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Abstract

For extreme events, estimation of high conditional quantiles for heavy tailed distributions
is an important problem. Quantile regression is a useful method in this field with many
applications. Quantile regression uses an L1-loss function, and an optimal solution by
means of linear programming. In this paper, we propose a weighted quantile regression
method. Monte Carlo simulations are performed to compare the proposed method
with existing methods for estimating high conditional quantiles. We also investigate
two real-world examples by using the proposed weighted method. The Monte Carlo
simulation and two real-world examples show the proposed method is an
improvement of the existing method.
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1 Introduction
Extreme value events are highly unusual events that can cause severe harm to people and
costly damage to the environment. Examples of such harmful events are stock market
crashes, equity risks, pipeline failures, large flooding, wildfires, pollution and hurricanes.
The response variable, y, of an extreme event is usually distributed according to a heavy-
tailed distribution. It is important to estimate high conditional quantiles of a random
variable y given a variable vector x = (1, x1, x2, . . . , xk)T ∈ Rp and p = k + 1.
The traditional mean linear regression is concerned with the estimation of the condi-

tional expectation E(y|x) (Yu et al. 2003). The mean linear regression model assumes

μy|x = E (y|x1, x2, . . . , xk) = xTβ = β0 + β1x1 + β2x2 + . . . + βkxk .

We estimate β = (β0,β1, . . . ,βk)
T ∈ Rp from a random sample

{
(yi, xi), i = 1, . . . , n

}
,

where xi is the p-dimensional design vector and yi is the univariate response variable
from a continuous distribution. The least squares (LS) estimator β̂LS is a solution to the
following equation

β̂LS = argmin
β∈Rp

n∑

i=1

(
yi − xTi β

)2
, (1)

that is, β̂LS is obtained by minimizing the L2-distance.
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The mean linear regression provides the mean relationship between a response vari-
able and explanatory variables (Yu et al. 2003). However, there are limitations present in
the conditional mean models. Outliers significantly affect the conditional mean models
and as a result, it affects the measurement of the central location, which may be mis-
leading. Also, when analyzing extreme value events, where the response variable y has a
heavy-tailed distribution, the mean linear regression cannot be extended to non-central
locations (Hao and Naiman 2007). Therefore, it cannot provide insightful information for
extreme events. Quantile regression offers a more complete statistical model by specify-
ing the changes in the high conditional quantiles and it will be used to estimate values
of extreme events (Yu et al. 2003; Hao and Naiman 2007). We will study two real world
examples in the following sections.

1.1 Snowfall in Buffalo (1994-2015)

Large snowstorms can be very hazardous to people’s safety, communities and their prop-
erties. They can significantly reduce visibility in an area, which makes it very dangerous
for densely populated areas where major car accidents can happen on the road or acci-
dents while flying can occur. A significant amount of snow, such as 12 inches (30 cm)
or more, can cave in roofs of homes and buildings, standing trees can fall down on
homes and cause the loss of electricity. There have been cases of deaths due to hypother-
mia, infections brought on by frostbite, car accidents caused due to slippery roads, heart
attacks by overexertion while shoveling heavy snow and carbonmonoxide poisoning from
a power outage.
In 2006, Lake Storm “Aphid” was a lake-effect snowstorm that hit Buffalo, New York

with a maximum snowfall of 24 inches (61 cm) and caused 19 fatalities. The snowstorm
cost an estimated $530million in damages. Recently, in November 2014, severe lake-effect
snowstorm heavily impacted areas in and around Buffalo with snowfall ranging from 5-7
feet (1.5-2.1 m) and the maximum snowfall of the storms was 88 inches (220 cm). There
were records of 14 heart attacks due to overexertion and roofs collapsing due to the sheer
weight of the snow. The data set was obtained from National Weather Service Forecast
Office (2017) (Full data is available at http://www.weather.gov/buf ) and the daily snowfall
was recorded in inches for 4478 days from January 1994 – January 2015. The snowfall was
converted into centimeters and a threshold of 5 cm was considered since snowfall under
5 cm is very unlikely to cause extreme damage. As a result, there are n = 316 recorded
data remaining. During January 1994 - January 2015, the top 10 largest daily snowfalls
and maximum temperature in Buffalo, New York are shown in Table 1.
In Fig. 1(a), the y-axis represents the total daily snowfall (cm) and the x-axis represents

the snowfall in the order of occurrence. Themaximumdaily snowfall occurred onDecem-
ber 10, 1995 with over 86.1 cm while the average daily snowfall was 11.96 cm. Figure 1(b)
shows the scatter diagram of daily snowfalls greater or equal to 5 cm. It appears that it
can be modeled with a quadratic polynomial relating snowfall to maximum temperature.
The least squares method was performed on a polynomial mean regression model

E
(
y|x, x2) = β0 + β1x + β2x2, (2)

where y represents the total snowfall (cm) and x represents the maximum temperature
(◦C). The red curve represents the least squares (LS) curve μLS = μ̂y|x = 8.9879 −
0.2144x + 0.0040x2 which was obtained by using (1) and the model (2) to estimate the

http://www.weather.gov/buf
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Table 1 The top 10 largest daily snowfalls with the maximum temperature in Buffalo, New York, from
January 1994 to January 2015

Date Snowfall (cm) Maximum temperature (◦C)

December 10, 1995 86.11 –9.44

December 28, 2001 66.55 –2.78

November 20, 2000 63.25 1.67

December 27, 2001 55.63 –4.44

December 24, 2001 52.07 2.22

March 16, 2004 36.30 –2.78

October 13, 2006 35.61 9.39

March 12, 2014 35.10 3.89

March 8, 2008 33.30 –2.22

January 4, 1999 31.50 –6.67

mean of daily snowfall y for a given maximum temperature x. But, the least squares curve
does not provide information about extreme heavy snowfalls that may cause damage. The
quantile regression method will be able to estimate the high conditional quantiles. We
will discuss this example further in Section 5.

