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Abstract
The family of positive tempered α-stable (pTAS) or sometimes also tempered
one-sided α-stable distributions dates back to Tweedie (1984) and Hougaard (1986)
who discussed it in the context of frailty distribution in life table methods for
heterogenous populations. The pTAS family generalizes the well-known gamma
distribution and allows for heavier tails depending on the parameter α. Because of this
property, pTAS distributions appear to be useful in the context of risk management.
Against this background, the contribution of his work is three-fold: Firstly, we
summarize the properties of the pTAS family. Secondly, we describe its numerical
implementation and illustrate the functions by means of R examples in the Appendix.
Thirdly, we empirically demonstrate that this family can be successfully applied in risk
management. Concretely, applications to credit and operational risk are given.

Keywords: Stable distributions, Positive distributions, Estimation, Operational risk,
Credit risk

Mathematics Subject Classification: 44A10; 60E07; 91B28

1 Derivation and properties of the pTAS family
1.1 Evolution of the pTAS family

The distribution of a (non-degenerate) random variable X is called stable if there exist
constants an > 0 and bn such that, for any n > 1, if X1,X2, . . . are i.i.d. copies of X and
Sn ≡ ∑n

i=1 Xi, then Sn
d= anX + bn. The distribution is called strictly stable if bn = 0. The

normalizing constants are necessarily of the form an = n1/α for some α ∈ (0, 2], where
α is called the index or characteristic exponent of the distribution. We also say that X is
α-stable if it is stable with index α and characteristic function

ϕ(t;α,β , γ , δ) =
{
exp

(−γ α|t|α(1 − iβ tan(πα/2)sgn(t)) + iδt
)
, α �= 1

exp
(−γ |t|(1 − iβ 2

π
log(t)sgn(t)) + iδt

)
, α = 1

where β ∈ [−1, 1] (skewness parameter), δ ∈ R (location parameter) and γ > 0 (scale
parameter), briefly X ∼ Sα(β , γ , δ). Forthon, the focus is on positive or one-sided α-stable
(pAS) variables, i.e. X > 0 a.s. which corresponds to these cases (parameter sets) where
0 < α < 1, β = 1 and δ ≥ 0. In this case and for δ = 0, the Laplace transform is finite for
all s > 0 and given by (see, e.g. Nolan (2003) or Janson (2011, Theorem 3.12))

LpAS(s;α, γ ) = E
(
e−sX) = exp

(−ξ sα
)
, α ∈ (0, 1] and ξ = γα

cos(πα/2)
. (1.1)
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The positive or one-sided tempered α-stable distribution has its origin in Tweedie
(1984) and Hougaard (1986). The process of tempering (also exponential tilting or Ess-
cher transformation, Esscher (1932)) shortens the right-hand tail of the stable distribution
so that, in contrast with the stable case, moments of all orders exist. Technically, a new
proper density g is defined by

gY (y;α, γ , θ) := fpAS(y;α, γ )
exp(−θy)

LpAS(θ ;α, γ )
, θ ≥ 0. (1.2)

The distribution of the corresponding random variable Y is called positive tempered
α-stable (pTAS) distribution. Using (1.1), (1.2), its Laplace transformation derives as

LY (s) = exp
(

− γ α

cos (πα/2)
(
(θ + s)α − θα

))
. (1.3)

1.2 Properties of pTAS distributions and some remarks

Hougaard (1986) proved that all moments exist if θ > 0. In particular, using (1.3),

μ = E(Y ) = αξ

θ1−α
and σ 2 = Var(Y ) = α(1 − α)ξ

θ2−α
,

where ν = σ/μ denotes the coefficient of variation. Moreover, skewness and kurtosis,
defined by the third and fourth standardized moments read as

S(Y ) = ν(2 − α)

1 − α
and K(Y ) = ν2(2 − α)(3 − α)

(1 − α)2
+ 3. (1.4)

In the relevant literature, different parameterizations appear, summarized in Table 1,
below.
Figure 1 illustrates the possible combinations of skewness and kurtosis that can bemod-

eled via a pTAS distribution (gray shaded area). One can see that the area of possible
combinations is bounded by the gamma distribution from below whereas the possible
combinations of the Lognormal distribution are covered by the pTAS family. Therefore,
we think that the pTAS distribution can serve as a good alternative whenever data are
assumed to follow a lognormal distribution in general but some more flexibility regard-
ing the tail behavior is required. For comparison reasons, we also depict the Weibull
distribution which is often used in operational risk models (see Section 3.2).
Hougaard (1986) showed that all pTAS densities are unimodal and proved the follow-

ing scaling-property: cX ∼ P(α, cαδ, θ/c) when X ∼ P(α, δ, θ). Furthermore, the pTAS
family is self-decomposable (i.e. if X follows a pTAS distribution then for each λ ∈ (0, 1)
there exists a random variable Y independent of X such that L(X ) = L(λX + Y)) and

Table 1 Different Parametrizations:P(K) � P(T) with β = α, α = θα · δ/(1 − α), λ = (1 − α)/δ.

