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Abstract
We study general mathematical properties of a new class of continuous distributions
with three extra shape parameters called the exponentiated Marshal-Olkin family of
distributions. Further, we present some special models of the new class and investigate
the shapes and derive explicit expressions for the ordinary and incomplete moments,
quantile and generating functions and probability weighted moments. We discuss the
estimation of the model parameters by maximum likelihood and show empirically the
potentiality of the family by means of two applications to real data.
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1 Introduction
In the past few years, several ways of generating new distributions from classic ones
were developed and discussed. Eugene et al. (2002) defined a class of beta-generated dis-
tribution. Jones (2004) studied a family of distributions that arises naturally from the
distribution of the order statistics and introduced general properties of the proposed class
of distributions. Zografos and Balakrishnan (2009) proposed the gamma-generated family
of distributions. Later, Cordeiro and de Castro (2011) defined the Kumaraswamy family.
Recently, Alzaatreh et al. (2013) proposed a new technique to derive wider families by
using any probability density function (pdf) as a generator. This generator called the T-X
family of distributions has cumulative distribution function (cdf) defined by

F(x) =
∫ W [G(x)]

a
r(t)dt, (1)

whereG(x) is the cdf of a random variableX, r(t) is the pdf of a random variableT defined
on [ a, b] andW [G(x)] is a function of G(x), which satisfies the following conditions:

• W [G(x)]∈[ a, b];
• W [G(x)] is differentiable and monotonically non-decreasing;
• W [G(x)]→ a as x → −∞ andW [G(x)]→ b as x → ∞.

Following Alzaatreh et al. (2013) and replacing r(t) by the generalized exponential-
geometric (GEG) density function (Silva et al. 2010), where T ∈[ 0,∞), and using
W [G(x)]= − log [1 − G(x)], we define the cdf of a new wider family by
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F(x) =
∫ − log[1−G(x;ξ)]

0

αλ(1 − p)e−λt[ 1 − e−λt]α−1

[ 1 − p e−λt]α+1 dt =
{

1−[ 1 − G(x; ξ)]λ

1 − p[ 1 − G(x; ξ)]λ

}α

,

(2)

where G(x; ξ) is the baseline cdf depending on a parameter vector ξ and α > 0, λ > 0
and p < 1 are three additional shape parameters. For each baseline G, the exponenti-
ated Marshall-Olkin-G (“EMO-G” for short) distribution is defined by the cdf (2). The
EMO family includes as special cases the exponentiated generalized class of distributions
(Cordeiro et al. 2013), the proportional and reversed hazard rate models, the Marshall-
Olkin family and other sub-families. Some special models are listed in Table 1, where
G(x) = G(x; ξ).
Furthemore, the basic motivations for using the EMO-G family in practice are the

following:

i. to make the kurtosis more flexible compared to the baseline model;
ii. to produce a skewness for symmetrical distributions;
iii. to construct heavy-tailed distributions for modeling real data;
iv. to generate distributions with symmetric, left-skewed, right-skewed or reversed-J

shape;
v. to define special models with all types of the hrf;
vi. to provide consistently better fits than other generated models under the same

baseline distribution.

This paper is organized as follows. In Section 2, we define the new family of dis-
tributions and provide a physical interpretation. Five of its special distributions are
discussed in this section. In Section 3, some properties of the EMOG family are pre-
sented. The shape of the density and hazard rate functions are described analytically,
two useful linear mixtures are provided. We derive a power series for the quantile
function (qf ) and we provide two general formulae for the moments. The incom-
plete moments are investigated and we derive the moment generating function (mgf)
and determine the mean deviations. Estimation of the model parameters by maxi-
mum likelihood is performed in Section 4. Applications to two real data sets illus-
trate the performance of the EMO family in Section 5. The paper is concluded in
Section 6.

Table 1 Some special models

α λ p G(x) Reduced distribution

- - 0 G(x) Exponentiated Generalized Class of Distributions (Cordeiro et al. 2013)

1 - - G(x) Marshal-Olkin family of distributions (Marshall and Olkin 1997)

1 - 0 G(x) Proportional hazard rate model (Gupta and Gupta 2007)

- 1 0 G(x) Proportional reversed hazard rate model (Gupta and Gupta 2007)

1 1 0 G(x) G(x)

1 - - 1 − e−x Exponential - Geometric distribution (Adamidis and Loukas 1998)

- - - 1 − e−x Generalized Exponential - Geometric distribution (Silva et al. 2010)

1 - - 1 − e−βxγ Weibull-Geometric distribution (Barreto-Souza et al. 2011)

- - - 1 − e−βxγ Exponentiated Weibull-Geometric distribution (Mahmoudi and Shiran 2012)
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2 The new family
The density function corresponding to (2) is given by

f (x) = α λ (1 − p) g(x; ξ) [ 1 − G(x; ξ)]λ−1
{
1−[ 1 − G(x; ξ)]λ

}α−1

{
1 − p[ 1 − G(x; ξ)]λ

}α+1 , (3)

where g(x; ξ) is the baseline pdf. This density function will be most tractable when the
functions G(x) and g(x) have simple analytic expressions. Hereafter, a random variable
X with density function (3) is denoted by X ∼ EMO-G(p,α, λ, ξ). Henceforth, we can
omit sometimes the dependence on the baseline vector ξ of parameters and write simply
G(x) = G(x; ξ), f (x) = f (x; p,α, λ, ξ), etc.
A physical interpretation of the EMO-G distribution can be given as follows. Consider

a system formed by α independent components having the Marshall-Olkin cdf given by

H(x) = 1−[ 1 − G(x)]λ

1 − p[ 1 − G(x)]λ
.

