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Abstract

Proportional hazard (PH) models can be formulated with or without assuming a
probability distribution for survival times. The former assumption leads to parametric
models, whereas the latter leads to the semi-parametric Cox model which is by far the
most popular in survival analysis. However, a parametric model may lead to more
efficient estimates than the Cox model under certain conditions. Only a few parametric
models are closed under the PH assumption, the most common of which is the Weibull
that accommodates only monotone hazard functions. We propose a generalization of
the log-logistic distribution that belongs to the PH family. It has properties similar to
those of log-logistic, and approaches the Weibull in the limit. These features enable it
to handle both monotone and nonmonotone hazard functions. Application to four
data sets and a simulation study revealed that the model could potentially be very
useful in adequately describing different types of time-to-event data.
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Introduction
Proportional hazard (PH) models play a vital role in analyzing time-to-event data. A key
assumption in the PH model is that the hazard ratio comparing any two specifications of
covariates is constant over time (commonly known as PH assumption). Although the PH
assumption may not hold for one or more covariates over the entire study period, it may
hold in shorter time intervals. Therefore, violation of the PH assumption may be han-
dled using time-dependent covariates (Kleinbaum and Klein 2012). One of the appealing
features of PH models is that the regression coefficients have relative risk interpretation,
which is preferred by many clinicians.
The Cox PH model (Cox 1972) is the most popular in survival analysis mainly because

of two reasons: (a) no assumption is required about the probability distribution of sur-
vival times (i.e., a semi-parametric model), and (b) it usually fits the data well no matter
which parametric model is appropriate. In contrast, distributional assumption is required
for a fully parametric PH model (Kalbfleisch and Prentice 2002; Lawless 2002). This
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also leads to the added requirement of checking the appropriateness of the chosen dis-
tribution. Nevertheless, as demonstrated by Efron (1977) and Oakes (1977), parametric
models lead to more efficient estimates than Cox’s model under certain conditions. More
specifically, if the distributional assumption is valid, a parametric model leads to smaller
standard errors of the estimates than would be in the absence of a distributional assump-
tion (Collett 2003). Moreover, the use of Cox PH in joint modeling of time-to-event
and longitudinal data (Wulfsohn and Tsiatis 1997) usually leads to an underestimation
of the standard errors of the parameter estimates (Hsieh et al. 2006; Rizopoulos 2012),
and therefore most methods for joint modeling are based on parametric response dis-
tributions (Hwang and Pennell 2014). Regarding the choice between a parametric and
Cox’s PH model, Nardi and Schemper (2003) suggested to use a richer parametric model
or simply the Cox’s model in case of an unsatisfactory fit of the chosen probability
distribution.
Themost commonly used parametric time-to-eventmodels are theWeibull, log-logistic

and log-normal distributions. The log-logistic and log-normal distributions belong to
the accelerated failure time (AFT) family, and are useful in modeling nonmonotone
hazard rates (Lawless 2002). Note that the log-logistic also accommodates decreasing
hazard functions. Only a few parametric models are closed under PH assumption, the
most common of which is the Weibull that accommodates only monotone hazard func-
tions. In fact, Weibull is the only distribution that is closed under both AFT and PH
families (Kalbfleisch and Prentice 2002). Mudholkar et al. (1996) proposed a generaliza-
tion of the Weibull distribution which permits parametric PH regression modeling. It
is a three-parameter distribution and is capable of modeling both monotone and non-
monotone hazard functions. One difficulty with this model is that it is nonregular (the
support depends on some parameters) in the case of increasing hazard functions, and
therefore the standard maximum likelihood asymptotics do not hold. In this paper, we
propose a simple extension of the log-logistic model which is closed under the PH
relationship. The proposed generalized log-logistic model is a three-parameter distri-
bution, and has characteristics similar to those of the log-logistic model. Moreover, it
approaches the Weibull in the limit. These features enable it to satisfactorily handle both
monotone (increasing and decreasing) and nonmonotone (unimodal) hazard functions.
In Section 1, we introduce the generalized log-logistic model and discuss estimation
and testing of the parameters using the maximum likelihood method. The proposed
method is then illustrated with applications to four data sets, one of which involves joint
modeling of time-to-event and longitudinal data (Section Examples). In Section Sim-
ulations, a simulation study is presented to evaluate the performance of generalized
log-logistic in comparison with other commonly used PH models to describe different
types of time-to-event data. We conclude in Section Conclusion by summarizing our
findings.

The generalized log-logistic model
The generalized log-logistic distribution for a nonnegative random variable T can be
conveniently specified in terms of the hazard function as follows:

h(t;α) = κρ(ρt)κ−1

1 + (γ t)κ
, t > 0, (1)
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where ρ > 0, κ > 0 and γ > 0 are parameters and α = (κ , γ , ρ)′. If γ depends on ρ via
γ = ρ and γ = ρη−1/κ with η > 0, then (1) reduces to the hazard function of the log-
logistic (Lawless 2002) and Burr XII (Wang et al. 2008) distributions, respectively. Taking
γ not dependent on ρ, it is easy to verify that (1) is closed under PH relationship (see
below). The hazard function is monotone decreasing when κ ≤ 1, and unimodal when
κ > 1 (i.e., h(t;α) = 0 at t = 0, increases to a maximum at t =[ (κ − 1)/γ κ ]1/κ , and then
approaches zero monotonically as t → ∞). Note that (1) approaches the Weibull hazard
function as γ κ → 0. This particular feature of the generalized log-logistic model enables
it to handle monotone increasing hazard satisfactorily via κ > 1 and γ small (close to
zero).
The survivor function, probability density function and cumulative hazard function of

the generalized log-logistic distribution are, respectively,

S(t;α) =[ 1 + (γ t)κ ]−
ρκ

γ κ , (2)

f (t;α) = κρ(ρt)κ−1

[1 + (γ t)κ ]
ρκ

γ κ +1
, (3)