1.2 CO2 Emission

Climate change is considered to be one of themost important environmental issues as it is
transforming life on Earth. It affects all aspects of our natural environment including the
air and water quality, health and conservation of species at risk. It has been observed that
temperatures and sea levels are rising, there are stronger storms and increased damage,
and increased risk of drought, fire and floods. Climate change will rapidly alter the lands
and waters that we depend upon for survival and we will no longer be able to preserve our
environment for our social and economic well-being.
Natural processes and human activities can cause climate change. The recent global

warming can be largely attributed to the carbon dioxide (CO2) and other greenhouse gas
emissions. It was found that in 2009, CO2 accounted for 82% of all European greenhouse
gas emissions and about 94% of the CO2 released to the atmosphere were from com-
busting fossil fuels (European Environment Agency (2017) at http://www.eea.europa.eu).

Fig. 1 a The daily snowfalls (cm) in Buffalo between January 1994 and January 2015 (4478 days). b The scatter
diagram of daily snowfalls greater than or equal to 5 cm (n = 316 days) and least squares mean regression
μLS (red) of Buffalo snowfalls given the maximum temperature between January 1994 and January 2015

http://www.eea.europa.eu
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Fig. 2 a Global CO2 Emissions (million metric tonnes) from 1950 to 2010. b The CO2 emission per capita data
ordered by 181 countries in 2010

Figure 2(a) shows CO2 emissions increases between 1950 and 2010; these increases are
related with the increased energy use by an expanding economy, population and overall
growth in emissions from electricity generation. It is important to estimate high condi-
tional quantiles of the distribution of CO2 emission in order to prevent acceleration of
climate change.
In this paper, we use the 2010 data from the Carbon Dioxide Information Analysis Cen-

ter (2017) at http://cdiac.ornl.gov for 181 countries. The CO2 emission per capita was
recorded in metric tonnes. There are n = 123 countries remaining after the threshold of 1
tonne was applied. The threshold of 1 tonne of CO2 emission was considered since values
higher than 1 tonne of CO2 emission would exceed the maximum allowance to emit with-
out harming the climate. Table 2 lists the top 10 countries with the largest CO2 emissions
and their gross domestic product (GDP) and electricity consumption (E.C.) per capita.
In Fig. 2(b), the y-axis represents the CO2 emission per capita (tonnes) and x-axis rep-
resents the CO2 emission ordered by country. It can be observed in Fig. 2(b) that Qatar
produced the highest CO2 emission per capita of 40 tonnes and Trinidad and Tobago and
Kuwait produced the second and third highest CO2 emissions of 38 tonnes and 31 tonnes
respectively. As well, several countries emitted less than 10 tonnes of CO2 in 2010.
We set the CO2 emission per capita (y) (tonnes), ln(GDP) per capita (x1) (US $) and

ln(E.C.) per capita (x2) (kilowatts) by using log-transformation. The 3D scatter diagram

Table 2 The top 10 countries with the largest CO2 emissions per capita with their GDP and
Electricity Consumption (E.C.) in 2010

Country CO2Emission GDP Electricity
per Capita per Capita Consumption (E.C.)
(tonnes) (US $) per Capita (kilowatts)

Qatar 40.31 71,510.16 86.01

Trinidad and Tobago 38.16 15,630.05 1657.02

Kuwait 31.32 38,584.48 913.04

Brunei 22.87 30,880.34 239.40

Aruba 22.85 24,289.14 3,262.30

Luxembourg 21.36 102,856.97 2751.26

Oman 20.41 20,922.66 1562.59

United Arab Emitrates 19.85 33,885.93 9007.35

Bahrain 19.34 20,545.97 10,142.73

United States 17.56 48,377.39 7588.42

http://cdiac.ornl.gov
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Fig. 3 3D Scatter plot CO2 emission per capita given x1−ln(GDP) (US $) and x2−ln(E.C.) (kilowatts) data and
LS mean regression μLS (green)

in Fig. 3 appears that it can be modeled using mean linear regression model (3) for the
CO2 emission per capita related with the ln(GDP) and ln(E.C.). For simplification, we do
not put “per capita” for these three variables in the following text.

E (y|x1, x2) = β0 + β1x1 + β2x2, (3)

Figure 4(a) and (b) are 2D scatter plots. Figure 4(a) shows the relationship between
ln(GDP) and CO2 emission per capita μ̂y|x1 = −21.0984 + 3.0255x1 when the E.C. per
capita is 2980.96 kilowatts. Figure 4(b) demonstrates the relationship between ln(E.C.)
and CO2 emission per capita μ̂y|x2 = −10.2255 + 2.1830x2 when the GDP per capita is
$13,359.73. The least squares mean regression curves in Fig. 4 were obtained by using (1)
and the model (3).
Since the mean regression provides only the mean relationship between CO2 emission

per capita and GDP or E.C., it cannot provide estimation for high conditional quantiles
of CO2 emission. But the quantile regression method can estimate high CO2 emission
quantile curves. We will discuss this example further in Section 5.