Suppose the system fails if all of the α components fail and let X denote the lifetime of the
entire system. Then, the cdf of X is

F(x) = H(x)α =
{

1−[ 1 − G(x; ξ)]λ

1 − p[ 1 − G(x; ξ)]λ

}α

.

The hazard rate function (hrf ) of X becomes

h(x) = α λ (1 − p) g(x; ξ) [ 1 − G(x; ξ)]λ−1 {1−[ 1 − G(x; ξ)]λ
}α−1

{{
1 − p[ 1 − G(x; ξ)]λ

}α − {
1−[ 1 − G(x; ξ)]λ

}α} {1 − p[ 1 − G(x; ξ)]λ
} . (4)

The EMO family of distributions is easily simulated by inverting (2): if u has a uniform
U(0, 1) distribution, the solution of the nonlinear equation

X = G−1
[
1 −

(
1 − u1/α

1 − p u1/α

)1/λ]
(5)

follows the density function (3).

2.1 Special EMO distributions

For p = 0, we obtain, as a special case of (3), the exponentiated generalized class (Cordeiro
et al. 2013) of distributions, which provides greater flexibility of its tails and can be applied
in many areas of engineering and biology. Here, we present some special cases of the
EMO family since it extends several useful distributions in the literature. For all cases
listed below, p ∈ (0, 1), α > 0 and λ > 0. These cases are defined by taking G(x) and g(x)
to be the cdf and pdf of a specified distribution. The general form of the pdf of the special
EMO distributions can be expressed as:

f (x) = q(θ1, θ2, . . . , θm)g(x) [1 − G(x)]λ−1
{
1 − [1 − G(x)]λ

}α−1

{
1 − p [1 − G(x)]λ

}α+1 ,

where q(θ1, θ2, . . . , θm) is defined as a function ofm parameters of the special EMO distri-
bution. We list some special EMO distributions in Table 2, where the letters N, Fr, Ga, B,
and Gu stand for the normal, Fréchet, gamma, beta and Gumbel baselines, respectively.
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Table 2 Special EMO distributions

Distribution q(·) G(x) g(x)

EMON(p,α, λ,μ, σ 2)
αλ(1−p)

σ
φ
( x−μ

σ

)
	
( x−μ

σ

)

EMOFr(p,α, λ,β , σ) αλ(1 − p)β exp
{
− (

σ
x

)β}
σβx−β−1 exp

{
− (

σ
x

)β}

EMOGa(p,α, λ, a, b) αλ(1−p)ba


(a)
γ (a,bx)

(a)

ba

(a) x

a−1e−bx

EMOB(p,α, λ, a, b) αλ(1−p)
B(a,b)

x∫
0
wa−1(1−w)b−1dw

B(a,b)
1

B(a,b) x
a−1(1 − x)b−1

EMOGu(p,α, λ,μ, σ)
αλ(1−p)

σ
exp

{−exp
[− ( x−μ

σ

)]}
exp

{
−exp

[
− (x−μ)

σ

]
− (x−μ)

σ

}

For the EMON distribution, the parameter σ has the same dispersion property as in
the normal density. For the EMOB distribution, the beta distribution corresponds to the
limiting case: p → 0 and α = λ = 1. For the EMOFr distribution, we have the classical
Fréchet distribution when p = 0 and α = λ = 1. The Kumaraswamy beta (KwB)
and Kumaraswamy-gamma (KwGa) distributions can be obtained from the EMOB and
EMOGa models when p → 0. Plots of these EMOG density functions are displayed in
Figs. 1, 2, 3, 4 and 5.

3 Some properties of the EMOG family
We investigate some properties of the EMOG in this section.

3.1 Asymptotic and shapes

Proposition 1 Let a = inf{x|G(x) > 0}. The asymptotics of Eqs. (2), (3) and (4) when
x → a are given by

F(x) ∼ [λG(x)]α ,

f (x) ∼ α λα g(x)G(x)α−1,

h(x) ∼ α λα g(x)G(x)α−1.

Fig. 1 Plots of the EMON pdf (a) and EMON hrf (b) for some parameter values
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Fig. 2 Plots of the EMOFr pdf (a) and EMOFr hrf (b) for some parameter values

Proposition 2 The asymptotics of Eqs. (2), (3) and (4) when x → ∞ are given by

1 − F(x) ∼ α Ḡ(x)λ,

f (x) ∼ α λ g(x) Ḡ(x)λ−1,

h(x) ∼ λ g(x)
Ḡ(x)

.

The shapes of the density and hazard rate functions can be described analytically. The
critical points of the EMO-G density function are the roots of the equation

d log[ f (x)]
dx

= g′(x)
g(x)

+ (1 − λ)
g(x)

1 − G(x)

− λg(x)[ 1 − G(x)]λ−1
{

1 − α

1−[ 1 − G(x)]λ
+ p(α + 1)

1 − p[ 1 − G(x)]λ

}
= 0 (6)

Fig. 3 Plots of the EMOGa pdf (a) and EMOGa hrf (b) for some parameter values
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Fig. 4 Plots of the EMOB pdf (a) and EMOB hrf (b) for some parameter values

that corresponds to points where f ′(x) = 0. There may be more than one root to (6). Let
λ(x) = d2 log[ f (x)] /dx2. We have

λ(x) = g′′(x)g(x) − g′(x)2

g2(x)
+ (1 − λ)

g′(x)[ 1 − G(x)]+g2(x)
[ 1 − G(x)]2

+ λ(α − 1)

×
{
g′(x)[1 −G(x)]λ−1

1−[1−G(x)]λ
− (λ−1)g2(x)

[1 −G(x)]λ−2

1−[1 − G(x)]λ
− λg2(x)

[ 1 − G(x)]2λ−2
{
1−[ 1 − G(x)]λ

}2
}

− pλ(α + 1)
{
g′(x) [ 1 − G(x)]λ−1

1 − p[ 1 − G(x)]λ
− (λ − 1)g2(x)

[ 1 − G(x)]λ−2

1 − p[ 1 − G(x)]λ

−pλg2(x)
[ 1 − G(x)]2λ−2

{
1 − p[ 1 − G(x)]λ

}2
}
.