P(H) � P(T) � P(P) using δ = μ
(
1−α
μν2

)1−α

, γ =
[

μ cos(πα/2)
α

] 1
α

[
1−α
μν2

] 1−α
α

and θ = 1−α
μν2

Reference Parameter Abbreviation

Hougaard (1986) (α, δ, θ) P(H)

Tweedie (1984)a, Haas and Pigorsch (2009) (α, γ , δ) P(T)

Palmer et al. (2008) (α,μ, ν) P(P)

Küchler and Tappe (2011) (β ,α, λ) P(K)

aTweedie (1984) considered exponential dispersion models with variance function of the form V(μ) ∝ μp such models with p>2
coincide with the pTAS family with α = (p − 2)/(p − 1), see Jørgensen (1987), chapter 4, for a detailed account
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Fig. 1 Skewness-Kurtosis Plot of pTAS family, Weibull and lognormal distribution

infinitely divisible (i.e. for all n ∈ N exists a sequence of iid random variables
(
X1/n
j

)n
j=1

such that X d= X1/n
1 + . . . + X1/n

n . In this case, the characteristic function reads

ϕX(u) = E(eiuX) = exp
(
iγu − 0.5σ 2u2 +

∫ ∞

−∞
(
eiux − 1 − iux1|x|<1

)
ν(dx)

)
,

where γ ∈ R, σ ≥ 0 and ν denotes the Lévy measure. The triplet (γ , σ 2, ν) is called
the Lévy triplet. If the Lévy measure ν(dx) has a density k(x), then this density is called
a Lévy density. Barndorff-Nielson and Shephard (2001) discuss the Lévy-density of the
pTAS distribution. After a suitable re-parametrization, one obtains

k(x) = γ 2αα exp(−θx)

(1 − α)x−(1+α)

, x > 0.

for 0 < α < 1, θ > 0, γ > 0. According to Lemma 4 in Küchler and Tappe (2011) it also
holds that

ϕX(u) = exp
(
α
(−β)

[
(λ − iu)β − λβ

])
.

The pTAS density reduces to a simple closed form in three special cases. At first, letting
α → 0, the gamma distribution with scale α
 = θαδ

1−α
, shape β
 = 1−α

θ
is recovered.

Secondly, setting α = 1/2, the inverse Gaussian distribution with λIG = δ2θ2α−1

(1−α)
arises.

Finally, another special case arises when α = 1/3 where the probability density function
(pdf) can be expressed in closed form:

fα=1/3(y; δ, θ) =
√
3

π

(
δ

y

)1.5
K1/3

(
2
√

δ3y−1) exp(3δθ1/3 − θy
)

where Kλ(x) denotes the modified Bessel function of the third kind with index λ.
The special cases as well as some density functions for further values of α are shown in

Fig. 2.
The pTAS family can be considered as an alternative to the generalized inverse Gaussian

(GIG) family (see Koudou and Ley (2014) for a review of this family) which itself arises
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Fig. 2 Density of pTAS distribution for different values of α as well as the special cases of the inverse
Gaussian (α = 0.5) and the gamma distribution (α → 0)

from the inverse Gaussian (IG) distribution by exponential tilting. Barndorff-Nielson and
Shephard (2001) introduce the four-parameter, so-called modified stable (MS) distribu-
tions which nests both GIG family and pTAS family (setting κ = 0.5 and ν = −κ in their
notation), where ν denotes the fourth (additional) parameter.

2 Implementation issues
This chapter describes numerical algorithms which can be used for the standard func-
tions (e.g. density and distribution function, random number generation and quantile
function) of a pTAS random variable. The algorithms are described independently of a
specific programming language. However, we give some examples how to use the pTAS
R-package, which contains the described functions, in Appendix 4. The R-package is not
yet published but can be obtained from the authors by request.

2.1 Density and distribution function

Since the pdf and cumulative distribution function (cdf) of the pTAS family are in general
not available in closed form, but only via the Laplace transform, we have to use numerical
inversion techniques to calculate values of the density or distribution function. Therefore,
we follow a general approach given by Abate et al. (2000), which will be described briefly
in this section. For further details please refer to the mentioned literature.
Starting from the Bromwich integral, the value of the pdf f at t > 0 can be recovered

from the Laplace transform f̂ := L(f ) by 1

f (t) = 1
2π i

b+i∞∫
b−i∞

est f̂ (s) ds = 2ebt

π

∞∫
0

Re
(
f̂ (b + iu)