H(t;α) = ρκ

γ κ
log [ 1 + (γ t)κ ]. (4)
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(
2

γ κ

ρκ −1
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For the family of PH models with covariates z = (z1, z2, . . . , zp)′, the hazard function
for T can be expressed as

h(t; z) = h0(t;α) ez
′β , (5)

where h0(t;α) is the baseline hazard function (i.e., the hazard function when z = 0)
characterized by the vector of parameters α, and β = (β1,β2, . . . ,βp)′ is the vector
of regression coefficients. A fully parametric PH model can be formulated by specify-
ing h0(t;α) parametrically. If h0(t;α) is specified by the generalized log-logistic hazard
function (1), then (5) takes the form

h(t; z) = κρ∗(ρ∗t)κ−1

1 + (γ t)κ
, (6)

where ρ∗ = ez′β/κ . Thus the generalized log-logistic is closed under proportionality of
hazards. Another widely used parametric PH family is the Weibull, for which h0(t;α) =
κρ(ρt)κ . Note that the Cox PH model is semiparametric, for which the baseline hazard
function in (5) is left arbitrary and is denoted by h0(t).

Estimation

Suppose that a censored random sample consisting of data (ti, δi, zi), i = 1, 2, . . . , n, is
available, where ti is a lifetime or censoring time according to whether δi = 1 or 0,
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respectively, and zi = (zi1, zi2, . . . , zip)′ is the vector of covariates for the ith individual.
Letting m = ∑n

i=1 δi, ai = exp (z′
iβ) and bi = (γ ti)κ , the log-likelihood function for the

generalized log-logistic PH can be written as

	(θ) = m log κ + mκ log ρ + (κ − 1)
n∑

i=1
δi log ti −

n∑
i=1

δi log (1 + bi)

+
n∑

i=1
δi log ai −

(
ρ

γ

)κ n∑
i=1

ai log (1 + bi), (7)

where θ = (α′,β ′)′. The first derivatives of the log-likelihood function are

∂	(θ)

∂κ
= m

κ
+ m log ρ +

n∑
i=1

δi log ti − 1
κ
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i=1

δibici −
(

ρ

γ

)κ (
1
κ

) n∑
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aibici

−
(

ρ

γ

)κ

log
(

ρ

γ

) n∑
i=1

ai log (1 + bi),
(8)
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= −
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(9)

∂	(θ)

∂ρ
= mκ

ρ
−

(
κ

ρ

) (
ρ

γ

)κ n∑
i=1

ai log (1 + bi), (10)

∂	(θ)

∂βj
=

n∑
i=1

δizij −
(

ρ

γ

)κ n∑
i=1

ai log (1 + bi)zij for j = 1, 2, . . . , p, (11)

where ci = log bi/(1 + bi) and di = bi/(1 + bi) (see Appendix). To improve the con-
vergence of iterative procedures for maximum likelihood estimation and the accuracy of
large-sample methods, we remove range restrictions on parameters through the param-
eterizations α∗ = (κ∗, γ ∗, ρ∗)′, where κ∗ = log κ , γ ∗ = log γ and ρ∗ = log ρ. The
maximum likelihood estimate of θ∗ = (α∗′,β ′)′ can then be obtained by solving the
equations ∂	(θ∗)/∂κ∗ = 0, ∂	(θ∗)/∂γ ∗ = 0, ∂	(θ∗)/∂ρ∗ = 0 and ∂	(θ∗)/∂βj = 0
iteratively, where (see Appendix)

∂	(θ∗)
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,
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∂βj

]
α=exp (α∗)

.

Many software packages have reliable optimization procedures to maximize log-
likelihood functions. We wrote our computer code in R (R Core Team 2016), and used the
function nlminb for optimization (see the Additional file 1).

Initial values

We may use Weibull, log-logistic and Cox PH fits to generate initial values in solving the
equations ∂	(θ∗)/∂κ∗ = 0, ∂	(θ∗)/∂γ ∗ = 0, ∂	(θ∗)/∂ρ∗ = 0 and ∂	(θ∗)/∂βj = 0. Let κ̂1
and ρ̂1 be the maximum likelihood estimates of the Weibull shape and scale parameters,
respectively, κ̂2 and ρ̂2 the maximum likelihood estimates of the log-logistic shape and
scale parameters, respectively, and β̂∗ the estimates of the regression coefficients for the
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Cox PH model. Note that maximum likelihood methods for the Weibull, log-logistic and
Cox PH models are available in many statistical softwares, including R (R Core Team
2016). We propose to use log κ̂1, log |κ̂1 − κ̂2|, log ρ̂1 and β̂∗ as initial values for κ∗, γ ∗, ρ∗

and β , respectively. If convergence is not achieved with these initial values, we propose
to replace log κ̂1 and log ρ̂1 by log κ̂2 and log ρ̂2, respectively. In fitting the generalized
log-logistic model to many data sets, we have not experienced any difficulty in obtaining
convergence with this technique.

Tests and confidence intervals

Tests and interval estimates for the model parameters are based on the approximate
normality of the maximum likelihood estimators. The asymptotic distribution of θ̂

∗
is

approximately a (p + 3)-variate normal distribution with mean θ∗ and covariance matrix
� = I(θ̂

∗
)−1, where
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is the (p + 3) × (p + 3) observed information matrix (second derivatives of 	(θ∗) are
given in Appendix). By the multivariate delta method, the asymptotic distribution of θ̂

is also approximately normal with mean θ and covariance matrix D�D′, where D is the
(p + 3) × (p + 3) diagonal matrix diag(α̂, 1, 1, . . . , 1) and α̂ = exp (α̂

∗
).