(7)

If x = x0 is a root of (6) then it corresponds to a local maximum if λ(x) > 0 for all
x < x0 and λ(x) < 0 for all x > x0. It corresponds to a local minimum if λ(x) < 0 for all

Fig. 5 Plots of the EMOGu pdf (a) and EMOGu hrf (b) for some parameter values
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x < x0 and λ(x) > 0 for all x > x0. It gives a point of inflexion if either λ(x) > 0 for all
x �= x0 or λ(x) < 0 for all x �= x0.
The critical points of the (hrf ) of X are obtained from the equation

d log[ h(x)]
dx

= g′(x)
g(x)

+ (1 − λ)
g(x)

1 − G(x)
+ λ(α − 1)

g(x)[ 1 − G(x)]λ−1

1−[ 1 − G(x)]λ
− λp

g(x)[ 1 − G(x)]λ−1

1 − p[ 1 − G(x)]λ

− pαλg(x)[1 −G(x)]λ−1{1−[1−G(x)]λ
}α−1−λαg(x)[1−G(x)]λ−1 {1− p[ 1− G(x)]λ

}α−1

{
1 − p[1 − G(x)]λ

}α − {
1−[1 − G(x)]λ

}α =0.

(8)

There may be more than one root to (8). Let τ(x) = d2 log[ h(x)] /dx2. If x = x0 is a
root of (8) then it refers to a local maximum if τ(x) > 0 for all x < x0 and τ(x) < 0 for
all x > x0. It corresponds to a local minimum if τ(x) < 0 for all x < x0 and τ(x) > 0 for
all x > x0. It gives an inflexion point if either τ(x) > 0 for all x �= x0 or τ(x) < 0 for all
x �= x0.

3.2 Linear mixtures

We can demonstrate that the cdf (2) of X admits the expansion

F(x) =
∞∑
k=0

bk Hk(x; ξ), (9)

where bk =
∞∑

i,j=0
wi,j,k ,

wi,j,k = wi,j,k(α, λ, p) = (−1)i+j+k
(−α

i

)(
α

j

)(
(i + j)λ

k

)
pi,

and Hk(x; ξ) = G(x; ξ)k denotes the exponentiated-G (“exp-G”) cdf with power
parameter k.
The density function ofX can be expressed as an infinite linearmixture of exp-G density

functions

f (x) =
∞∑
k=0

bk+1 hk+1(x; ξ), (10)

where (for k ≥ 0) hk+1(x; ξ) = (k + 1) g(x; ξ)G(x; ξ)k denotes the density function of the
random variable Yk+1 ∼ exp-G(k + 1). Equation (10) reveals that the EMO-G density
function is a linear mixture of exp-G density functions. Thus, some of its mathematical
properties can be derived directly from those properties of the exp-G distribution. For
example, the ordinary and incomplete moments and (mgf) of X can be obtained from
those quantities of the exp-G distribution. Some structural properties of the exp-G distri-
butions are well-defined by Mudholkar and Hutson (1996), Gupta and Kundu (2001) and
Nadarajah and Kotz (2006), among others.
The formulae derived throughout the paper can be easily handled in most symbolic

computation software platforms such as Maple, Mathematica and Matlab. These plat-
forms have currently the ability to deal with analytic expressions of formidable size and
complexity. Established explicit expressions to calculate statistical measures can be more
efficient than computing them directly by numerical integration. The infinity limit in
these sums can be substituted by a large positive integer such as 20 or 30 formost practical
purposes.
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3.3 Quantile power series

We obtain explicit expressions for the moments and generating function of the EMO
family using a power series for the qf x = Q(u) = F−1(u) of X by expanding (5). If the
G qf, say QG(u), does not have a closed-form expression, this function can usually be
expressed as a power series

QG(u) =
∞∑
i=0

ai ui, (11)

where the coefficients ai’s are suitably chosen real numbers depending on the parame-
ters of the parent distribution. For several important distributions such as the normal,
Student t, gamma and beta distributions, QG(u) does not have explicit expressions but it
can be expanded as in Eq. (11).
We use throughout the paper a result of Gradshteyn and Ryzhik (2000) for a power

series raised to a positive integer n (for n ≥ 1)

QG(u)n =
( ∞∑

i=0
ai ui

)n

=
∞∑
i=0

cn,i ui, (12)

where the coefficients cn,i (for i = 1, 2, . . .) are easily determined from the recurrence
equation, with cn,0 = an0,

cn,i = (i a0)−1
i∑

m=1
[m(n + 1) − i] am cn,i−m. (13)

Clearly, cn,i can be easily evaluated numerically from cn,0, . . . , cn,i−1 and then from the
quantities a0, . . . , ai.
Next, we derive an expansion for the argument of QG(·) in Eq. (5)

A = 1 − (1 − u1/α)1/λ

(1 − p u1/α)1/λ
.