)
cos(ut) du, (2.1)

where i = √−1 and b is a real number greater than all singularities of f̂ . The second
transformation is achieved via a change of variables.
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Approximating the integral in (2.1) by the trapezoidal rule with step size h > 0, we get

f (t) ≈ hebt

π

(
f̂ (b) + 2

∞∑
k=1

Re
(
f̂ (b + ikh)

)
cos(kht)

)
. (2.2)

This equation gives rise to three kinds of error, a discretization error caused by the
step size h, a truncation error and a round-off error because of the numerical operations
performed by calculating the series.
The discretization error can be reduced by interpreting (2.1) as a Fourier series of a

function g(t) := e−btf (t), whereby the coefficients of the series itself can be expressed
via the values of the Laplace transform. The error then can be reduced by increasing the
ratio b/h. The round-off error can be controlled by choosing h = π

lt and b = A
2lt for

some l ∈ N > 0 and A = 2l
2l+1m ln 10, where in turn m > 0 should be chosen such

that 10−m is close to the machine precision. In order to improve the truncation error, the
so called Euler summation technique can be applied, which gives us another parameter
n ∈ N determining the number of coefficients being (fully) respected for the summation.
Similarly to Abate et al. (2000) we recommend the following default values: l = 1, n = 38
andm = 11.
Finally, the pdf is approximated via

f (t) ≈
exp

(
A
2l

)
2lt

m∑
k=1

(
m
k

)
2−mSn+k , (2.3)

with

S0 = f̂
(

A
2lt

)
+ 2

l∑
j=1

Re
[
f̂
(

A
2lt

+ ijπ
lt

)
exp

(
ijπ
l

)]
and

Sk = Sk−1 + (−1)k2
l∑

j=1
Re

[
f̂
(

A
2lt

+ ijπ
lt

+ ikπ
t

)
exp

(
ijπ
l

)]
k ∈ N>0. (2.4)

Using the definition of the Laplace transform and partial integration it is easy to see that
for F(t) = ∫ ∞

0 f (t) dt

F̂(s) := L(F)(s) = L(f )(s)/s. (2.5)

Therefore, with just a minor modification, the same method used to approximate the
pdf can be used to approximate the cdf of a pTAS distribution.

2.2 Quantiles and random numbers

To calculate the quantile for a given level p ∈ (0, 1), Ridout (2008) proposed a modified
version of Newton’s method to invert the cdf. Because, especially in the upper and lower
tail of the distribution, the pdf may be close to zero, which may lead to an iteration step
outside a given interval [ tmin, tmax]. In this case, the Newton step is replaced by a bisection
method.
Given a tolerance ε > 0, a maximum number of iterations Nmax ∈ N and a closed

interval [ tmin, tmax] such that ∃t ∈ [ tmin, tmax] :
∣∣F(t) − p

∣∣ ≤ ε the following algorithm
can be used to calculate the p-quantile of a pTAS distribution:
In order to determine the initial values of the lower and upper bounds, we propose

to store some values for t and F(t) on a grid ti=1,...,N depending on mean and standard
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Algorithm 1 Inversion of the CDF
Set initial values

n ← 1
t1 ← (tmin + tmax)

/
2

While n ≤ N and
∣∣F(t) − p

∣∣ > ε

tn+1 ← tn − (F(tn) − p)
/
f (tn) # Newton step

if tn+1 > tmax or tn+1 < tmin # bisection method
tn+1 ← (tmin + tmax)

/
2

if F(tn+1) > p # update lower/upper bounds
tmax ← tn+1

if F(tn+1) < p
tmin ← tn+1

n ← n + 1
if n > N

Warning: Iteration not successful.
else

return tn

deviation. Using precalculated values for tmin and tmax increases performance especially
when quantile transformations should be performed very often.
If multiple quantiles should be calculated at the same time for different probabilities

pm=1,...,M, the probabilities should be sorted in ascending order before the transformation.
Assuming that p1 ≤ . . . ≤ pM we can apply Algorithm 1 on the first element p1 and use
the resulting value t1 = F−1(p1) as starting point (and also as lower bound) for the next
element p2.

Algorithm 2Multiple Inversion of CDF
Choose initial bounds (from precalculated grid):

tmin > 0 : F(tmin) < minm=1,...,M pm
tmax > 0 : F(tmax) > maxm=1,...,M pm

Calculate first quantile via Algorithm 1:
t1 = F−1(p1)

Form = 2, . . . ,M
tm ← F−1(pm) # via Algorithm 1 with starting value tm−1
tmin ← tm

For random number generation the inverse probability integral transform method can
be applied very easily by using Algorithm 2 based on sorted uniform drawings.