Fig. 4 a Scatter plot and LS mean regression μ̂y|x1 (red) of the CO2 emission per capita related to ln(GDP) x1
when the E.C. is 2980 kilowatts. b Scatter plot and LS mean regression μ̂y|x2 (red) of the CO2 emission per
capita related to ln(E.C.) x2 when GDP is $13,359.73
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1.3 Main methods and results

Quantile regression is an important model with applications in many fields. At first,
quantile regression provides the estimates of the conditional quantiles, which are diffi-
cult to capture by a mean regression. Second, it is also more robust against outliers in
the response measurements. The objective of this paper is to study and explore a new
weighted quantile regression in order to improve the existing methods. In this paper, we
will do three studies:

1. The theoretical approach will be investigated.
2. Monte Carlo simulations will be performed to show the efficiency of the new

weighted method relative to the existing methods.
3. The new proposed method will be applied to real-world examples on extreme

events and compared to mean regression and classical quantile regression.

In Section 2, we review some notation. In Section 3, we propose an optimal weighted
quantile regression method, and give its good asymptotic properties for any uniformly
bounded positive weight independent of response variable y, with conditional density
as the weight. In Section 4, the results of Monte Carlo simulations generated from the
bivariate Pareto distribution show that the proposed weightedmethod produces high effi-
ciencies relative to existing methods. In Section 5, the three regression methods: mean
regression, classic quantile regression and proposed weighted quantile regression, are
applied to the real-life examples: the Buffalo snowfall (Subsection 1.1) and CO2 emission
(Subsection 1.2). Three goodness-of-fit tests are used to assess the distributions of the
data. Studies of the examples illustrate that the proposed weighted quantile regression
model fits better to the datasets than the existing quantile regression method.

2 Notation
Pickands (1975) first introduced the Generalized Pareto Distribution (GPD). (Also see de
Haan and Ferreira 2006).

Definition 2.1 The cumulative distribution function (c.d.f.) F(x) and its correspond-
ing probability density function (p.d.f.) f (x) of the two-parameter GPD(γ , σ) with shape
parameter γ > 0 and scale parameter σ of a random variable X are given by

F(x) = 1 −
(
1 + γ

x
σ

)1/γ
, γ , σ > 0, x > 0; (4)

f (x) = σ−1
(
1 + γ

x
σ

) 1
γ

−1
, γ , σ > 0, x > 0.

Definition 2.2 The τ th quantile of a continuous random variable Y with c.d.f. F(y) is
defined as

Q(τ ) = F−1(τ ) = inf{y : F(y) ≥ τ }, 0 < τ < 1.

Definition 2.3 The τ th conditional linear quantile regression of y for given x =
(1, x1, x2, . . . , xk)T is defined as

Qy (τ |x) = Qτ (y|x1, x2, . . . , xk) = F−1 (τ |x)
= xTβ(τ ) = β0(τ ) + β1(τ )x1 + · · · +βk(τ )xk , 0 < τ < 1,
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where β(τ ) = (β0(τ ),β1(τ ),β2(τ ), . . . ,βk(τ ))T .

Koenker and Bassett (1978) proposed a L1−loss function to obtain estimator β̂(τ ) by
solving

β̂(τ ) = arg min
β(τ )∈Rp

n∑

i=1
ρτ (yi − xTi β(τ )), 0 < τ < 1, (5)

where ρτ is a loss function

ρτ (u) = u(τ − I(u < 0)) =
{
u(τ − 1), u < 0;

uτ , u ≥ 0.

Quantile regression problem can be formulated as a linear program

min
(β(τ ),u,v)∈Rp×R2n+

{
τ1Tn u + (1 − τ)1Tn v|Xβ(τ ) + u − v = y

}
,

where 1Tn is an n-vector of 1s,X denotes the n×p designmatrix, and u, v are n× 1 vectors
with elements of ui, vi respectively (Koenker 2005).

3 Proposed weighted quantile regression
3.1 Proposed weighted quantile regression

Huang et al. (2015) proposed a weighted quantile regression method

β̂w(τ ) = arg min
β(τ )∈Rp

n∑

i=1
wi (xi, τ) ρτ

(
yi − xTi β(τ )

)
, 0 < τ < 1, (6)

where wi(xi, τ) is any uniformly bounded positive weight function independent of yi, i =
1, . . . , n, for xi = (1, xi1, xi2, . . . , xik)T.
In this paper, we propose a weight as the local conditional density f (y|x) of y for given x

at the τ th quantile point ξi(τ , xi), which is

wi (xi, τ) = fi (ξi (τ , xi)) , i = 1, 2, . . . , n, 0 < τ < 1, (7)

where fi(ξi(τ , xi)) is uniformly bounded at the quantile points ξi(τ , , xi).

The following are the four reasons for the proposed weight in (7):

(1) Koenker (2005, Chapter 5, Subsection 5.3) suggested that when the conditional
densities of the response are heterogeneous, it is natural to consider whether
weighted quantile regression might lead to efficiency improvements.

