≥ x2,
exp{−λ1x1 − (λ2 + λ3)x2 − θλ1λ2x1x2}, if x2 ≥ x1.

(20)

Notice that SY1,Y2(x1, x2) is absolutely continuous, but SX1,X2(x1, x2) displays a singular
component along the line x1 = x2. The expression (20) is given by Pinto and Kolev (2015c)
in their Example 1.
It is worth noting that SX1,X2(x1, x2) given by (20), despite being continuous (but

not absolutely continuous), preserves the local constancy of the failure rates r1(x1, x2)
and r2(x1, x2) in a very similar fashion as Gumbel’s bivariate distribution (4) does, i.e.
ri(x1, x2) = λi + a1x3−i, i = 1, 2,. The hazard components of (20) are given by

ri(x1, x2) =

⎧⎪⎨
⎪⎩

λi + λ3 + θλ1λ2x3−i, if xi > x3−i,
does not exist if x1 = x2,
λi + θλ1λ2x3−i, if xi < x3−i

for i = 1, 2. Therefore, we may consider (20) as aGumbel’s extended bivariate exponential
distribution with a singularity along the line x1 = x2. Substituting λ3 = 0 in (20), one will
get absolutely continuous Gumbel’s version (4).

Remark 6. (expanding Gumbel’s bivariate law). The construction in Example 3 incorpo-
rates a singular component into the resulting distribution, which belongs to a wider class
of ExtendedMarshall Olkin (EMO) bivariate distributions introduced by Pinto and Kolev
(2015b). In fact, we assume that T1 and T2 are dependent random variables, but indepen-
dent of T3 in stochastic representation (3). Particular members of the EMO-class are the
MO bivariate exponential distribution satisfying (3) and the GMO distributions (remind
that the joint distribution given by (7) is member of the GMO-class).

4 Discussion and conclusions
In this paper we study a stronger version of S-BLMP introduced by in Pinto and Kolev
(2015c), see Definition 1. We define the class L(x; a) and characterize it by the following
equivalent relations L(x; a) ⇔ (6) ⇔ (12). In addition,

Lemma 1 ⇔ L(x; a) ⇔ LS − BLMP ⇔ (11).

Thus, the class L(x; a) might be treated as a key tool to deepen the BLMP-notion giv-
ing possibility to model the aging phenomena in the complement to the “non-aging”
one, which fixes the world on Eqs. (1) or (4), via BLMP1 and BLMP2 correspondingly.
Our new base equations are (6) or (11). We are convinced that the class introduced is
promising in modeling dynamic aging dependence, being much more realistic than the
virtual “non-aging world”. The class L(x; a) includes symmetric and asymmetric continu-
ous distributions with possible singularity; those which are positive or negative quadrant
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dependent; distributions from the GMO and EMO classes, etc. This huge variety of
bivariate distributions would help to choose the “right” model consistent with the phys-
ical nature of the observations. The selection of bivariate distribution to be used should
depend on considerations involving both the physical scenario at hand, and the properties
of chosen distribution.
The seminal Gumbel’s type I bivariate exponential distribution given by (4) has a central

place in probability theory, being object of many characterization results. To count several
of them, it is: the only absolutely continuous bivariate distribution possessing BLMP2;
belongs to the class L(x; a); a key bivariate extreme value distribution, etc. We got two
extensions of the Gumbel’s type I distribution: one being absolutely continuous and the
other having a singular component, represented by (19) and (20) respectively, consult
Remark 6 as well. We do believe that further characterizations based on those relations
will elevate the generalized Gumbel’s laws as a starting point and a base for obtaining
new bivariate models, with higher flexibility and chances to better model the genuine
dependence structure.
We did not consider in this article inference procedures related to the model (6), nor

its application for real data set. But, in Pinto and Kolev (2015b) we perform a Bayesian
analysis using the EMO distribution (20) (being a member of the classL(x; a)) for a soccer
data with ties studied by Meintanis (2007) and many other authors. According to the
Deviance Information Criterion, our model (20) presented better fit than the Marshall-
Olkin bivariate Weibull distribution, recently introduced by Kundu and Gupta (2013),
who analyzed the same data set.
In general, onemay use techniques for estimation of bivariate density function with par-

tially differentiable kernels, e.g. Scott (1992). Another option is to apply the Kaplan-Meier
estimate of bivariate survival function, even in the case of censoring following Dabrowska
(1988), for example. Once the model is selected, goodness of the fit can be tested with
conventional methods.
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