Using the the generalized binomial expansion four times since u ∈ (0, 1), we can write

A =
∞∑

r,s,t=0

t∑
m=0

(−1)r+s+t+m pr
(−λ−1

r

)(
λ−1

s

)(
(r + s)α−1

t

)(
t
m

)
um

Then, the qf of X can be expressed from (5) as

Q(u) = QG

( ∞∑
m=0

δm um
)
, (14)

where

δm =

⎧⎪⎪⎨
⎪⎪⎩

1 − ∑∞
r,s,t=0(−1)r+s+t pr

(−λ−1

r

)(−λ−1

s

)(
(r + s)α−1

t

)
, m = 0,

∑∞
r,s,t=0(−1)r+s+t+m pr

(−λ−1

r

)(
λ−1

s

)(
(r + s)α−1

t

)(
t
m

)
, m > 0.

By combining (11) and (14), we have

Q(u) =
∞∑
i=0

ai

( ∞∑
m=0

δm um
)i

,

and then using (12) and (13),

Q(u) =
∞∑

m=0
em um, (15)
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where em = ∑∞
i=0 ai di,m, di,0 = δi0 and, form > 1,

di,m = (m δ0)
−1

m∑
n=1

[ n(i + 1) − m] δn di,m−n.

Equation (15) is the main result of this section. It allows to obtain various mathematical
quantities for the EMO-G family as can be seen in the next sections. Note that

Q(u)r =
( ∞∑
m=0

emum
)r

=
∞∑

m=0
fr,m um, (16)

where fr,m is obtained from the em’s using (13).
The effects of the shape parameters on the skewness and kurtosis can be determined

from quantile measures. The shortcomings of the classical kurtosis measure are well-
known. The Bowley skewness (Kenney and Keeping 1962) is one of the earliest skewness
measures defined by the average of the quartiles minus the median divided by half the
interquartile range, namely

B = Q
( 3
4
) + Q

( 1
4
) − 2Q

( 1
2
)

Q
( 3
4
) − Q

( 1
4
) .

Since only the middle two quartiles are considered and the outer two quartiles are
ignored, this adds robustness to the measure. The Moors kurtosis (Moors 1998) is based
on octiles

M = Q
( 3
8
) − Q

( 1
8
) + Q

( 7
8
) − Q

( 5
8
)

Q
( 6
8
) − Q

( 2
8
) .

These measures are less sensitive to outliers and they exist even for distributions with-
out moments. In Figs. 6 and 7, we plot the measures B andM for the EMOFr and EMON
distributions (discussed in Section 2), respectively. These plots reveal how both measures
B andM vary on the shape parameters.

Fig. 6 Skewness (a) and Kurtosis (b) of the EMOFr distribution
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Fig. 7 Skewness (a) and Kurtosis (b) of the EMON distribution

3.4 Moments

Hereafter, we shall assume that G is the cdf of a random variable Z and that F is the cdf
of a random variable X having density function (3). The rth ordinary moment of X can be
obtained from the (r, k)th Probability Weighted Moment (PWM) of Z defined by

τr,k = E[Zr G(Z)k]=
∫ ∞

−∞
zr G(z)k g(z)dz. (17)

In fact, we have

E(Xr) =
∞∑
k=0

(k + 1) bk+1 τr,k . (18)

Thus, the moments of any EMO-G distribution can be expressed as an infinite linear
combination of the PWMs of G. A second formula for τr,k can be based on the parent qf
QG(u) = G−1(u). Setting G(x) = u, we obtain

τr,k =
∫ 1

0
QG(u)r ukdu, (19)

where the integral follows from (16) as

E(Xr) =
∫ 1

0
Q(u)rdu =

∞∑
m=0

fr,m
m + 1

. (20)

The PWMs for some well-known distributions will be determined in the following
sections using alternatively Eqs. (17) and (19).
The central moments (μs) and cumulants (κs) of X can be obtained from Eqs. (18) and

(20) as

μs =
s∑

j=0
(−1)j

(
s
j

)
μ′s
1μ′

s−j, κs = μ′
s −

s−1∑
j=1

(
s − 1
j − 1

)
κjμ

′
s−j,
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where κ1 = μ′
1. The skewness and kurtosis measures can be calculated from the ordinary

moments using well-known relationships. The pth descending factorial moment of X is

μ′
(p) = E[X(p)]= E[X(X − 1) × · · · × (X − p + 1)]=

p∑
k=0

s(p, k)μ′
k ,

where s(r, k) = (k! )−1[ dkx(r)/dxk]x=0 is the Stirling number of the first kind. So, we can
obtain the factorial moments from the ordinary moments given before.

3.5 Incomplete moments

The nth incomplete moment of X is defined as mr(y) = ∫ y
−∞ xr f (x)dx. For empirical

purposes, the shape of many distributions can be usefully described by the incomplete
moments. Here, we propose two methods to determine the incomplete moments of the
new family. First, we can expressmr(y) as

mr(y) =
∞∑
k=0

(k + 1) bk+1

∫ G(y; ξ)

0
QG(u)r uk du. (21)

The integral in (21) can be evaluated at least numerically formost baseline distributions.
A second method for the incomplete moments of X follows from (21) using Eqs. (12)

and (13). We obtain

mr(y) =
∞∑

k,m=0

(k + 1) bk+1 cr,m
m + k + 1

G(y; ξ)m+k+1. (22)

Equations (21) and (22) are the main results of this section.