Generalized log-logistic distribution in joint modeling

Joint models are used to quantify association between an internal time-dependent covari-
ate and time until an event of interest occurs (Wulfsohn and Tsiatis 1997). It involves
two separate models: a model that takes into account measurement error in the time-
dependent covariate to estimate its true values (longitudinal model), and another model
that uses these estimated values to quantify the association between this covariate and
the time to the occurrence of the event (time-to-event model). The idea behind the joint
modeling technique is to couple the time-to-event model with the longitudinal model.
The general framework of the maximum likelihood method and large sample theory
can be found in Rizopoulos (2012). Maximization of the log-likelihood function for joint
modeling is computationally challenging, as it involves evaluating multiple integrals that
do not have an analytical solution, except in very special cases. The R package JM has
been developed by Rizopoulos (2010) to fit joint models using Weibull baseline haz-
ard, piecewise-constant baseline hazard, spline approximation of the baseline hazard and
unspecified baseline hazard functions. We have modified the source codes for Weibull
to fit joint models using the generalized log-logistic baseline hazard function. The appli-
cation of the generalized log-logistic distribution in joint modeling is illustrated with an
example in Section 1.

Goodness of fit

The nonparametric estimates are useful for assessing the quality of fit of a particular para-
metric time-to-event model (Lawless 2002). For a model without covariate, we use the
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approach to simultaneously examine plots of parametric and nonparametric estimates
of the survival function, superimposed on the same graph. Let S(t; θ̂) and Ŝ(t) be the
estimates of the survivor functions based on the parametric model of interest and the
Kaplan-Meier method (Kaplan and Meier 1958), respectively. The estimates S(t; θ̂) as a
function of t should be close to Ŝ(t) if the parametric model is adequate. For a model with
covariates, we consider residual diagnostic plots, where the residuals are defined based
on the cumulative hazard function H(t; θ). If Ŝ(H(t; θ̂)) is the Kaplan-Meier estimate of
H(t; θ̂), then a plot of − log Ŝ(H(t; θ̂)) versusH(t; θ̂) should be roughly a straight line with
unit slope when the model is adequate (Lawless 2002).
We also use the Akaike’s information criterion (AIC) (Akaike 1974) to compare the fits

of different models. The AIC is defined by

AIC = −2 log(maximized likelihood) + 2(p + k),

where p is the number of covariates and k is the number of parameters of the assumed
probability distribution (k = 3 for the generalized log-logistic model). In general, when
comparing two or more models, we prefer the one with the lowest AIC value. A rule of
thumb is that if �M = AICM − AICmin > 2, then there is considerably less support for
Model M compared to the model with minimum AIC (Burnham and Anderson 2002).

Examples
Three data sets are taken from the literature to demonstrate the ability of the gener-
alized log-logistic distribution in modeling time-to-event data. The application of the
generalized log-logistic PH in joint modeling is illustrated using another data set of AIDS
patients. We first use the scaled TTT transform of failure times to detect the shape of the
hazard function (Mudholkar et al. 1996). The scaled TTT transform is given by φ(v/n) =[∑v

i=1 T(i) + (n − v)T(v)
]
/
(∑n

i=1 T(i)
)
, where T(i) represent the order statistics of the

sample, and v = 1, 2, . . . , n. The hazard function is increasing, decreasing and unimodal if
the plot of (v/n,φ(v/n)) is concave, convex, and concave followed by convex, respectively.
For the first three examples (Sections Example 1: Head and neck cancer data-Example 3:
Vaginal cancer mortality in rats), we first fit the generalized log-logistic, Weibull and log-
logistic models (without covariate) and check the appropriateness of the distributional
assumption using diagnostic plots. Then, we analyze the data using regression models,
and compare the fits via residual plots. Note that the regression model based on the log-
logistic distribution is given by logT = β0 + β1z1 + . . . + βpzp + τW where τ = 1/κ ,
β0 = − log ρ and W has the logistic distribution with density f (w) = ew/(1 + ew)2, –
∞ < w < ∞. This model has an accelerated life interpretation (Lawless 2002), whereas
the generalized log-logistic and Weibull PH models have relative risk interpretation. In
the fourth example (Section Example 4: AIDS data), we consider joint models based on
the generalized log-logistic, Weibull and piecewise-constant baseline hazard functions.

Example 1: Head and neck cancer data

Data description, hazard shape and distributional assumption

Efron (1988) described a randomized clinical trial to compare radiation therapy alone
(arm A) versus radiation plus chemotherapy (arm B) in treating head and neck cancer
patients. Survival times (in days) for 51 patients in arm A (9 observations were censored)
and 45 in arm B (14 were censored) were reported. The TTT plot in Fig. 1(a) suggests a
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a b c d

Fig. 1 TTT plots for the four data sets used in Examples 1-4

unimodal hazard shape of the survival times. Plots of S(t; θ̂) and Ŝ(t) (Fig. 2(a–c)) indicate
more support for the generalized log-logistic distribution in comparison with theWeibull
and log-logistic distributions in describing the head and neck cancer data.