(2) The error function ρτ (yi − xTi β(τ )) in (6) is an absolute error measure between yi
and the τ th conditional quantile ξi(τ , xi) at the i th sample point
(yi, xi), i = 1, 2, . . . , n. fi(ξi(τ , xi)) can be interpreted as providing the local relative
likelihood that the response varaibale y takes values in a neighborhood of
y = ξi(τ , xi) : (ξi(τ , xi) − ε, ξi(τ , xi) + ε) , for small ε > 0. Giving the weight
fi(ξi(τ , xi)) on ρτ (yi − xTi β(τ )) will make the total error
∑n

i=1 wi(xi, τ)ρτ (yi − xTi β(τ )) more reasonable.
(3) The weighted estimator β̂w(τ ) in (6) using weight (7) has good properties, which

we will discuss in Subsection 3.2 below.
(4) Is weight (7) an optimal weight? It is a difficult problem in the field as described in

Chapter 5, Subsection 5.3 in Koenker (2005). Also, fi(ξi(τ , xi)) is difficult to
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estimate. In this paper, we explore these two difficulties, we estimate the
fi(ξi(τ , xi)), then obtain positive results by using weight (7).

In Section 4, in simulations, we compare using weight (7) with the weight given in
Huang et al. (2014) as

wi (xi, τ) = ‖xi‖−1

n∑

i=1
‖xi‖−1

, 0 < τ < 1, (8)

where wi(xi, τ) ∈ [0, 1] and
n∑

i=1
wi(xi, τ) = 1, i = 1, . . . , n, ||xi|| =

√
x2i1 + x2i2 + · · · + x2ik ,

k is the number of regressors.
In this paper, we are looking for improvement of efficiency by using weights (7)

in Section 4 simulations, and applications of the Buffalo snowfall and CO2 emission
examples in Section 5.

3.2 Properties of weighted quantile regression

The following regularity conditions are necessary in deriving the asymptotic distribution
of β̂n(w)(τ ) in (6) with weight wi(xi, τ) = fi(ξi(τ , xi)), i = 1, 2, . . . , 0 < τ < 1, in (7). Let
Y1,Y2, . . . be independent random variables with distribution function F1, F2, . . ..

Condition 1 (C1). The Fi’s are absolutely continuous, with continuous densities fi(ξ)

uniformly bounded away from 0 and ∞ at the quantile points ξi(τ , xi), i = 1, 2, . . ..

Condition 2 (C2). There exist positive definite matrices D0(τ ) such that the following
three subconditions are satisfied

(i) limn→∞ n−1 ∑
f 2i (ξi(τ , xi))xixTi = D0(τ ), and

(ii) lim
i=1,..,n

∥∥fi(ξi(τ , xi))
∥∥/

√
n → 0.

We have the main asymptotic results for β̂n(w)(τ ) in (6) using weight (7). In this case, we
let β̂n(w)(τ ) = β̂n(f )(τ ) in the following theorem.

Theorem 3.1 Under Conditions C1 and C2, we have
√
n

(
β̂n(f )(τ ) − β(τ )

) D→N(0, τ(1 − τ)D−1
0 (τ )), as n → ∞.

The proof of Theorem 3.1 is similar as the proof has been provided in
Huang et al. (2015).

3.3 Comparison of quantile regression models

In order to compare the regular and weighted quantile regression models in (5) and (6),
we extend the idea of measure of goodness of fit by Koenker and Machado (1999), and
suggest the use of a Relative R(τ ), which is defined as

Relative R(τ ) = 1 − Vweighted(τ )

Vregular(τ )
, −1 ≤ R(τ ) ≤ 1, (9)

where

Vregular(τ ) =
∑

yi≥xTi β̂(τ )

τ

n

∣∣∣yi − xTi β̂(τ )

∣∣∣ +
∑

yi<xTi β̂(τ )

(1 − τ)

n

∣∣∣yi − xTi β̂(τ )

∣∣∣ ,
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where β̂(τ ) is obtained by (5).

Vweighted(τ ) =
∑

yi≥xTi β̂w(τ )

wiτ
∣∣∣yi − xTi β̂w(τ )

∣∣∣ +
∑

yi<xTi β̂w(τ )

wi(1 − τ)

∣∣∣yi − xTi β̂w(τ )

∣∣∣ ,

where wi and β̂w(τ ) are given by (6).

4 Simulations
In this Section, Monte Carlo simulations are performed. We generatem random samples
with size n each from the bivariate Pareto distribution (Mardia 1962) with c.d.f.

F(x, y) = 1 − x−α − y−α − (x + y − 1)−α , x > 1, y > 1, α > 0, (10)

and the conditional quantile function of (10) is

ξ(τ |x) = Qy(τ |x) = 1 − x
(
1 − 1

(1 − τ)−1/(α+1)

)
, x > 1, α > 0, 0 < τ < 1. (11)

The conditional density of y for given x is

f (y|x) = (α + 1)x(α+1)

(x + y − 1)(α+2) , x > 1, y > 1, α > 0,

and the τ th conditional density of y for given x at the τ th quantile is

f (ξ(τ |x)) = (α + 1)(1 − τ)(α+2)/(α+1)

x
, x > 1, α > 0, 0 < τ < 1. (12)

Assume that the true conditional quantile is Qy(τ |x) = β0(τ ) + β1(τ )x. We use two
quantile regression methods:

1. The regular quantile regression QR(τ |x) estimation based on (5),

QR(τ |x) = β̂0(τ ) + β̂1(τ )x (13)

2. The weighted quantile regression QW (τ |x) estimation based on (6)

QW (τ |x) = β̂w0(τ ) + β̂w1(τ )x. (14)