3.6 Generating function

Here, we provide three formulae for the mgfM(s) = E(es X) of X. A first formula forM(s)
comes from Eq. (10) as

M(s) =
∞∑
k=0

bk+1Mk+1(s), (23)

where Mk+1(s) is the generating function of the exp-G(k + 1) distribution. Hence, M(s)
can be determined from an infinite linear combination of the exp-G generating functions.
A second formula forM(s) can be derived from Eq. (10) as

M(s) =
∞∑
k=0

(k + 1) bk+1 ρk(s), (24)

where

ρk(s) =
∫ 1

0
exp [s QG(u)]ukdu. (25)

We can derive the mgfs of several EMO distributions directly from Eqs. (24) and (25).
For example, the mgfs of the exponentiated Marshall-Olkin exponential (EMOE) (such
that λs < 1) and EMO-standard logistic (for s < 1) distributions are given by

M(s)=
∞∑
k=0

(k+1 ) bk+1 B(k+1, 1−λs) and M(s) =
∞∑
k=0

(k + 1 ) bk+1 B(s + k+1, 1 − s),

respectively.
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3.7 Mean deviations

The mean deviations about the mean (δ1 = E(|X − μ′
1|)) and about the median (δ2 =

E(|X − M|)) of X can be expressed as

δ1 = 2μ′
1 F

(
μ′
1
) − 2m1

(
μ′
1
)

and δ2 = μ′
1 − 2m1(M), (26)

respectively, F(μ′
1) is easily evaluated from Eq. (2),

M = QG

[
1 −

(
1 − 2−1/α

1 − p × 2−1/α

)1/λ]

is the median of X, μ′
1 = E(X) comes from (18) andm1(y) is the first incomplete moment

of X determined from (22) with r = 1.
Next, we provide three alternative ways to compute δ1 and δ2. A general equation for

m1(z) is given by (21). A second general formula form1(z) can be obtained from (10) as

m1(z) =
∞∑
k=0

bk+1 Jk+1(z), (27)

where

Jk+1(z) =
∫ z

−∞
x hk+1(x)dx. (28)

Equation (28) is the basic quantity to compute the mean deviations for the exp-G dis-
tributions. A simple application of (27) and (28) can be conducted to the exponentiated
Marshall-Olkin Weibull (EMOW) distribution. The exponentiated Weibull density func-
tion (for x > 0) with power parameter k + 1, shape parameter c and scale parameter β is
given by

hk+1(x) = c (k + 1) βc xc−1 exp
{−(βx)c

} [
1 − exp

{−(βx)c
}]k ,

and then

Jk+1(z) = c (k + 1) βc
∞∑
r=0

(−1)r
(
k
r

)∫ z

0
xc exp

{−(r + 1)(βx)c
}
dx.

The last integral reduces to the incomplete gamma function

Jk+1(z) = c (k + 1) βc
∞∑
r=0

(−1)r
(
k
r

)
γ
(
c + 1, (r + 1)(βz)c

)
,

where γ (a, x) = ∫ x
0 w

a−1 e−wdw.
A third general formula form1(z) can be derived by setting u = G(x) in (10)

m1(z) =
∞∑
k=0

(k + 1) bk+1 Tk(z), (29)

where Tk(z) is given by

Tk(z) =
∫ G(z)

0
QG(u)ukdu. (30)

Applications of these equations are straightforward to obtain Bonferroni and Lorenz
curves. These curves are defined (for a given probability π ) by B(π) = m1(q)/(π μ′

1) and
L(π) = m1(q)/μ′

1, respectively, where q = F−1(π) = Q(π) comes from the qf of X for a
given probability π .
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4 Estimation
Several approaches for parameter estimation were proposed in the literature but the
maximum likelihood method is the most commonly employed. The maximum likelihood
estimators (MLEs) enjoy desirable properties and can be used when constructing confi-
dence intervals for the model parameters. The normal approximation for these estimators
in large samples can be easily handled either analytically or numerically. So, we consider
the estimation of the unknown parameters for this family from complete samples only by
maximum likelihood. Here, we determine the MLEs of the parameters of the new family
of distributions from complete samples only.
Let x1, . . . , xn be the observed values from the EMOG distribution with parameters

p,α, λ and ξ . Let θ = (p,α, λ, ξ)	 be the r × 1 parameter vector. The total log-likelihood
function for θ is given by

�n = �n(�) = n logα + n log λ + n log(1 − p) +
n∑

i=1
log

[
g(xi; ξ)

]

+(λ − 1)
n∑

i=1
log [1 − G(xi; ξ)] + (α − 1)

n∑
i=1

log
{
1−[ 1 − G(xi; ξ)]λ

}

−(α + 1)
n∑

i=1
log

{
1 − p[ 1 − G(xi; ξ)]λ

}
. (31)

The maximized log-likelihood can be either directly by using the NLMIXED procedure
in SAS or the sub-routine MaxBFGS in the Ox program (see Doornik 2009) or by solving
the nonlinear likelihood equations obtained by differentiating (31). The components of
the score function

Un(θ) = (∂�n/∂p, ∂�n/∂α, ∂�n/∂λ, ∂�n/∂ξ)	

are given by

∂�n
∂p

= (α + 1)
n∑

i=1

[ 1 − G(xi; ξ)]λ

1 − p[ 1 − G(xi; ξ)]λ
− n

1 − p
,

∂�n
∂α

= n
α

+
n∑

i=1
log

{
1−[ 1 − G(xi; ξ)]λ

} −
n∑

i=1
log

{
1 − p [ 1 − G(xi; ξ)]λ

}
,

∂�n
∂λ

= n
λ

+
n∑

i=1
log [1 − G(xi; ξ)] − (α − 1)

n∑
i=1

[ 1 − G(xi; ξ)]λ log [1 − G(xi; ξ)]
1−[ 1 − G(xi; ξ)]λ

+ p (α + 1)
n∑

i=1

[ 1 − G(xi; ξ)]λ log [1 − G(xi; ξ)]
1 − p[ 1 − G(xi; ξ)]λ

and

∂�n
∂ξ

=
n∑

i=1

g(ξ)(xi; ξ)

g(xi; ξ)
− (λ − 1)

n∑
i=1

G(ξ)(xi; ξ)

1 − G(x; ξ)