Regression analysis

Letting zi = I(treatment = radiation therapy) that equals 1 if the treatment involves radi-
ation therapy alone and 0 otherwise, we fit the generalized log-logistic PH, Weibull PH
and log-logistic AFT models to the head and neck cancer data (numerical results are
summarized in Table 1). The standard error of β̂ for the generalized log-logistic model is
smaller that those for the Weibull and log-logistic models, and therefore the generalized
log-logistic would be preferred on grounds of efficiency. We also see that the gener-
alized log-logistic has the lowest AIC value, which is supported by the residual plots
(Fig. 2(d–f)): residuals lying closely to the unit-slope line for generalized log-logistic
indicate its superiority over the Weibull and log-logistic models. In summary, the gener-
alized log-logistic fits the data adequately and is the best among the three models under
consideration.

a b c

d e f

Fig. 2 Diagnostic plots for the head and neck cancer data
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Table 1 Generalized log-logistic, Weibull and log-logistic fits for the head and neck cancer data

Generalized log-logistic PH Weibull PH Log-logistic AFT

(AIC = 1053.39) (AIC = 1082.52) (AIC = 1067.25)

Parameter Estimate SE Estimate SE Estimate SE

β 0.5459 0.2382 0.6686 0.2415 −0.5549 0.2779

log κ 0.9790 0.1986 −0.1619 0.0921 0.2764 0.0971

log ρ −5.2692 0.1844 −6.8248 0.2112 −6.0492 0.2128

log γ −4.6497 0.1755

Example 2: Autologous and allogeneic bonemarrow transplants

Data description, hazard shape and distributional assumption

Klein and Moeschberger (2003) described a study involving a sample of 101 patients with
advanced acute myelogenous leukemia. Fifty-one of these patients had received an autol-
ogous (auto) bone marrow transplant, whereas 50 an allogeneic (allo) transplant. Survival
times (in months) for 28 auto transplant and 22 allo transplant patients were censored.
Careful inspection of the TTT plot in Fig. 1(b) reveals an indication of the unimodality of
the hazard function. A comparison of the diagnostic plots (without covariate) in Fig. 3(a–
c) suggests that the assumption of generalized log-logistic is more appropriate than the
assumption of Weibull or log-logistic in describing these data.

Regression analysis

For regression analysis, we consider the covariate zi = I(transplant = allo). The fits via
the generalized log-logistic PH, Weibull PH and log-logistic AFT are summarized in
Table 2. The generalized log-logistic has the lowest AIC value, suggesting it produced the
best-fitting model. The residual plots (Fig. 3(d–f)) also support this fact. It is interesting

a b c

d e f

Fig. 3 Diagnostic plots for the autologous and allogeneic bone marrow transplants data
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Table 2 Generalized log-logistic, Weibull and log-logistic fits for the bone marrow transplants data

Generalized log-logistic PH Weibull PH Log-logistic AFT

(AIC = 444.64) (AIC = 450.08) (AIC = 446.46)

Parameter Estimate SE Estimate SE Estimate SE

β 0.1981 0.2854 0.2535 0.2854 −0.0808 0.4481

log κ 0.2148 0.2376 −0.3878 0.1229 −0.1694 0.1213

log ρ −2.4055 0.4917 −3.9683 0.3300 −3.1847 0.3474

log γ −1.3188 0.6253

to note here that both the Weibull and log-logistic suggest a decreasing hazard func-
tion (estimate of the shape parameter is less than 1), whereas the generalized log-logistic
captures the unimodal shape of the hazard function (κ̂ = e0.2148 = 1.24 > 1).

Example 3: Vaginal cancer mortality in rats

Data description, hazard shape and distributional assumption

Pike (1966) described a laboratory experiment involving the development of vaginal can-
cer in rats insulted with the carcinogen DMBA. There were 19 rats in group 1 and 21 in
group 2. Seventeen rats in group 1 and 19 in group 2 had developed tumours at the time
the data were collected (i.e., two observations in each group were censored). There were
reasonable scientific grounds for believing that there might be a threshold value before
which no tumour could be detected. For this reason, Lawless (2002) considered the values
t′ = t − 100 to analyze these data. We also consider here the transformed version of the
original observations. The TTT plot in Fig. 1(c) suggests an increasing hazard function for
T ′. Figure 4(a–c) shows diagnostic plots for the generalized log-logistic, Weibull and log-
logistic fits (without covariate). We see that the generalized log-logistic and Weibull fits
are similar, and provide slightly better description of the data compared to the log-logistic
model.

a b c

d e f

Fig. 4 Diagnostic plots for the vaginal cancer mortality data
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Regression analysis

For regression analysis, we consider the covariate zi = I(group = group 1). Table 3 gives
the estimates of the parameters and associated standard errors from the generalized log-
logistic, Weibull and log-logistic fits. As demonstrated by the TTT plot, the Weibull PH
suggests an increasing hazard rate (κ̂ = e1.1308 = 3.098). Note that a small value of γ̂

(γ̂ = e−5.0190 = 0.007) and κ̂ = e1.2568 = 3.514 > 1 for generalized log-logistic also
support this fact. Although the AIC values (Table 3) suggest no obvious preference of
one model over the other, the residual plots (Fig. 4(d–f)) clearly indicate more support
for the generalized log-logistic and Weibull models. This example demonstrates that the
generalized log-logistic has the ability to satisfactorily fit data which exhibit increasing
hazard rates.

Example 4: AIDS data

Data description and hazard shape

This example illustrates the use of the generalized log-logistic distribution in joint mod-
eling. Rizopoulos (2012) described a study involving 467 human immunodeficiency virus
(HIV) infected patients who had failed or were intolerant to zidovudine therapy (ZT).
The main objective was to compare two antiretroviral drugs to prevent the progression of
HIV infections: didanosine (ddI) and zalcitabine (ddC). Patients were randomly assigned
to receive either ddI or ddC and followed until death or the end of the study, resulting in
188 complete and 279 censored observations. It was also of interest to quantify the associ-
ation between CD4 cell counts (internal time-dependent covariate) measured at t = 0, 2,
6, 12 and 18 months, and time to death. The TTT plot in Fig. 1(d) indicates an increasing
hazard shape.