For each method, we generate size n = 300,m = 1, 000 samples. QR,i(τ |x) or
QW ,i(τ |x), i = 1, . . .m, are estimated in the i th sample. Let α = 3 in (12), then the
weights in (7) are

wi(xi, τ) = 4(1 − τ)(5/4)

xi
, xi > 1, i = 1, 2, . . . , n. (15)

The simulation mean squared errors (SMSE) of the estimators (13) and (14) are:

SMSE(QR(τ )) = 1
m

m∑

i=1

∫ N

1
(QR,i(τ |x) − Qy(τ |x))2dx; (16)

SMSE(QW (τ )) = 1
m

m∑

i=1

∫ N

1
(QW ,i(τ |x) − Qy(τ |x))2dx, (17)

where the true τ th conditional quantile Qy(τ |x) is defined in (11). N is a finite x value
such that the c.d.f. in (10) F(N ,N) ≈ 1. We takeN = 1000 and the simulation efficiencies
(SEFF) are given by

SEFF(QW (τ )) = SMSE(QR(τ ))

SMSE(QW (τ ))
,

where SMSE(QR(τ )) and SMSE(QW (τ )) are defined in (16) and (17) respectively.
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Table 3 Simulation mean square errors (SMSE) and efficiencies (SEFF) of estimating
Qy(τ |x),m = 1000, n = 300,N = 1000

τ 0.95 0.96 0.97 0.98 0.99

SMSE(QR(τ )) 2.0533×108 2.0103×108 2.7731×108 5 .1199×108 1.7458×109

SMSE(QW(f )(τ )) 1.4939×108 1.4146×108 2.2462×108 4.5520×108 1.7161×109

SEFF(QW(f )(τ )) 1.6770 1.4211 1.2346 1.1248 1.0174

Table 3 displays the SEFF(QW (f )(τ )) for varying τ values by using the weight in (15). It
shows that the SEFF(QW (f )(τ )) are larger than 1 when τ = 0.95, . . . , 0.99.
Figure 5 compares the SMSE(QR(τ )) with the SMSE(QW (f )(τ )) for τ = 0.95, . . . , 0.99.

It demonstrates that all SMSE(QW (f )(τ )) for our proposed weight in (15) have smaller
values than SMSE(QR(τ )). Furthermore, Fig. 6 shows the box plots for estimating the true
β0 and β1 when α = 3 by usingQR(τ |x) andQW (f )(τ |x) for τ = 0.95 and 0.97 respectively.
It reveals that the proposedQW (f )(τ |x) is unbiased and produces more accurate β̂W (f )0(τ )

and β̂W (f )1(τ ) estimators to the true β0 and β1 for τ = 0.95 and 0.97. As well, the variances
of QW (f )(τ |x) are smaller relative to QR(τ |x) for τ = 0.95 and 0.97.
Next, we want to compare our simulation results with the following proposed weights

presented in Huang et al. (2014) in (8). Table 4 compares the simulation SEFF(QW (1)(τ ))

by using weight wi(xi, τ) = ‖xi‖−1 /
∑n

i=1 ‖xi‖−1 in (8) and SEFF(QW (f )(τ )) by using
weight in (15) for different τ values. Also, Fig. 7 compares the SEFF(QW (1)(τ )) with
SEFF(QW (f )(τ )) with proposed weight in (15). It reveals that the SEFF(QW (f )(τ )) are
larger than 1 and larger than SEFF(QW (1)(τ )). Thus, QW (f )(τ |x) is more efficient than
QW (1)(τ |x) when τ = 0.95 and up to 0.99.
From the overall results of simulation, we can conclude that:

1. Table 3, Figs. 5 and 6 show that for τ = 0.95, . . . , 0.99, the proposed weighted
regression QW (f )(τ |x) with the weight (15) is more efficient relative to the regular
regression QR(τ |x).

2. Table 4 and Fig. 7 show that for τ = 0.95, . . . , 0.99, QW (f )(τ |x) with the proposed
weight (15) is more efficient relative to QW (1)(τ |x) with
wi(xi, τ) = ‖xi‖−1 /

∑n
i=1 ‖xi‖−1 in (8).

Fig. 5 a SMSE(QR(τ )) is the red line, SMSE(QW(f )(τ )) is the green line. b SEFF(QW(f )(τ )) is the green line
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Fig. 6 a and c Box plot comparing the β̂0 values of the classical quantile regression QR(τ |x) and the
weighted quantile regression method QW(f )(τ |x) to the true β0 = 1 (blue solid line) for τ = 0.95 and 0.97
respectively. b and d Box plot comparing the β̂1 values of the classical quantile regression QR(τ |x) and the
weighted quantile regression QW(f )(τ |x) to the true β1 = 1.1147 and β1 = 1.4026 (blue solid line) for
τ = 0.95 and 0.97 respectively; QR(τ |x) - left box plot and QW(f )(τ |x) - right box plot

5 Real examples of applications
In this section, we applied the following three regression models to the Buffalo snowfall
and CO2 emission examples in Section 1:

1. The traditional mean linear regression (LS) estimator β̂LS in (1) ;
2. The regular quantile regression QR estimator β̂(τ ) in (5) ;
3. The proposed weight quantile regression QW estimator β̂W (τ ) in (6) with weight

wi(xi, τ) = fi(ξi(τ , xi)) in (7) .