+ λ(α − 1)
n∑

i=1

g(ξ)(x; ξ)[ 1 − G(xi; ξ)]λ−1

1−[ 1 − G(xi; ξ)]λ
− pλ(α + 1)

×
n∑

i=1

g(ξ)(xi; ξ)[ 1 − G(xi; ξ)]λ−1

1 − p[ 1 − G(xi; ξ)]λ
,
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where h(ξ)(·) means the derivative of the function h with respect to ξ . For interval esti-
mation of the model parameters, we can derive the observed information matrix Jn(θ),
whose elements can be obtained from the authors upon request. Let θ̂ be the MLE of θ .
Under standard regularity conditions (Cox and Hinkley 1974), we can approximate the
distribution of

√
n(θ̂ − θ) by the multivariate normal Nr(0,K(θ)−1), where K(θ) =

limn→∞ n−1Jn(θ) is the unit information matrix and r is the number of parameters of the
new distribution.
Often with lifetime data and reliability studies, one encounters censoring. In a very rea-

listic random censoring mechanism, each individual i is assumed to have a lifetime Xi and
a censoring time Ci, where Xi and Ci are independent random variables. Suppose that the
data consist of n independent observations xi = min(Xi,Ci) and δi = I(Xi ≤ Ci) is such
that δi = 1 if Xi is a time to event and δi = 0 if it is right censored for i = 1, . . . , n. The
censored likelihood L(θ) for the model parameters is

L(θ) ∝
n∏

i=1
[ f (xi; p,α, λ, ξ)]δi [ S(xi; p,α, λ, ξ)]1−δi ,

where f (x; p,α, λ, ξ) is given by (3) and S(x; p,α, λ, ξ) is the survival function evaluated
from (2).

5 Applications
In this section, we use a real data set, collected by Prater (1956) and analyzed by Atkinson
(1985), on the stress among women in Townsville, Queensland, Australia and the propor-
tion of crude oil converted to gasoline after distillation and fractionation. This application
aims to illustrate the potentiality of the EMO family. All the computations were done
using the R software. For this application, we consider the following distributions: EMOB
(a, b, p, λ,α) and Kw-WP(a, b, c, λ,β) (Kwmaraswamy Weibull Poisson distribution) pro-
posed by Ramos et al. (2015), both with five parameters. The density of the Kw-WP is
given by

f (x) = λabcβcxc−1[ 1 − e−(βx)c ]a−1 exp[ λ{1−[ 1 − e−(βx)c ]a }b − (βx)c]
(eλ − 1){1−[ 1 − e−(βx)c ]a }1−b .

A descriptive analysis of the data is presented in Table 3.
It is possible to obtain qualitative information about the hrf by means of plot anal-

ysis when we have the data censored or uncensored. We emphasize that the data sets
here are uncensored. For this type of data, the total time in test (TTT) plot proposed

Table 3 Descriptive statistics

Statistics
Real data sets

Stress Gasoline

Mean 0.2642 0.1966

Median 0.2500 0.1780

Mode 0.2500 0.1500

Variance 0.0376 0.0115

Skewness 0.9712 0.3867

Kurtosis 0.8272 –0.6561

Maximum 0.8500 0.4570

Minimum 0.0100 0.0280

n 166 32
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Fig. 8 The TTT plot for: (a) stress among women in Townsville, Queensland, Australia (b) proportion of crude
oil converted to gasoline after distillation and fractionation

by Aarset (1987) may be used. Let T be a random variable with non-negative values
that represents the survival time. The TTT curve is constructed by plotting the statistic

G(r/n) =
[ r∑
i=1

Ti:n + (n + r)Tr:n

]
/

( n∑
i=1

Ti:n

)
versus r/n (r = 1, . . . , n), where the val-

ues Ti:n are the order statistics of the sample, for i = 1, . . . , n. The plots can be easily
obtained using the TTT function of the AdequacyModel package from the R software.
More details about this package are available from help(TTT). The TTT plots for the
dataset in this application are shown in Fig. 8. For both plots, the TTT curve is concave,
which, according to Aarset (1987), provides evidence that a monotonic increasing hrf is
adequate.
The Fig. 9 displays the fitted densities to the current data obtained in a nonparametric

manner using the gaussian kernel density estimation, defined as follows. LetX1, . . . ,Xn be
a random vector of random variables independent and identically distributed where each
variable follows an unknown distribution, denoted by f. The kernel density estimator is
given by the following expression

Fig. 9 Gaussian kernel density estimation for: (a) stress among women in Townsville, Queensland, Australia
(b) proportion of crude oil converted to gasoline after distillation and fractionation
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Fig. 10 Estimates of the pdf for: (a) stress among women in Townsville, Queensland, Australia (b) proportion
of crude oil converted to gasoline after distillation and fractionation

f̂h(x) = 1
n

n∑
i=1

Kh(x − xi) = 1
nh

n∑
i=1

K
(
x − xi
h

)
, (32)

where K(·) is the symmetrical kernel function and
∞∫

−∞
K(x)dx = 1. Furthermore, h > 0

is known in literature as bandwith, which is a smoothing parameter. It is possible to find
in literature numerous kernel function, as the normal standard distribution, for example.
Silverman (1986) demonstrated that for the K standard normal, a reasonable bandwith is
given by h = 5

√(
4σ̂ 5/3n

) ≈ 1.06σ̂ / 5√n, where σ̂ is defined by the standard deviation of
the sample.
The plots displayed in Fig. 10 indicates that the EMOB distribution provides the best

fit compared with the other fitted distributions. We note the good adequacy of the fitted
EMOB distribution in Fig. 11.