Regression analysis

For regression analysis, Rizopoulos (2012) considered joint models of the form

hi(t; zi) = h0(t;α) exp {β0 + β1drugi + β2sexi + β3ZTi + β4CD4i(t)}, (12)

CD4i(t) = b0 + b1t + b2(t × drugi) + b0i + b1it + εi(t), (13)

where (12) is the time-to-event model with drugi = I(drug = ddI), sexi = I(sex = male)
and ZTi = I(ZT = failure); and (13) is the longitudinal model with b0, b1 and b2 being
the fixed-effects parameters, b0i and b1i the random-effects parameters, and εi(t) the ran-
dom error component. We have reanalyzed the data here using generalized log-logistic,
Weibull and piecewise-constant (six knots placed at equally spaced percentiles of the
observed event times (Rizopoulos 2012)) baseline hazard functions in (12). Note that

Table 3 Generalized log-logistic, Weibull and log-logistic fits for the vaginal cancer mortality data

Generalized log-logistic PH Weibull PH Log-logistic AFT

(AIC = 391.35) (AIC = 389.87) (AIC = 391.89)

Parameter Estimate SE Estimate SE Estimate SE

β 0.6254 0.3485 0.6599 0.3474 −0.1861 0.1203

log κ 1.2568 0.2168 1.1308 0.1300 1.5077 0.1429

log ρ −5.3516 0.5889 −5.0864 0.0754 −4.9301 0.0846

log γ −5.0190 0.1154
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h0(t;α) = κtκ−1/[ 1 + (γ t)κ ] and κtκ−1 for generalized log-logistic and Weibull, respec-
tively, and so β0 = κ log ρ for both these models. For piecewise-constant baseline hazard,
h0(t;α) = ∑7

q=1 ξqI(vq−1 < t ≤ vq) and β0 = 0 in (12), where 0 = v0 < v1 < . . . < v7
is the split of the time scale and ξq is the value of the hazard in the interval (vq−1, vq].
The estimates of the parameters and standard errors for the time-to-event process are
presented in Table 4. We see that the estimates of the coefficients (i.e., β̂1, β̂2, β̂3 and
β̂4) and their standard errors are broadly similar under the three competing models. The
AIC values and residual plots (Fig. 5) also suggest no obvious preference of one model
over the other. Although we see no obvious preference of the generalized log-logistic
model for this example for which the hazard function is monotone increasing, generalized
log-logistic could be useful in joint modeling where the shape of the hazard function is
unimodal.

Simulations
Four covariates in a PH regression framework were considered in all simulations: two
continuous covariates (z1 and z2), each generated from the standard normal distribution;
and two binary covariates (z3 and z4), each generated from the Bernoulli(0.5) distribution.
Regression parameter values were chosen to be β = (0.50,−0.50, 0.75,−0.75)′ corre-
sponding to the covariate vector z = (z1, z2, z3, z4)′. To evaluate the performance of the
generalized log-logistic model, we considered three simulation scenarios based on the
shape of the hazard function. For each scenario (see below), lifetime data were generated
from the generalized Weibull distribution with probability density function

f (t;α,β) = κρ(ρt)κ−1 exp (z′β) [ 1 − γ (ρt)κ ]
exp (z′β)

γ
−1 , (14)

where ρ > 0, κ > 0 and −∞ < γ < ∞ are distributional parameters and α = (κ , γ , ρ)′;
the support of the distribution is t > 0 for γ ≤ 0 and 0 < t < 1

ργ κ for γ > 0. Note that
the hazard function of the generalizedWeibull distribution is (a) monotone increasing for
κ ≥ 1 and γ ≥ 1, (b) monotone decreasing for 0 < κ ≤ 1 and γ ≤ 1, and (c) unimodal
for κ > 1 and γ < 0. The simulation scenarios are then specified as follows.

1. Scenario 1: Decreasing hazard. Lifetimes were generated from generalized
Weibull with κ = 0.5, γ = −0.1 and ρ = 0.1, and censoring times were generated
from the exponential distribution with rate parameter λ = 0.045.

Table 4 AIDS data: estimates and standard errors for the time-to-event process of joint models

Generalized log-logistic Weibull Piecewise-constant

(AIC = 8699.61) (AIC = 8699.26) (AIC = 8711.61)

Parameter Estimate SE Estimate SE Estimate SE

β0 −3.1615 0.4411 −2.9477 0.3898 − −
β1 0.3690 0.1575 0.3727 0.1576 0.3647 0.1573

β2 −0.3647 0.2583 −0.3619 0.2591 −0.3364 0.2585

β3 0.3372 0.1556 0.3455 0.1555 0.3329 0.1555

β4 −0.2824 0.0382 −0.2784 0.0378 −0.2860 0.0382

log κ 0.3838 0.7709 0.2377 0.0732

log γ −2.8874 0.1333
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Fig. 5 Residual plots for the AIDS data

2. Scenario 2: Increasing hazard. Lifetimes were generated from generalized
Weibull with κ = 2, γ = 0.1 and ρ = 0.1, and censoring times were generated
from the exponential distribution with rate parameter λ = 0.060.

3. Scenario 3: Unimodal hazard. Lifetimes were generated from generalized
Weibull with κ = 2, γ = −0.1 and ρ = 0.1, and censoring times were generated
from the exponential distribution with rate parameter λ = 0.060.