2.3 Estimating parameters

Given a series of N positive observations x1, . . . , xN a pTAS distribution can be fitted via
various methods. First of all, a numerical maximum likelihood estimation (MLE) can be
used. Within the package (see appendix A) we use the mle() function of the R-package
stats4 which in turn uses the optim() optimizer of R in order to perform a maximum



Fischer and Jakob Journal of Statistical Distributions and Applications  (2016) 3:11 Page 7 of 18

likelihood estimation. In particular, for observations t1, . . . , tN the parameters are deter-
mined by

(
α∗,μ∗, σ ∗) = argminα,μ,σ −

N∑
n=1

log f(α,μ,σ) (tn) ,

whereas for the calculation of the pdf f(α,μ,σ)(t) the algorithm described in 2.1 is used. As
starting values we use the empirical mean and variance and a value of 0.5 for α. In order to
ensure that the parameters stay in their specific range, we use the L-BFGS-B method with
box constraints. Alternatively, distribution parameters can be estimated based on mean
and variance, which determine parameters μ and ν regarding thePP parametrization and
either the skewness, the kurtosis or a quantile to estimate parameter α. Given a skewness
or kurtosis value (besides mean and variance), parameter α can be calculated by using
Eq. (1.4). Please note, that the minimal skewness for a pTAS distribution equals 2ν. Please
also note, that if α should be estimated based on a given kurtosis value the solution may
not be unique (see Eq. 1.4).
A similar problem occurs if α should be estimated based on a given quantile t∗ for

probability p∗. Therefore, we propose to start with a grid αi=1,...,N−1 (e.g. αi = i
N for

i = 1, . . . ,N − 1 for some N ∈ N) and calculate quantiles ti = F−1
PP(αi,μ,ν)(p

∗) in order to
determine the number of possible solutions as well as lower and upper bounds for each of
them. Given a lower and upper bound for each possible solution, a standard root finding
method (e.g. bisection method) can be applied. In order to choose a proper value of N, we
recommend to visualize the problem at first with the help of a plot like the one given in
Fig. 3, which shows an example containing two possible solutions for α. In this case, we
fixed the parameters μ and ν based on mean and variance and want to find a solution for
α such that FPP(α,μ,ν)(14.36) = 0.999. As Fig. 3 shows, we get the two solutions α1 = 0.5
and α2 = 0.98.
In cases with no unique solution, the resulting parameters may lead to very different

distributions (e.g. with different tails) which, in the context of risk management, can cause
different risk figures. Therefore, we recommend to choose the estimation method with
respect to the proposed area of application and to compare estimation results between

Fig. 3 99.9 % quantile depending on parameter α (μ = 1 and ν = 1.5 are fixed)
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different methods if they are not unique. Otherwise, using inappropriate parameter
estimators may lead to an increase of model risk.

3 Application to risk management
After showing how the pTAS distribution can be implemented and parameters can be
estimated, we provide two extensive risk management applications of the pTAS family.

3.1 Credit risk

Our first application deals with the quantification of credit risk. Given a particular credit
portfolio ofN counterparties, financial institutions use credit portfoliomodels to estimate
the distribution of the portfolio loss over a fixed time horizon (usually one year) due to
counterparties’ defaults 2. For each counterparty we denote the exposure at default by
EADi > 0, the loss given default (as fraction of EADi) by LGDi ∈ [ 0, 1] and the probability
of default by PDi ∈ (0, 1). The portfolio loss L then reads as

L =
N∑
i=1

EADi · LGDi · Di,

whereDi is a Bernoulli distributed random number with probability PDi representing the
default (Di = 1) or the survival of counterparty i.
Given these counterparty specific information, a crucial task of a credit portfolio model

is to model the changes of PDi over the specified time horizon by taking into con-
sideration systematic influences due to country or business dependencies as well as
idiosyncratic changes. For our example we use the CreditRisk+ model, which is avail-
able via the GCPM R-package on CRAN. We give a short introduction on those model
parts, which are necessary for this example. For detailed information please refer to Credit
Suisse First Boston International (1997) or Gundlach and Lehrbass (2004).
Within the CreditRisk+ model the possible change of counterparty i’s PD is modeled by

the conditional PDi, which is given by

PDi = PDi

(
wi,0 +

K∑
k=1

wi,kSk

)
,

where wi,k ∈ [ 0, 1] represent the affiliation to one or multiple out of K sectors (business-
country combinations). In contrast, wi,0 = 1 − ∑K

k=1 wi,k ≥ 0 represent the idiosyncratic
component. The variables Sk > 0 (so-called sector variables) represent the economic
situation of sector k = 1, . . . ,K . An economic boom is associated with values Sk < 1,
which yields to a conditional PD below the unconditional one (i.e. PDi < PDi), whereas a
recession is expressed by values Sk > 1, which increases counterparties’ PD. Within the
original framework of Credit Suisse First Boston International (1997), the sector variables
are modeled via a gamma distribution, which insures that (together with some additional
assumptions) the portfolio loss distribution can be calculated analytically 3.
As mentioned above, the gamma distribution was chosen for performance issues. From