Fig. 11 Estimated K-M survival (K-M estimates) compared with the EMOB survival estimates for: (a) tress
among women in Townsville, Queensland, Australia (b) proportion of crude oil converted to gasoline after
distillation and fractionation. The confidence intervals are 95 %
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In this application, we use the package AdequacyModel. This package is intended to
provide a computational support to work with probability distributions, mainly distribu-
tions aimed to survival analysis. This package was used to calculate some fitness statistics
adjustment such as AIC (Akaike Information Criterion), CAIC (Consistent Akaikes
Information Criterion), BIC (Bayesian Information Criterion), HQIC (Hannan-Quinn
information criterion), KS (Test of Kolmogorov-Smirnov), A∗ (statistic of Anderson-
Darling) and W ∗ (statistic of Cramér-von Mises), which are described by Chen and
Balakrishnan (1995), based on the results presented by Stephens (1986). When we want
to test if one random sample, denoted by x1, x2, . . . , xn, with empirical distribuction func-
tion Fn(x) comes from a specific distribution, we use these statistics. The Cramér-von
Mises (W ∗) and Anderson-Darling (A∗) statistics are given by the following expressions:

W ∗ =
{
n
∫ +∞

−∞
{Fn(x) − F(x; θ̂n)}2 dF(x; θ̂n)

}(
1 + 0.5

n

)
and

A∗ =
{
n
∫ +∞

−∞
{Fn(x) − F(x; θ̂n)}2
F(x; θ̂n)(1 − F(x; θ̂n))

dF(x; θ̂n)
}(

1 + 0.75
n

+ 2.25
n2

)
.

respectively. In these expressions, we have that Fn(x) is the empirical distribution func-
tion, F(x; θ̂n) is the postulated distribution function evaluated at the MLE of θ , i.e.
θ̂n. Lower values of W ∗ and A∗ provide evidence that F(x; θ̂n) generates the sample.
More details about these statistics are given by Chen and Balakrishnan (1995). The
goodness.fit function is used to calculate these statistics. More details can be
obtained using the command help(goodness.fit). The Table 4 shows the goodness-
of-fit statistics (rounding to the fourth decimal place) for the dataset used in this
application. The results showed that the EMOB (a, b, p, λ,α) distribution presented bet-
ter results for the KS, A∗ and W ∗ statistics when compared with the other distributions
used in this application. In this study, the MLEs in Table 5 were obtained by global search
heuristic method called Particle Swarm optmization - PSO proposed by Eberhart and
Kennedy (1995). One of the advantages of using the PSO method in addition to being
a robust optimization method is that there is no need to provide initial guesses. How-
ever, this is a computationally intensive method. The Appendix A shows the function pso

implemented in R. At the end of the code there is a small example of how to use the func-
tion to minimize an objective function. The standard errors of the MLEs can be obtained
by the bootstrap method. The standard errors were not obtained in these examples due
to the use of the PSO method, which is computationally intensive.

Table 4 Goodness-of-fit statistics for the data: (I) stress among women in Townsville, Queensland,
Australia (II) proportion of crude oil converted to gasoline after distillation and fractionation

Data set Distribution A∗ W∗

I
EMOB (p,α, λ, a, b) 0.1554 0.0786

Kw-WP(a, b, c, λ,β) 0.4974 0.1305

II
EMOB (p,α, λ, a, b) 0.0348 0.0983

Kw-WP(a, b, c, λ,β) 0.0489 0.0993
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Table 5MLEs for: (I) stress among women in Townsville, Queensland, Australia (II) proportion of
crude oil converted to gasoline after distillation and fractionation

Data set Distribution Maximum Likelihood Estimates - MLE

I
EMOB (p,α, λ, a, b) –19.8703 1.4276 3.4036 0.2454 0.7793

Kw-WP(a, b, c, λ,β) 12.3010 20.1431 0.1647 24.6569 2.3195

II
EMOB (p,α, λ, a, b) –1.2077 0.3989 1.9915 4.6421 10.7513

Kw-WP(a, b, c, λ,β) 15.2365 8.3171 0.2446 24.9571 10.5076

6 Conclusions
We derive general mathematical properties of a new continuous distributions with three
extra shape parameters. We present some special models of the new EMO family of dis-
tributions. We investigate the shapes and derive explicit expressions for the ordinary
and incomplete moments, quantile and generating functions and probability weighted
moments, which hold for any baseline model. The estimation of the model parameters is
by the method of maximum likelihood and the estimates were obtained by global search
heuristic method called Particle SwarmOptmization-PSO. Ultimately, we fit some EMO-
G distributions to two real data sets to demonstrate the potentiality of this family. We
hope this generalization may attract wider applications in statistics.

Appendix
Code in R language for PSOmethod

pso <- function(func,S=150,lim_inf,lim_sup,e=0.0001,data=NULL,N=100){
b_lo = min(lim_inf)
b_up = max(lim_sup)
integer_max = .Machine$integer.max

if(length(lim_sup)!=length(lim_inf)){
stop("The vectors lim_inf and lim_sup must have the same dimension.")
}
dimension = length(lim_sup)
swarm_xi = swarm_pi = swarm_vi = matrix(NA,nrow=S,ncol=dimension)

# The best position of the particles.
g = runif(n=dimension,min=lim_inf,max=lim_sup)

# Objective function calculated in g.
f_g = func(par=as.vector(g),x=as.vector(data))

if(NaN%in%f_g==TRUE || Inf%in%abs(f_g)==TRUE{
while(NaN%in%f_g==TRUE || Inf%in%abs(f_g)==TRUE{
g = runif(n=dimension,min=lim_inf,max=lim_sup)
f_g = func(par=g,x=as.vector(data))
}
}