Our choice of the parameter values led to, on average, 39.99, 40.69 and 42.99% cen-
sored observations for Scenarios 1-3, respectively. Given the covariates and censoring
indicator, we then fit the generalized log-logistic, Weibull and Cox PH models to the
simulated lifetimes. Note that since the Cox model is robust (usually fits the data well
no matter which parametric model is appropriate), we consider this in our simulation
study to compare model performance. For each scenario, 500 data sets (each of size
n = 100) were generated, and the average of each of the estimated model parame-
ters across these data sets was calculated. Absolute bias (AB) and mean square error
(MSE) were then computed for model comparison (numerical results are summarized in
Table 5).
Results for scenario 1. For the continuous covariates (z1 and z2), all three models

produced estimates with similar MSE, whereas for the binary covariates (z3 and z4), the
generalized log-logistic demonstrated the smallest MSE. In terms of bias, generalized
log-logistic and Cox PH were roughly equivalent, and both were superior to Weibull.
Results for scenario 2. For the regression coefficients, the generalized log-logistic pro-

duced estimates with the smallest bias. We also see that the generalized log-logistic and
Weibull produced estimates with similar MSE, and both were superior to the Cox PH
model. Note that the generalized log-logistic estimates for κ and γ were 2.269 and 0.006,
respectively (i.e., the estimate of γ κ is close to zero), supporting the fact that the hazard
function is monotone increasing.
Results for scenario 3. In terms of bias, the generalized log-logistic and Cox PH

produced comparable estimates of the regression coefficients. However, the general-
ized log-logistic produced the most accurate estimates in terms of MSE, mostly as a
consequence of smaller standard deviations of the estimates. As expected, the Weibull
produced the least accurate estimates in terms of both bias and MSE for Scenario 3 (i.e.,
unimodal hazard).
A simulation study with about 20% censored observations per data set also led to sim-

ilar conclusions (data not shown). In summary, our simulation study has demonstrated
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Table 5Model performance and comparison using simulation study (n = 100) with about 40% censored observations

Generalized

Parameter log-logistic PH Weibull PH Cox PH

Scenarios True Mean AB MSE Mean AB MSE Mean AB MSE

Scenario 1 β1 0.50 0.524 0.024 0.024 0.531 0.031 0.024 0.524 0.024 0.025

(True model: β2 −0.50 −0.538 0.038 0.032 −0.545 0.045 0.033 −0.536 0.036 0.032

generalized β3 0.75 0.798 0.048 0.088 0.808 0.058 0.090 0.795 0.045 0.091

Weibull) β4 −0.75 −0.780 0.030 0.081 −0.792 0.042 0.083 −0.782 0.032 0.083

ρ 0.10 0.148 0.103

κ 0.50 0.550 0.508

γ −0.10 0.073

Scenario 2 β1 0.50 0.516 0.016 0.027 0.518 0.018 0.027 0.532 0.032 0.031

(True model: β2 −0.50 −0.522 0.022 0.035 −0.523 0.023 0.035 −0.533 0.033 0.039

generalized β3 0.75 0.785 0.035 0.099 0.788 0.038 0.099 0.813 0.063 0.112

Weibull) β4 −0.75 −0.765 0.015 0.082 −0.768 0.018 0.082 −0.796 0.046 0.092

ρ 0.10 0.107 0.106

κ 2.00 2.269 2.249

γ 0.10 0.006

Scenario 3 β1 0.50 0.519 0.019 0.025 0.530 0.030 0.026 0.516 0.016 0.026

(True model: β2 −0.50 −0.548 0.048 0.038 −0.557 0.057 0.039 −0.547 0.047 0.039

generalized β3 0.75 0.791 0.041 0.099 0.811 0.061 0.103 0.791 0.041 0.102

Weibull) β4 −0.75 −0.790 0.040 0.089 −0.811 0.061 0.093 −0.792 0.042 0.095

ρ 0.10 0.103 0.098

κ 2.00 2.130 2.016

γ −0.10 0.024
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that the generalized log-logistic could potentially be a very useful parametric model to
adequately describe different types of time-to-event data.

Conclusion
In this paper, we proposed a simple extension of the log-logistic distribution to a PH
model by appending an additional parameter. As described in Section 1, the proposed
model naturally accommodates decreasing and unimodal hazard functions. The log-
logistic distribution is known to be useful to describe unimodal hazard functions (Lawless
2002). As demonstrated in Examples 1 and 2, it turns out that the generalized log-
logistic may provide better fits in describing unimodal hazard functions compared to
the log-logistic distribution. Moreover, our simulation study revealed that the general-
ized log-logistic could produce more accurate results compared to the Weibull and Cox
PH models in describing monotone decreasing and unimodal hazard functions. In sum-
mary, the flexibility provided by the generalized log-logistic model could be very useful in
adequately describing different types of time-to-event data.

Appendix: Derivatives of the log-likelihood function
Let m = ∑n

i=1 δi, ai = exp (z′
iβ), bi = (γ ti)κ , ci = log bi/(1 + bi) and di = bi/(1 + bi).

We have

• log (γ ti) = log bi
κ

, (15)

• (γ ti)κ log (γ ti) = bi log bi
κ

, (16)

• ∂bi
∂κ

= ∂

∂κ
(γ ti)κ = (γ ti)κ log (γ ti) = bi log bi

κ
, (17)

• ∂ log bi
∂κ

= log bi
κ

, (18)

• ∂ log (1 + bi)
∂κ

= bi log bi
κ(1 + bi)

= bici
κ

, (19)

• ∂bi log bi
∂κ

= bi log bi
κ

log bi + bi
log bi

κ
= bi(log bi)(1 + log bi)

κ
, (20)

• ∂ci
∂κ

= ∂

∂κ

log bi
1 + bi

= log bi
κ(1 + bi)

(
1 − bi log bi

1 + bi

)
= ci(1 − bici)

κ
, (21)

• ∂bici
∂κ

= bici(1 − bici + log bi)
κ

= bici(1 + ci)
κ

, (22)