an economic point of view, this assumption may be questionable. Instead of a gamma
distribution, one can also use a lognormal distribution, which is more heavy tailed and
therefore more conservative compared to a gamma distribution. However, the lognormal
distribution also possesses only two parameters. Therefore, using mean and variance 4 to
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parametrize the distribution of Sk the heaviness of the tail can not be controlled explic-
itly. If we use a pTAS distribution instead, we can fit the sector distribution to mean and
variance of observed PD changes and still have control over the tail via parameter α.
For our example, we use portfolio of 5,000 counterparties belonging to ten different

sectors. The data used to estimate the sector distributions are monthly PD values over
10 years, which are estimated via a Merton type model (see Merton (1974)) from marked
data (i.e. stock prices and liabilities) for over 20,000 corporations and aggregated on sector
level. The portfolio as well as the underlying data are explained in more detail in Fischer
and Jakob (2015) and Jakob and Fischer (2014). We estimate pTAS distributions for each
sector by using MLE and the empirically observed skewness and compare the results on
portfolio risk figures with the original setting (i.e. gamma distributions parametrized via
mean and variance) and a framework using the lognormal distribution and the Weibull
distribution. Because of the relatively small number of observations (10 years of monthly
data), we do not use the kurtosis or quantile estimation methods in this example. For
the Monte Carlo simulation of the CreditRisk+ model the GCPM R-package is used. The
dependency between sector variables are modeled via a Student-t copula with 3.8 degrees
of freedom, estimated using a maximum likelihood approach5.
Table 2 shows the empirical skewness of each sector as well as the estimated parameter

α and the skewness of a Gamma, a lognormal and a Weibull distribution parametrized
only by mean and variance. As already indicated by Fig. 1, the lognormal distribution pos-
sesses a skewness and kurtosis similar to a pTAS distribution with higher values of α. By
looking at Table 2 we can see, that the observed skewness is often underestimated by the
lognormal distribution, which is also confirmed by Fig. 4, where the risk figures of the log-
normal framework are slightly below those of the pTAS(skewness) framework. However,
this may only be the case if skewness is in a suitable range. By using a pTAS distribution
one always has greater flexibility to account for semi-heavy (or not so heavy) tailed distri-
butions compared to a lognormal or a gamma distribution. In addition, Fig. 5 shows the
empirical observations of the sector variables Sk together with the densities of the fitted
distributions exemplarily for Sector 4. The Figure shows that a pTAS distribution esti-
mated via a MLE approach fits the data much better compared to all other distributions.
The pTAS distribution estimated via a MLE approach also possesses the heaviest tail of
all presented competitors, which in turn causes significant higher risk figures as shown
by Fig. 4.
The VaR is considerably higher

Table 2 Skewness values and estimated parameters for different sector distributions

Sector

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Skewness Empirical 2.59 1.74 2.24 2.10 1.74 2.46 2.44 2.16 1.84 2.57

Weibull 0.98 0.52 0.84 0.63 0.37 0.93 1.05 0.70 0.62 1.54

Gamma 1.29 0.97 1.19 1.04 0.87 1.25 1.34 1.10 1.04 1.69

lognormal 2.21 1.56 2.00 1.71 1.38 2.13 2.31 1.81 1.69 3.13

pTAS (skewness) 2.59 1.74 2.24 2.10 1.74 2.46 2.44 2.16 1.84 2.57

pTAS (MLE) 4.57 2.92 3.68 3.73 2.74 4.73 5.62 3.43 3.43 5.68

α pTAS (skewness) 0.67 0.62 0.64 0.67 0.67 0.66 0.62 0.66 0.61 0.51

pTAS (MLE) 0.84 0.80 0.81 0.84 0.81 0.85 0.86 0.81 0.82 0.83
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Fig. 4 Portfolio loss distribution for different sector distributions. The vertical lines indicate the Value at Risk
for the stated loss level

Figure 4 shows the pdf of the portfolio loss distribution together with vertical lines indi-
cating the Value at Risk (VaR) for level τ , which is simply the quantile of the portfolio
loss distribution. The VaR is considerably higher if we use a pTAS distribution which con-
siders the skewness or which is estimated via MLE for the sector distribution compared
to the standard case of a gamma distribution, which only accounts for mean and vari-
ance. Because financial institutions typically use higher values for τ (e.g. τ = 0.999) to
calculate the economic capital which is necessary to cover unexpected losses, the use of
a simple gamma distribution may imply a significant amount of model risk. In our case,
the VaR0.999 rises by around 12 % if we use pTAS distributions based on skewness and up
to 28 % if we use MLE. Please note, that the effect in general depends on the sectors (i.e.