# Here begins initialization of the algorithm.
x_i = mapply(runif,n=S,min=lim_inf,max=lim_sup)

# Initializing the best position of particularities i to initial position.

swarm_pi = swarm_xi = x_i
f_pi = apply(X=x_i,MARGIN=1,FUN=func,x=as.vector(data))

is.integer0 <- function(x){
is.integer(x) && length(x)==0L
}

if(NaN%in%f_pi==TRUE || Inf%in%abs(f_pi)){
while(NaN%in%f_pi==TRUE || Inf%in%abs(f_pi)){
id_inf_fpi = which(abs(f_pi)==Inf)
if(is.integer0(id_inf_fpi)!=TRUE){
f_pi[id_inf_fpi] = integer_max
}
id_nan_fpi = which(f_pi==NaN)
if(is.integer0(id_nan_fpi)!=TRUE){
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x_i[id_nan_fpi,] = mapply(runif,n=length(id_nan_fpi),min=lim_inf,
max=lim_sup)
swarm_pi = swarm_xi = x_i
f_pi = apply(X=x_i,MARGIN=1,FUN=func,x=as.vector(data))
}
}
}

minimo_fpi = min(f_pi)
if(minimo_fpi < f_g) g = x_i[which.min(f_pi),]

# Initializing the speeds of the particles.

swarm_vi = mapply(runif,n=S,min=-abs(rep(abs(b_up-b_lo),dimension)),
max=abs(rep(abs(b_up-b_lo),dimension)))

# Here ends the initialization of the algorithm

omega = 0.5
phi_p = 0.5
phi_g = 0.5

m=1
vector_f_g <- vector()

while(is.na(var(vector_f_g)) || m<50 ||
var(vector_f_g[length(vector_f_g):(length(vector_f_g)-10)])>e){
# r_p and r_g are randomized numbers in (0.1).
r_p = runif(n=dimension,min=0,max=1)
r_g = runif(n=dimension,min=0,max=1)

# Updating the vector speed.
swarm_vi = omega*swarm_vi+phi_p*r_p*(swarm_pi-swarm_xi)+
phi_g*r_g*(g-swarm_xi)

# Updating the position of each particle.
swarm_xi = swarm_xi+swarm_vi

myoptim = function(...) tryCatch(optim(...), error = function(e) NA)

f_xi = apply(X=swarm_xi,MARGIN=1,FUN=func,x=as.vector(data))
f_pi = apply(X=swarm_pi,MARGIN=1,FUN=func,x=as.vector(data))
f_g = func(par=g,x=as.vector(data))

if(NaN%in%f_xi==TRUE || NaN%in%f_pi==TRUE{
while(NaN%in%f_xi==TRUE){
id_comb = c(which(is.na(f_xi)==TRUE),which(is.na(f_pi)==TRUE))
if(is.integer0(id_comb)!=TRUE){
new_xi = mapply(runif,n=length(id_comb),min=lim_inf,
max=lim_sup)
swarm_pi[id_comb,]=swarm_xi[id_comb,] = new_xi
if(length(id_comb)>1){
if_xi[id_comb] = apply(X=swarm_xi[id_comb,],MARGIN=1,
FUN=func,x=as.vector(data))
f_pi[id_comb] = apply(X=swarm_pi[id_comb,],MARGIN=1,FUN=func,
x=as.vector(data))
}else{
f_xi[id_comb] = func(par=new_xi,x=as.vector(data))
}
}
}
}

if(Inf%in%abs(f_xi)==TRUE{
f_xi[which(is.infinite(f_xi))]=integer_max
}
if(InfInf%in%abs(f_pi)==TRUE{
f_pi[which(is.infinite(f_pi))]=integer_max
}

# There are values below the lower limit of restrictions?
id_test_inf=
which(apply(swarm_xi<t(matrix(rep(lim_inf,S),dimension,S)),1,sum)>=1)
id_test_sup=
which(apply(swarm_xi>t(matrix(rep(lim_sup,S),dimension,S)),1,sum)>=1)

if(is.integer0(id_test_inf)!=TRUE){
swarm_pi[id_test_inf,] = swarm_xi[id_test_inf,] =
mapply(runif,n=length(id_test_inf),
min=lim_inf,max=lim_sup)
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}

if(is.integer0(id_test_sup)!=TRUE){
swarm_pi[id_test_sup,] = swarm_xi[id_test_sup,] =
mapply(runif,n=length(id_test_sup),
min=lim_inf,max=lim_sup)
}

if(is.integer0(which((f_xi<=f_pi)==TRUE))){
swarm_pi[which((f_xi<=f_pi)),] = swarm_pi[which((f_xi<=f_pi)),]
}

if(f_xi[which.min(f_xi)] <= f_pi[which.min(f_pi)]){
swarm_pi[which.min(f_pi),] = swarm_xi[which.min(f_xi),]
if(f_pi[which.min(f_pi)] < f_g) g = swarm_pi[which.min(f_pi),]
} # Here ends the block if.

vector_f_g[m] = f_g
m = m+1
if(m>N){
break
}

} # Here ends the block while.

f_x = apply(X=swarm_xi,MARGIN=1,FUN=func,x=as.vector(data))
list(par_pso=g,f_pso=vector_f_g)

} # Here ends the function.

# Example of using the PSO function. We are looking to minimize easom
# function in that -10<=x1<=10 and -10<=x2<=10.
easom <- function(par,x){
x1 = par[1]
x2 = par[2]
-cos(x1)*cos(x2)*exp(-((x1-pi)^2 + (x2-pi)^2))
}
set.seed(0)
# Using the PSO function
# S refers to the number of particles considered.
pso(func=easom,S=350,lim_inf=c(-10,-10),lim_sup=c(10,10))
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