• ∂di
∂κ

= ∂

∂κ

bi
1 + bi

= bi log bi
κ(1 + bi)

(
1 − bi

1 + bi

)
= cidi

κ
, (23)

• ∂ log (1 − di)
∂κ

= ∂

∂κ
log (1 + bi)−1 = − ∂

∂κ
log (1 + bi) = −bici

κ
, (24)
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• ∂bi
∂γ

= ∂

∂γ
(γ ti)κ = κγ κ−1tκi = κ

γ
bi, (25)

• ∂di
∂γ

= ∂

∂γ

bi
1 + bi

= κ

γ

bi
1 + bi

(
1 − bi

1 + bi

)
= κ

γ
di(1 − di), (26)

• ∂

∂γ
log (1 − di) = − ∂

∂γ
log (1 + bi) = − κ

γ

bi
1 + bi

= − κ

γ
di. (27)

Using (7) and (15)-(27), we can derive the first and second derivatives of the log-
likelihood function as follows.

∂	(θ)

∂κ
= m

κ
+ m log ρ +

n∑
i=1

δi log ti − 1
κ

n∑
i=1

δibici −
(

ρ

γ

)κ (
1
κ

) n∑
i=1

aibici

−
(

ρ

γ

)κ

log
(

ρ

γ

) n∑
i=1

ai log (1 + bi).

∂	(θ)

∂γ
= −

(
κ

γ

) n∑
i=1

δidi −
(

κ

γ

) (
ρ

γ

)κ n∑
i=1

aid−
(

κ

γ

) (
ρ

γ

)κ n∑
i=1

ai log (1 − di).
∂	(θ)

∂ρ
= mκ

ρ
−

(
κ

ρ

) (
ρ

γ

)κ n∑
i=1

ai log (1 + bi).

∂	(θ)

∂βj
=

n∑
i=1

δizij −
(

ρ

γ

)κ n∑
i=1

ai log (1 + bi)zij for j = 1, 2, . . . , p.

∂2	(θ)

∂κ2 = ∂

∂κ

∂	(θ)

∂κ

=−m
κ2 + 1

κ2

n∑
i=1

δibici− 1
κ2

n∑
i=1

δibici(1+ci)−
(

ρ

γ

)κ

log
(

ρ

γ

) (
1
κ

) n∑
i=1

aibici

+
(

ρ

γ

)κ (
1
κ2

) n∑
i=1

aibici −
(

ρ

γ

)κ (
1
κ2

) n∑
i=1

aibici(1 + ci)

−
(

ρ

γ

)κ

log
(

ρ

γ

) (
1
κ

) n∑
i=1

aibici−
(

ρ

γ

)κ {
log

(
ρ

γ

)}2 n∑
i=1

ai log (1 + bi)

=−m
κ2 − 1

κ2

n∑
i=1

δibic2i −
(
ρ

γ

)κ(
1
κ2

) n∑
i=1

aibic2i −
(
2
κ

)(
ρ

γ

)κ

log
(

ρ

γ

) n∑
i=1

aibici

−
(

ρ

γ

)κ {
log

(
ρ

γ

)}2 n∑
i=1

ai log (1 + bi).

∂2	(θ)

∂γ 2 = ∂

∂γ

∂	(θ)

∂γ

=
(

κ

γ 2

) n∑
i=1

δidi −
(

κ

γ

)2 n∑
i=1

δidi(1 − di) + κρκ

(
κ + 1
γ κ+2

) n∑
i=1

aidi

−
(

κ

γ

)2 (
ρ

γ

)κ n∑
i=1

aidi(1 − di) + κρκ

(
κ + 1
γ κ+2

) n∑
i=1

ai log (1 − di)

+
(

κ

γ

)2 (
ρ

γ

)κ n∑
i=1

aidi

=
(

κ

γ 2

) n∑
i=1

δidi −
(

κ

γ

)2 n∑
i=1

δidi(1 − di)

+ κ(κ + 1)
γ 2

(
ρ

γ

)κ n∑
i=1

ai[ di + log (1 − di)]+
(

κ

γ

)2 (
ρ

γ

)κ n∑
i=1

aid2i .
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∂2	(θ)

∂ρ2 = ∂

∂ρ

∂	(θ)

∂ρ
= −mκ

ρ2 − κ(κ − 1)
ρ2

(
ρ

γ

)κ n∑
i=1

ai log (1 + bi).

∂2	(θ)

∂βj∂βj′
= ∂

∂βj

∂	(θ)

∂βj′
= −

(
ρ

γ

)κ n∑
i=1

ai log (1 + bi)zijzij′ for j, j′ = 1, 2, . . . , p.

∂2	(θ)

∂κ∂γ
= ∂

∂κ

∂	(θ)

∂γ

= −
(
1
γ

) n∑
i=1

δidi −
(

κ

γ

) (
1
κ

) n∑
i=1

δicidi −
(

κ

γ

) (
ρ

γ

)κ (
1
κ

) n∑
i=1

aicidi

−
(
1
γ

)(
ρ

γ

)κ n∑
i=1

aidi−
(

κ

γ

)(
ρ

γ

)κ

log
(

ρ

γ

) n∑
i=1

aidi+
(

κ

γ

)(
ρ

γ

)κ (
1
κ

) n∑
i=1

aibici

−
(
1
γ

) (
ρ

γ

)κ n∑
i=1

ai log (1 − di) −
(

κ

γ

) (
ρ

γ

)κ

log
(

ρ

γ

) n∑
i=1

ai log (1 − di)

= −
(
1
γ

) n∑
i=1

δidi(1 + ci) −
(
1
γ

) (
ρ

γ

)κ n∑
i=1

ai[ di + log (1 − di) + ci(di − bi)]

−
(

κ

γ

) (
ρ

γ

)κ

log
(

ρ

γ

) n∑
i=1

ai[ di + log (1 − di)] .