Fig. 5 Sector 4: Histogram of sector realizations together with fitted parametric distrbutions
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business lines and countries) of the portfolio as well as the data used for estimating the
sector distributions.

3.2 Operational risk

A financial institution is exposed to different risks such as credit risk and market risk, for
instance, and is required to put aside a capital buffer against unexpected losses. With the
implementation of Basel II recommendations a capital requirement for operational risk
(OpRisk) was set under regulation, too. There are many definitions of operational risk
and many institutions have adopted their own definitions which better reflects their busi-
ness model and strategy. The Basel Committee defines operational risk as the risk of loss
resulting from inadequate or failed internal processes, people and systems or from external
events. It becomes obvious that OpRisk is a very broad concept and may include anything
from bank robberies, unauthorized trading, failures in the internal systems to terror-
ist attacks and natural catastrophies. Commonly, the loss data are organized according
to seven official Basel II defined event types (Internal Fraud, External Fraud, Employ-
ment Practices & Workplace Safety, Clients, Products & Business Practice, Damage to
Physical Assets, Business Disruption & System Failures, Execution, Delivery & Process
Management) and eight business lines (Corporate Finance, Trading & Sales, Retail Bank-
ing, Commercial Banking, Payment & Settlement, Agency Services, Asset Management,
Retail Brokerage) which implies 56 categories. In order to derive the OpRisk loss distribu-
tion, one typically derives the loss distribution for each relevant category in the first step6

and aggregates the individual loss distributions to the overall loss distribution, in a sec-
ond step. For reason of simplicity, we assume in the sequel that the bank operates on one
business line and is faced to one event type only. In this case, the loss distribution reduces
to a compound sum of the type

L = L1 + . . . + LN

with random variables N (number of loss in the next year) and corresponding loss sever-
ities L1, . . . , LN for each loss. For reasons of simplicity we assume that N and L1, . . . , LN
are mutually independent (see, e.g. Neslehova et al. (2006) for an inclusion of depen-
dence). Once these variables are specified and estimated within a parametric setting and
for a given loss data set, the loss distribution can be easily simulated within aMonte Carlo
framework. Typically, the number of losses are assumed to follow a Poisson distribution
with parameter λ > 0 which corresponds to the expected number of losses within the
next period/year. In contrast, specifying the severity distribution is more complex to some
extent. To avoid the problems in fitting a single parametric distribution with one or two
parameters to the whole data set, one often uses a compound severity distribution, see
El Adlouni et al. (2011). This involves dividing the severity distribution into the so-called
body and the so-called tail by a threshold, and presuming a different distribution for each
part. Both distributions are then combined into a single severity distribution which is
commonly termed as a compound distribution. Losses below and above the threshold are
referred to as low-severity and high-severity losses. Once, the parametric model(s) for
the severity distribution has been selected, the estimation of unknown parameters can be
done using the method of moments (MM), Maximum Likelihood (ML, used in the empir-
ical part) or Ordinary Least Square (OLS). In order to compare the goodness-of-fit (GoF),
graphical tools like quantile-quantile-plots or suitable GoF-test should be used.



Fischer and Jakob Journal of Statistical Distributions and Applications  (2016) 3:11 Page 12 of 18

Fig. 6 Empirical loss severities and loss frequencies

The underlying data set is provided in the textbook of Bolancè et al. (2012), chapter 7.
It contains 700 loss data from 2011 to 2014 which were multiplied by 1000 for technical
reasons. The corresponding loss severities and loss frequencies in the course of time are
depicted in Fig. 6.
In order to illustrate the OpRisk calculation, we assume that the number of losses is

Poisson distributed and that we have a compound severity distribution, where the body
is modelled by the empirical distribution function, whereas the tail is assumed to follow a
lognormal, a Weibull, a pTAS, a gamma and a generalized gamma (see, e.g. Stacy (1962))
distribution, respectively. Table 3 summarizes the corresponding OpVaR (i.e. quantile
of the loss distribution) for different confidence levels and each of the four distribu-
tions. Obviously, the Weibull (which is often applied in banking industry) and the pTAS
tail model are close together, whereas the lognormal model implies significant higher
OpVaR’s. In contrast, both gamma and generalized gamma distribution produce lower
OpVaR figures.
In order to compare the goodness-of-fit, both quantile-quantile plots (see Fig. 7) and

goodness-of-fit statistics (Kolmogorov-Smirnov and Anderson-Darling, see Table 4 and
Chernobay et al. (2015) for a detailed discussion) indicate that the pTAS distribution with
α̂ = 0.3842 seems to be the preferable choice. Although the generalized gamma distri-
bution provides reasonable AD2UP and KS statistics, too, the user is in danger of being
to progressive, taking into account that there are only a few number of observations and
that the true parametric model is unknown7.
Finally, Fig. 7 also depicts the simulated portfolio loss for the OpRisk data set.

