Skip to main content

Table 1 Power comparisons for a one-sided rank test H 0 :F ( x ; θ o , σ o ) = G ( x ; θ a , σ a ) v.s. H a :Fk( x ; θ o , σ o ) = G ( x ; θ a , σ a )

From: Joint distribution of rank statistics considering the location and scale parameters and its power study

   m= 6 n= 10 m= 10 n= 10 m= 10 n= 20
 F Test β(F) β(F2) β(F3) β(F6) β(F) β(F2) β(F3) β(F6) β(F) β(F2) β(F3) β(F6)
U(0,1) R l .090 .411 .647 .900 .096 .496 .761 .967 .099 .591 .845 .984
  R s .080 .152 .193 .218 .076 .137 .149 .123 .100 .236 .370 .638
  R l &R s .100 .452 .699 .934 .100 .531 .799 .981 .100 .622 .878 .992
t(3) R l 0.090 .412 .639 .897 0.096 .493 .756 .965 0.099 .574 .841 .987
  R s 0.080 .150 .197 .217 0.076 .137 .152 .121 0.100 .234 .367 .634
  R l &R s 0.100 .453 .696 .932 0.100 .528 .798 .980 0.100 .606 .874 .993
E x p(1) R l 0.090 .411 .650 .899 0.096 .490 .764 .967 0.099 .579 .841 .987
  R s 0.080 .149 .195 .217 0.076 .140 .152 .122 0.100 .232 .376 .641
  R l &R s 0.100 .451 .702 .933 0.100 .525 .805 .982 0.100 .607 .875 .993
  1. Note: A sectorial critical region is chosen for a simultaneous testing.