Skip to main content

Table 1 Sub-models of TG-QHR distribution

From: The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications

Sr.No. θ λ α β γ Name of Distribution
1 θ λ α β γ Transmuted Geometric Quadratic Hazard Rate(TG-QHR)
2 1 λ α β γ Transmuted Quadratic Hazard Rate(T-QHR)
3 1 0 α β γ Quadratic Hazard Rate(QHR)
4 θ 0 α β γ Quadratic Hazard Rate- Geometric (QHR-G) [Okasha et al.; 2015]
5 θ λ 0 0 γ Transmuted Geometric Weibull(TG-W) (Nofal et al.; 2017)
6 θ λ 0 β 0 Transmuted Geometric Rayleigh(TG-R)
7 θ λ α 0 0 Transmuted Geometric Exponential (TG-E)
8 θ λ α β 0 Transmuted Geometric Linear failure rate (TG-LFR)
9 1 λ 0 0 γ Transmuted Weibull (T-W) [Khan et al.; 2017]
10 1 λ 0 β 0 Transmuted Rayleigh(T-R)[Merovci, F.; 2013]
11 1 λ α 0 0 Transmuted Exponential (T-E)
12 1 λ α β 0 Transmuted Linear failure rate (T-LFR)
13 θ 0 0 0 γ Weibull Geometric (W-G)[Barreto-Souza et al.; 2011]
14 θ 0 0 β 0 Rayleigh Geometric(R-G)
15 θ 0 α 0 0 Exponential Geometric(E-E)
16 θ 0 α β 0 Linear failure rate Geometric(LFR-G)
17 1 0 0 0 γ Weibull (Weibull; 1951)
18 1 0 0 β 0 Rayleigh
19 1 0 α 0 0 Exponential
20 1 0 α β 0 Linear failure rate(LFR)