4 Conclusion
Within this article, we discussed the family of positive tempered α-stable distributions,
which is a flexible distribution family and well suited to model both light and semi-heavy

Table 3 OpVaR for different confidences level and distributions

Percentile → 0.95 0.99 0.995 0.999 0.9995

lognormal 40,937,057 76,509,385 100,584,286 187,533,641 247,986,179

Weibull 37,542,382 47,459,865 51,335,798 60,440,362 64,322,549

pTAS 33,554,021 44,883,975 49,657,499 60,450,462 65,182,740

gamma 32,023,064 41,335,245 45,109,838 53,586,965 57,257,060

gen.gamma 24,836,520 31,636,053 34,333,082 40,596,749 43,033,552
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Fig. 7 Goodness-of-Fit statistics and loss distribution (TAS tails)

tailed data on the positive half-axis. Besides the derivation of the family and a summary
of certain characteristics, which are relevant for practical applications, we provided an
overview of the existing literature on this family. Furthermore, we introduced algorithms
that can be used to implement the basic functionalities of the pTAS family (i.e. density and
distribution function, calculation of quantiles and random numbers generation), which
are also available via the pTAS R-package. By applying the pTAS distribution in the field
of credit and operational risk we show that this distribution is more flexible and provides
a better fit to empirical data compared to other competitors which are often used. There-
fore, as in case of credit risk, the pTAS distribution can help to reduce the amount of
model risk or as in case of operational risk, to reflect the risk more adequately which in
turn helps banks to allocate economic capital more appropriately. Beyond the two given
examples, the pTAS distribution may be also used to model (stock) returns and therefore
being beneficial for market risk management as well.

Table 4 Goodness-of-fit statistics

Test statistic AD2UP p-value KS p-value

lognormal 2.6582 0.080 0.8235 0.060

Weibull 7.8001 0.024 1.7422 0.005

pTAS 2.7823 0.682 0.6585 0.739

gamma 3.1287 0.077 0.8612 0.197

gen.gamma 2.6755 0.167 0.5674 0.697
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Endnotes
1Please refer to Schiff (1999, Theorem 4.3) for further details.
2Besides counterparties’ defaults also changes in a counterparties creditworthiness (so-

called rating migrations) cause a portfolio loss. However, for reasons of simplicity we
restrict this example to default risk only.

3In 1997, when the CreditRisk+ was published, this was a major advantage over sim-
ulative models, which use a Monte Carlo simulation to estimate the loss distribution.
However, nowadays computers are much more powerful and Monte Carlo simulations
are widely used.

4The parametrization based on mean and variance is a standard method within the
CreditRisk+ model. In order to ensure that E

(
PDi

) = PDi, which is a common
assumption, we have the condition that E(Sk) = 1 for all k.

5For readers interested in the topic of copulas within credit portfolio models, we refer
to Jakob and Fischer (2014) and Fischer and Jakob (2015).

6The Basel Committee have prescribed guidance for three types of methods for the
calculation of capital requirement for operational risk. Those are the Basic Indicator
Approach, the Standard Approach and the AdvancedMeasurement Approach. The latter
is the most sophisticated of the approaches and this is what this section is about.

7Please note that for the GoF-test for left-truncated samples the distribution of the
statistic is not parameter-free, and the p-values and the critical values are obtained by
means of Monte Carlo simulation. There remains a certain variation of the p-values - a
direct comparison is not meaningful.

Appendix
Using the pTAS R-package
With the help of short examples we explain how the functions can be used within an
R-session. We will not describe the several functions in all details and parameters. Please
refer to the corresponding help pages within the package for more information.

Creating a pTAS distribution

The pTAS package uses an object oriented approach, which means that every distribution
(e.g. with different parameters) is represented by a different object of class pTAS. There-
fore, one can work with many different distributions at the same time (within the same
workspace) without jeopardizing their consistency regarding distributional or numerical
parameters.
Hence, the first step is to create a new pTAS distribution object.

library(pTAS)

## Loading required package: stats4
# creating pTAS object with parameters according to Palmer(2008)
MYpTAS = pTAS(param.P = c(0.5, 1, 0.75))

TheMYPTAS object describes a pTAS distribution with parameterizationPP(α, γ , θ) =
(0.5, 1, 1.5). The PTAS function automatically performs some plausibility checks on the
given parameters and translates the given parameterization (i.e. according to Palmer et al.
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(2008) in this case) to the other ones. In addition, distribution figures such as mean,
variance, skewness and kurtosis are calculated.

# get parametrization according to Hougaard (1986)
param.H(MYpTAS)

## alpha delta theta

## 0.5000000 0.9428090 0.8888889

# get mean and skewness
mean.pTAS(MYpTAS)

## [1] 1

skew.pTAS(MYpTAS)

## [1] 2.25

To obtain a first impression of the distribution, the density (and also the distribution
function) can be shown by simply using the PLOT function.