∂2	(θ)

∂κ∂ρ
= ∂

∂κ

∂	(θ)

∂ρ

= m
ρ

−
(
1
ρ

) (
ρ

γ

)κ n∑
i=1

ai log (1+bi)−
(

κ

ρ

) (
ρ

γ

)κ

log
(

ρ

γ

) n∑
i=1

ai log (1+bi)

−
(

κ

ρ

) (
ρ

γ

)κ (
1
κ

) n∑
i=1

aibici

= m
ρ

−
(
1
ρ

) (
ρ

γ

)κ n∑
i=1

ai
[
bici + log (1 + bi)

]

−
(

κ

ρ

) (
ρ

γ

)κ

log
(

ρ

γ

) n∑
i=1

ai log (1 + bi).

∂2	(θ)

∂κ∂βj
= ∂

∂βj

∂	(θ)

∂κ
=−

(
1
κ

) (
ρ

γ

)κ n∑
i=1

aibicizij−
(

ρ

γ

)κ

log
(

ρ

γ

) n∑
i=1

ai log (1+bi)zij.

∂2	(θ)

∂γ ∂ρ
= ∂

∂γ

∂	(θ)

∂ρ

=
(

κ

ρ

) (
κ

γ

) (
ρ

γ

)κ n∑
i=1

ai log (1 + bi) −
(

κ

ρ

) (
κ

γ

) (
ρ

γ

)κ n∑
i=1

aidi

= −
(

κ

ρ

) (
κ

γ

) (
ρ

γ

)κ n∑
i=1

ai log (1 − di) −
(

κ

ρ

) (
κ

γ

) (
ρ

γ

)κ n∑
i=1

aidi

= −
(

κ

ρ

) (
κ

γ

) (
ρ

γ

)κ n∑
i=1

ai[ di + log (1 − di)] . .
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∂2	(θ)

∂γ ∂βj
= ∂

∂βj

∂	(θ)

∂γ

= −
(

κ

γ

) (
ρ

γ

)κ n∑
i=1

aidizij −
(

κ

γ

) (
ρ

γ

)κ n∑
i=1

ai log (1 − di)zij

= −
(

κ

γ

) (
ρ

γ

)κ n∑
i=1

ai[ di + log (1 − di)] zij.

∂2	(θ)

∂ρ∂βj
= ∂

∂βj

∂	(θ)

∂ρ

= −
(

κ

ρ

) (
ρ

γ

)κ n∑
i=1

ai log (1 + bi)zij.

Themaximum likelihood estimate of θ∗ = (α∗′,β ′)′ is obtained by solving the equations
∂	(θ∗)/∂κ∗ = 0, ∂	(θ∗)/∂γ ∗ = 0, ∂	(θ∗)/∂ρ∗ = 0 and ∂	(θ∗)/∂βj = 0 iteratively. The
first and second derivatives of 	(θ∗) can be derived by noting that

∂	

∂ logu
= u

(
∂	

∂u

)
, (28)

∂2	

∂ logu ∂ log v
= u

(
∂v
∂u

) (
∂	

∂v

)
+ uv

(
∂2	

∂u∂v

)
, (29)

∂2	

∂ logu ∂v
= u

(
∂2	

∂u∂v

)
. (30)

Using (29)-(30), the first and second derivatives of 	(θ∗) can be expressed as
∂	(θ∗)
∂κ∗ =

[
κ

(
∂	(θ)

∂κ

)]
α=eα∗

,
∂	(θ∗)
∂γ ∗ =

[
γ

(
∂	(θ)

∂γ

)]
α=eα∗

,

∂	(θ∗)
∂ρ∗ =

[
ρ

(
∂	(θ)

∂ρ

)]
α=eα∗

,
∂	(θ∗)

∂βj
=

[
∂	(θ)

∂βj

]
α=eα∗

,

∂2	(θ∗)
∂κ∗2 =

[
κ

(
∂	(θ)

∂κ

)
+ κ2

(
∂2	(θ)

∂κ2

)]
α=eα∗

,

∂2	(θ∗)
∂γ ∗2 =

[
γ

(
∂	(θ)

∂γ

)
+ γ 2

(
∂2	(θ)

∂γ 2

)]
α=eα∗

,

∂2	(θ∗)
∂ρ∗2 =

[
ρ

(
∂	(θ)

∂ρ

)
+ ρ2

(
∂2	(θ)

∂ρ2

)]
α=eα∗

,

∂2	(θ∗)
∂βj∂βj′

=
[

∂2	(θ)

∂βj∂βj′

]
α=eα∗

,
∂2	(θ∗)
∂κ∗∂γ ∗ =

[
κγ

(
∂2	(θ)

∂κ∂γ

)]
α=eα∗

,

∂2	(θ∗)
∂κ∗∂ρ∗ =

[
κρ

(
∂2	(θ)

∂κ∂ρ

)]
α=eα∗

,
∂2	(θ∗)
∂κ∗∂βj

=
[
κ

(
∂2	(θ)

∂κ∂βj

)]
α=eα∗

,

∂2	(θ∗)
∂γ ∗∂ρ∗ =

[
γρ

(
∂2	(θ)

∂γ ∂ρ

)]
α=eα∗

,
∂2	(θ∗)
∂γ ∗∂βj

=
[
γ

(
∂2	(θ)

∂γ ∂βj

)]
α=eα∗

,

∂2	(θ∗)
∂ρ∗∂βj

=
[
ρ

(
∂2	(θ)

∂ρ∂βj

)]
α=eα∗

.
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