Table 4 Simulation efficiency (SEFF) of estimating Qy(τ |x),m = 1000, n = 300,N = 1000

τ 0.95 0.96 0.97 0.98 0.99

SEFF(QW(1)(τ )) 1.0783 1.0729 1.0504 1.0008 1.0086

SEFF(QW(f )(τ )) 1.6770 1.4211 1.2346 1.1248 1.0174
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Fig. 7 SEFF(QW(f )(τ )) is the green solid line, SEFF(QW(1)(τ )) is the red dashed line

To estimate the proposed local conditional density weight wi(xi, τ) = fi(ξi(τ , xi)) in (7),
we use kernel density estimation (Silverman 1986; Scott 1992).

ŵi (xi, τ) = f̂i
(̂
ξi (τ , xi)

)
, where f̂ (y|x) = f̂ (y, x)

μ̂(x)
, (18)

where f̂ (y, x) is an estimator of the joint density of y and x, and μ̂(x) is an estimator of
marginal density of x. We estimate the conditional quantile function ξ(τ |x) by inverting
an estimated conditional c.d.f. F̂(y|x) (Li and Racine 2007)

ξ̂ (τ |x) = Q̂y(τ |x) = inf{y : F̂(y|x) ≥ τ } = F̂−1(τ |x),

where F̂(y|x) is the estimated conditional c.d.f. F(y|x).
Note that for a one-dimensional random sample X1,X2, . . . ,Xn from the distribution

μ(x), a kernel density estimator for μ(x) is given by

μ̂(x) = 1
nh

n∑

i=1
K

(
x − Xi

h

)
, −∞ < x < ∞,

Fig. 8 a Log-log plot of Buffalo snowfall example. The dots are the data and the red solid line is the GPD
model. b Histogram of the Buffalo snowfall greater than a threshold of 5 cm from January 1994 to January
2015 with the GPD model
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Table 5 The goodness of fit tests for Buffalo snowfall example

K − S A − D C − v − M

Test statistic p-value Test statistic p-value Test statistic p-value

0.0390 0.6055 0.6631 0.5905 0.0645 0.7856

where h is the window width, and K(x) is the kernel function, which is a symmetric
probability density function with the conditions

∞∫

−∞
K(x)dx = 1,

∫
tK(t)dt = 0,

∫
t2K(t)dt = k2 �= 0.

The optimal window width can be found by

hopt = k2
{∫

K(t)2
}1/5 {∫

μ
′′
(x)2dx

}−1/5
n−1/5.

The d-dimensional multivariate kernel density estimator is defined by

μ̂(x) = 1
nhd

n∑

i=1
K

{
x − Xi

h

}
,

where h is the window width and the kernel function K(x) is a function, defined for d-
dimensional x, satisfying

∫

Rd
K(x)dx = 1. Fukunaga (1972) suggested

f̂ (x) = (det S)−1/2

nhd

n∑

i=1
k

{
(x − Xi)TS−1(x − Xi)

h2

}

,

where S is the sample covariance matrix of the data, K is the normal kernel and the
function k is given by

k(u) =
(

1
2π

)d/2
exp

(
−u
2

)
, k(xTx) = K(x) = (2π)−d/2 exp

(
1
2
xTx

)
.

An estimator for the optimal window width h will be given by

ĥopt = A(K)n−1/(d+4),

where A(K) = {4/(d + 2)}1/(d+4) is the constant for a multivariate normal kernel.

Fig. 9 For Buffalo snowfall data, a μLS− red solid; Quantile regression at τ = 0.95 in blue, τ = 0.97 in pink,
QR−solid, QW−dashed. b 3D plot with QR−red and QW−green at τ = 0.95
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Table 6 Buffalo daily snowfalls (cm) at high quantile using QR and QW

τ = 0.95 τ = 0.97

Temperature (◦C) QR QW QR QW

–15 24.72 41.57 37.38 44.38

–10 25.65 34.37 33.19 35.42

–5 26.00 28.74 30.98 30.15

0 25.76 24.69 30.73 28.58

5 24.93 22.21 32.47 30.70

10 23.52 21.30 36.17 36.52

5.1 Buffalo snowfall example

Now, recall the Buffalo snowfall example in Subsection 1.1. We use a polynomial mean
regression model (2)

E
(
y|x, x2) = β0 + β1x + β2x2,

where y is the daily snowfall (cm) and x is the maximum temperature (◦C). But the least
squares curve only estimates average daily snowfall for a given maximum temperature; it
cannot estimate extreme heavy snowfalls. The quantile regression method can estimate
high conditional quantile curves and will be shown this Section.
In order to fit the Buffalo snowfall data to the GPDmodel (4), the data was transformed

to y = x−μ
σ

, where μ = 5 cm, and then, we used the maximum likelihood estimates
(MLEs) of the parameters, σ̂MLE = 5.1552, γ̂MLE = 0.2636, for the 2-parameter GPD
model from the Buffalo snowfall data.