# plot pdf (use additional argument cdf=TRUE to plot cdf)
plot(MYpTAS)

Density, distribution function, quantiles and random numbers

Density and distribution function are available via the standard R-notation (d. . . / p. . . ).
The numerical parameters described in 2.1 can be set when the object is created via the
PTAS function.

# calculate pdf and cdf
t = seq(0.5, 2.5, 0.5)

dpTAS(t, MYpTAS)

## [1] 0.96465947 0.53192304 0.24967324 0.12058243 0.06046488

ppTAS(t, MYpTAS)

## [1] 0.2547667 0.6340912 0.8205896 0.9089881 0.9524083
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Quantiles and random numbers are generated via Algorithm 2.
# calculate quantiles
p = c(0.1, 0.25, 0.5, 0.75, 0.9)

qpTAS(p, MYpTAS)

## [1] 0.3355067 0.4950626 0.7855115 1.2644107 1.9291478

# draw random numbers
set.seed(1) # for reproducibility
rpTAS(5, MYpTAS)

## [1] 1.9935582 0.8937332 0.5111581 0.6264167 0.4452205

Estimation methods

For implementation issues, the MLE will be performed on the PP- parameterization
always. For parameters α,μ, ν lower and upper bounds as well as fixed values can be
specified. Especially for parameterα an appropriate upper bound may be helpful, because
pdf calculations for parametersα close to 1 are numerically challenging. The FIT_MLE

function uses the MLE function from the STATS4 package, which in turn uses R’s OPTIM

optimizer.

# draw some random numbers
x = rpTAS(200, MYpTAS)

# perform MLE
MLE_pTAS = fit_mle(x)

# estimation results
param.P(MLE_pTAS)

## alpha mu nu

## 0.5489056 0.9729183 0.6668250

# compared to original values
param.P(MYpTAS)

## alpha mu nu

## 0.50 1.00 0.75

Detailed information on the optimization results can by obtained via the OPTIM_RES
function. This gives a list containing the number of iterations, the convergence result and
the Hessian matrix for further calculations (e.g. to calculate confidence intervals). If the
optimization did not converge properly, a warning is displayed automatically.

optim_res(MLE_pTAS)

## $par

## alpha mu nu

## 0.5489056 0.9729183 0.6668250

##

## $value

## [1] 136.1362

##

## $counts

## function gradient

## 23 23

##

## $convergence

## [1] 0

##

## $message

## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
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##

## $hessian

## alpha mu nu

## alpha 567.3590 198.1225 -475.1069

## mu 198.1225 628.2451 -367.0736

## nu -475.1069 -367.0736 880.2828

Alternatively, distribution parameters can be also estimated based on mean and vari-
ance, which determine parameters μ and ν regarding the PP parametrization and either
the skewness, the kurtosis or a quantile to estimate parameter α. If α should be estimated
based on a given kurtosis value, which possible has multiple solutions, a pTAS distri-
bution with either the highest or the lowest value of possible α’s or a list containing all
distributions will be returned.
If α should be estimated based on a given quantile, an grid search method as described

in section 2.3 is applied. For given values t∗ > 0 and p∗ ∈ (0, 1) the algorithm terminates
if

∣∣FPP(α,μ,ν)(t∗) − p∗∣∣ < ε for a prespecified ε > 0, whereas values for μ and ν are fixed
based on mean and variance. Similar to the estimation based on kurtosis, the solution for
α (if one exists) may be not unique. Again, one can determine which distribution should
be returned with an additional argument (see example below).

# estimation based on skewness/kurtosis
skew_pTAS = fit_moments(mean = 1, var = 0.5, skew = 3)

kurt_pTAS = fit_moments(mean = 1, var = 0.5, kurt = 10)

## alpha1: 0.4757636 alpha2: 1.293467

# estimation based on quantile
quant_pTAS_1 = fit_quantile(mean = 1, var = 1, x = 5, prob = 0.99)

## Warning in fit_quantile(mean = 1, var = 1, x = 5, prob =

0.99):

Solution for alpha is not unique, choosing solution with

highest alpha.
param.P(quant_pTAS_1)

## alpha mu nu

## 0.8898322 1.0000000 1.0000000

quant_pTAS_2 = fit_quantile(mean = 1, var = 1, x = 5, prob = 0.99,

which.alpha = "lowest") # return lower alpha

## Warning in fit_quantile(mean = 1, var = 1, x = 5, prob =

0.99,...):

Solution for alpha is not unique, choosing solution with

lowest alpha.
param.P(quant_pTAS_2)

## alpha mu nu

## 0.5147693 1.0000000 1.0000000
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