Fig. 10 Buffalo snowfall example: a Relative R(τ ). b Comparison of β̂1(τ ). c Comparison of β̂(τ ). QR−red
solid line, QW−green solid line
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Table 7 Relative R(τ ) values for the Buffalo snowfall example

τ = 0.95 τ = 0.96 τ = 0.97 τ = 0.98 τ = 0.99

Relative R(τ ) 0.1824 0.1851 0.1919 0.1673 0.0595

Furthermore, Fig. 8(a) and (b) shows the log-log plot and histogram of Buffalo snowfall
with GPD model with the MLEs of the parameters. It illustrates that most daily snowfalls
in Buffalo are between 0 and 10 centimeters and there are some occurrences of heavy
snowfall, such as 50-90 centimeters. The GPD curve follows the shape of the Buffalo
snowfall data very well.
Three goodness-of-fit tests are performed: the Kolmogorov-Smirnov test (K − S)

(Kolmogorov 1933), Anderson-Darling test (A−D) and Cramé r-von-Mises test (C− v−
M) (Anderson and Darling 1952) respectively.

H0 : F(y) = F∗(y), for all values of y;
H1 : F(y) �= F∗(y), for at least one value of y,

where F(y) is the true but unknown distribution function of the sample and F∗(y) is the
theoretical distribution function, GPD in (4).
In Table 5, the K − S, A−D and C − v−M tests show that the GPDmodel fits the data

with a probability of 60.55%, 59.05% and 78.56% respectively.
Instead of using model (2), we use the following quantile regression model:

Qy(τ |x) = β0(τ ) + β1x(τ ) + β2(τ )x2,

where we use the estimated weight ŵi(xi, τ) = f̂i(̂ξ (τ )) in (18). Figure 9 shows the scatter
plot of the daily snowfall with the fitted μLS, QR and QW curves at two high 0.95th and
0.97th quantiles. It is interesting to note that at the 0.95th and 0.97th quantiles, the QR
and QW curves appear to fit the data. Table 6 lists the estimated Buffalo snowfall quantile
values at a given maximum temperature for τ =0.95 and 0.97. Both Fig. 9 and Table 6
demonstrate that when quantiles are high, QW have heavier snowfall than QR.
Figure 10(a) and Table 7 show the values of the Relative R(τ ) in (9) for given τ =

0.95, . . . , 0.99. We note that R(τ ) > 0, which means that Vweighted(τ ) < Vregular(τ ), and
the QW is a better fit to the data than the QR. Figure 10(b), (c) and Table 8 show the val-
ues of β̂1(τ ) and β̂2(τ ). The values of β̂1(τ ) and β̂2(τ ) are consistent with Fig. 9(a), (b) and
Table 6.

Table 8 Coefficients of the QR ,QW and LS μLS regression for buffalo snowfall example

τ Weight β̂0(τ ) β̂1(τ ) β̂2(τ )

LS − 11.5280 –0.1777 0.0053

0.95 QR 25.7589 –10.1068 –0.0117

QW 24.6887 –0.6538 0.0315

0.96 QR 28.7869 0.1543 0.0610

QW 24.8614 –0.7200 0.0352

0.97 QR 30.7341 0.1488 0.0395

QW 28.5776 0.0551 0.0739

0.98 QR 35.5582 –0.2039 0.0223

QW 25.8718 –2.6593 0.3937

0.99 QR 57.8614 –2.6793 0.0330

QR 48.5464 0.5261 0.4768
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Fig. 11 a Log-log plot of CO2 emission example. The dots are the data and the red solid line is the GPD
model. b Histogram of CO2 emission per capita of 123 countries in 2010 (tonnes) greater than the threshold
of 1 tonne with GPD model in (4)

The proposed weighted quantile regression QW predicts that for moderate tempera-
tures, such as 5 ◦C to 10 ◦C, it is likely to have small snowfalls in Buffalo, and for every low
temperatures, such as −15 ◦C to 0 ◦C, it is more likely to have heavy snowfalls that may
cause damage. Predicting heavy snowfalls is related to cold weather forecasts. Quantile
regression is useful for predicting extreme heavy snowfalls.

5.2 CO2 emission example

In Subsection 1.2, there is a relationship between ln(GDP) x1 and ln(E.C.) x2 and CO2
emissions per capita y. The least squares estimate is:

μLS = −22.5009 + 2.0708x1 + 1.2998x2.

The quantile regression method can estimate high conditional quantile curves and will
be shown in detail in this Section.
Similar to the Buffalo snowfall example, we fit the GPD model in (4) with MLEs of

the parameters, σ̂MLE = 5.3011, γ̂MLE = 0.1234, to the CO2 emission data, which is
demonstrated in Fig. 11(a), (b) by the log-log plot and histogram. The GPD model fol-
lows the shape of the CO2 emission data very well. Table 9 shows the results of the three
goodness-of-fit tests.
We use the proposed weight ŵi(xi, τ) = f̂i(̂ξ (τ )) in (18) on the quantile regression

model:

Qy (τ |x1, x2) = β0(τ ) + β1(τ )x1 + β2(τ )x2.

Figure 12(a) shows the scatter plot of CO2 emission vs ln(GDP) when the country’s
E.C. is 2980.96 kilowatts with the fitted μLS, QR and QW curves at the 0.97th quantile.
Figure 12(b) shows the scatter plot of CO2 emission vs ln(E.C.) when the country’s GDP

Table 9 The goodness of fit tests for CO2 emission example

K − S A − D C − v − M

Test statistic p-value Test statistic p-value Test statistic p-value

0.0443 0.8397 0.3619 0.8855 0.0517 0.8662
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Fig. 12 a Quantile regression of the CO2 emission vs ln(GDP) when the country’s E.C. is 2980.96 kilowatts at
τ = 0.97. QR−solid blue, QW−dashed blue, μLS−red solid line. b Quantile regression of the CO2 emission vs
ln(E.C.) when the country’s GDP is $13,359.73 at τ = 0.97. QR−solid blue, QW−dashed blue, μLS−red solid line.
c 3D scatter plot with QR−red and QW−green for τ = 0.97

is $13,359.73 with the fitted μLS, QR and QW curves at the 0.97th quantile. Figure 12(c)
shows the 3D scatter plot with QR (red) and QW (green) of CO2 emission given the
ln(GDP) and ln(E.C.) at τ = 0.97. It is important to note that the μLS is the red solid line
and theQR andQW quantile regression lines appear to fit the data. In general, theQW line
produces a different estimated CO2 emissions than QR curve at high quantiles. Tables 10

Table 10 CO2 emission per capita high quantile given ln(GDP) estimators QR and QW at 2980.96
Kilowatts of electricity consumed per capita

τ = 0.97

ln of GDP per capita ($) QR QW

7.5 15.2181 13.0840

8 18.0437 15.6591

8.5 20.8693 18.2342

9 23.6950 20.9093

9.5 26.5206 23.3844

10 29.3462 25.9595

10.5 32.1718 28.5346

11 34.9975 31.1097

11.5 37.8231 33.5848

12 40.6487 36.2599
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Table 11 CO2 Emission per capita high quantile given ln(E.C.) estimators QR and QW at GDP per
capita of $13,359.73

ln of Electricity Consumption per capita (kilowatts) τ = 0.97

QR QW

0 6.9775 11.4376

2 11.8632 14.4243

4 16.7490 17.4110

6 21.6348 20.3977

8 26.5206 23.3844

10 31.4064 26.3711

12 36.2921 29.3578

and 11 provide details about countries’ CO2 emission at high quantile (τ = 0.97) when
the countries consume 2980.96 kilowatts of electricity and have a GDP of $13,359.73
respectively.
Figure 13(a) shows the Relative R(τ ), which is defined in (9) and Table 12 shows the

values for Relative R(τ ) for τ ≥ 0.95. All values of Relative R(τ ) are larger than 0, which
signifies that Vweighted(τ ) < Vregular(τ ) and as well, it suggests that the weighted quantile
regression model QW is a better fit to the CO2 emission data than the regular quantile
regressionmodelQR. Figure 13(b) and (c) shows the values of β̂1(τ ) and β̂2(τ ) for a given τ

Fig. 13 a Relative R(τ ). b Comparison of β̂1(τ ). c Comparison of β̂2(τ ). QR−red line, QW−green line for CO2

emission example
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Table 12 Relative R(τ ) values for CO2 emission example

τ = 0.95 τ = 0.96 τ = 0.97 τ = 0.98 τ = 0.99

Relative R(τ ) 0.24425 0.21478 0.16810 0.12459 0.06521

respectively, which is also shown in Table 13. The values of β̂1(τ ) and β̂2(τ ) are consistent
with Tables 10 and 11.
It can be concluded that countries with higher gross domestic product and higher

amounts of electricity produce higher CO2 emissions. Since CO2 is not destroyed over
time, it can remain in the atmosphere for thousands of years due to the very slow process
by which carbon is transferred to ocean sediments. As a result, countries should monitor
their CO2 emissions in order to prevent further damages to the environment. Coun-
tries can consider producing more energy from renewable sources, such as wind, solar,
hydro and geothermal heat and using fuels with lower carbon content to reduce carbon
emissions.

6 Conclusions
After the studies above, we can conclude:

1. Traditional mean regression are concerned with estimating the conditional mean by
using the L2-loss function. Quantile regression with a L1- loss function overcomes
the limitations of traditional mean regression. It gives estimates of τ th conditional
quantiles besides the measures of central tendency. Estimation of high conditional
quantiles is very useful for the analysis of extreme events.

2. The proposed weighted quantile regression method with the local conditional
density as the weight has good mathematical asymptotic properties.

3. The Monte Carlo computational simulation results show that the proposed weighted
quantile regression with the local conditional density as the weight is more efficient
relative to the classical quantile regression and some existing weighted quantile
regression estimators.

4. The proposed weighted quantile regression can be used to predict extreme values of
snowfall and CO2 emission real world examples. In the Buffalo snowfall example,
communities can use the information that quantile regression provides to prevent car
accidents on roads, overexertion, and collapsing of homes. In the CO2 emission

Table 13 Coefficients of the QR ,QW and LS μLS regression for CO2 emission example

τ Weight β̂0(τ ) β̂1(τ ) β̂2(τ )

LS − –22.5009 2.0708 1.2998

0.95 QR –41.6856 5.8924 0.5527

QW –29.9131 5.1521 –0.2094

0.96 QR –44.8147 5.4258 1.9505

QW –24.5504 4.4470 0.1609

0.97 QR –46.7095 5.6513 2.4429

QW –37.4893 5.1502 1.4934

0.98 QR –47.4004 5.7323 2.4739

QW –47.4004 5.7323 2.4739

0.99 QR –51.2657 6.1856 2.6475

QW –51.2657 6.1856 2.6475
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example, the countries’ increase in gross domestic product and electricity
consumption will likely cause an increase in the CO2 emissions. CO2 emission levels
should be monitored to reduce the amount of carbon dioxide in the atmosphere and
its long term effects.

5. It is difficult to estimate the proposed conditional density weight. The nonparametric
kernel density estimation method is successful in this paper. Further studies on
optimal weights are suggested.
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