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Abstract

In this paper, the Kumaraswamy-geometric distribution, which is a member of the
T -geometric family of discrete distributions is defined and studied. Some properties of
the distribution such as moments, probability generating function, hazard and quantile
functions are studied. The method of maximum likelihood estimation is proposed for
estimating the model parameters. Two real data sets are used to illustrate the
applications of the Kumaraswamy-geometric distribution.
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1 Introduction
Eugene et al. (2002) introduced the beta-generated family of univariate continuous dis-
tributions. Suppose X is a random variable with cumulative distribution function (CDF)
F(x), the CDF for the beta-generated family is obtained by applying the inverse probabil-
ity transformation to the beta density function. The CDF for the beta-generated family of
distributions is given by

G(x) = 1
B(α, β)

∫ F(x)

0
tα−1(1 − t)β−1 dt, 0 < α, β < ∞, (1)

where B(α, β) = �(α)�(β)/�(α + β). The corresponding probability density function
(PDF) is given by

g(x) = 1
B(α, β)

[F(x)]α−1 [1 − F(x)]β−1
[
d
dx

F(x)
]
. (2)

Eugene et al. (2002) used a normal random variable X to define and study the beta-
normal distribution. Following the paper by Eugene et al. (2002), many other authors
have defined and studied a number of the beta-generated distributions, using various
forms of known F(x). See for example, beta-Gumbel distribution by Nadarajah and Kotz
(2004), beta-Weibull distribution by Famoye et al. (2005), beta-exponential distribution
byNadarajah and Kotz (2006), beta-gamma distribution by Kong et al. (2007), beta-Pareto
distribution by Akinsete et al. (2008), beta-Laplace distribution by Cordeiro and Lemonte
(2011), beta-generalizedWeibull distribution by Singla et al. (2012), and beta-Cauchy dis-
tribution by Alshawarbeh et al. (2013), amongst others. After the paper by Jones (2009),
on the tractability properties of the Kumaraswamy’s distribution (Kumaraswamy 1980),
Cordeiro and de Castro (2011) replaced the classical beta generator distribution with
the Kumaraswamy’s distribution and introduced the Kumaraswamy generated family.
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Detailed statistical properties on some Kumaraswamy generated distributions include the
Kumaraswamy generalized gamma distribution by de Pascoa et al. (2011), Kumaraswamy
log-logistic distribution by de Santana et al. (2012) and Kumaraswamy Gumbel distri-
bution by Cordeiro et al. (2012). Alexander et al. (2012) replaced the beta generator
distribution with the generalized beta type I distribution. The authors referred to this
form as the generalized beta-generated distributions (GBGD) and the generator has three
shape parameters.
The above technique of generating distributions is possible, only when the generator

distributions are continuous and the random variable of the generator lies between 0 and
1. In a recent work by Alzaatreh et al. (2013b), the authors proposed a new method for
generating family of distributions, referred to by the authors as the T-X family, where
a continuous random variable T is the transformed, and any random variable X is the
transformer. See also Alzaatreh et al. (2012a, 2013a). These works opened a wide range
of techniques for generating distributions of random variables with supports on R. The
T-X family enables one to easily generate, not only the continuous distributions, but the
discrete distributions as well. As a result, Alzaatreh et al. (2012b) defined and studied the
T-geometric family, which are the discrete analogues of the distribution of the random
variable T .
Suppose F(x) denotes the CDF of any random variable X and r(t) denotes the PDF of a

continuous random variable T with support [ a, b]. Alzaatreh et al. (2013b) gave the CDF
of the T-X family of distributions as

G(x) =
∫ W (F(x))

a
r(t)dt = R{W (F(x))}, (3)

where R(t) is the CDF of the random variable T ,W (F(x)) ∈ [a, b] is a non-decreasing and
absolutely continuous function. Common support [a, b] are [0, 1], (0,∞), and (−∞,∞).
Alzaatreh et al. (2013b) studied in some details the case of a non-negative continuous
random variable T with support (0,∞). With this technique, it is much easier to generate
any discrete distribution. If X is a discrete random variable, the T-X family, is a family
of discrete distributions, transformed from the non-negative continuous random variable
T . The probability mass function (PMF) of the T-X family of discrete distributions may
now be written as

g(x) = G(x) − G(x − 1) = R{W (F(x))} − R{W (F(x − 1))}. (4)

The T-geometric family studied in Alzaatreh et al. (2012b) is a special case of (4) by
definingW (F(x)) = − ln(1− F(x)). The rest of the paper is outlined as follows: Section 2
defines the Kumaraswamy geometric distribution (KGD). In Section 3, we discuss some
properties of the distribution. In Section 4, the moments of KGD are provided, while
Section 5 contains the hazard function and the Shannon entropy. In Section 6, we dis-
cuss the maximum likelihood method for estimating the parameters of the distribution.
A simulation study is also discussed. Section 7 details the results of applications of the
distribution to two real data sets with comparison to other distributions, and Section 8
contains some concluding remarks.
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2 The Kumaraswamy-geometric distribution
Following the T-X generalization technique by Alzaatreh et al. (2013b), we allow the
transformed random variable T to have the Kumaraswamy’s distribution, the transformer
random variable X to have the geometric distribution, andW (F(x)) = F(x).
Kumaraswamy (1980) proposed and discussed a probability distribution for handling

double-bounded random processes with varied hydrological applications. Let T be a
random variable with the Kumaraswamy’s distribution. The PDF and CDF are defined,
respectively, as

r(t) = αβtα−1 (1 − tα
)β−1 , 0 < t < 1, and (5)

R(t) = 1 − (
1 − tα

)β , 0 < t < 1, (6)

where both α > 0 and β > 0 are the shape parameters. The beta and Kumaraswamy
distributions share similar properties. For example, the Kumaraswamy’s distribution, also
referred to as theminimax distribution, is unimodal, uniantimodal, increasing, decreasing
or constant depending on the values of its parameters. A more detailed description, back-
ground and genesis, and properties of Kumaraswamy’s distribution are outlined in Jones
(2009). The author highlighted several advantages of the Kumaraswamy’s distribution
over the beta distribution, namely; its simple normalizing constant, simple explicit for-
mulas for the distribution and quantile functions, and simple random variate generation
procedure.
The geometric distribution, also referred to as the Pascal distribution, is a special case

of the negative binomial distribution. It is thought of as the discrete analogue of the
continuous exponential distribution (Johnson et al. 2005). Many characterizations of the
geometric distribution are analogous to the characterization of the exponential distribu-
tion. The geometric distribution has been used extensively in the literature in modeling
the distribution of the lengths of waiting times. If X is a random variable having the
geometric distribution with parameter p, the PMF of X may be written as

P(X = x) = pqx, x = 0, 1, 2, . . . , p + q = 1, (7)

where p is the probability of success in a single Bernoulli trial. The CDF of the geometric
distribution is given by

P(X ≤ x) = 1 − qx+1, x = 0, 1, 2, . . . (8)

The Kumaraswamy-geometric distribution (KGD) is defined by using Equation (3) with
a = 0, where the random variable T has the Kumaraswamy’s distribution with the
CDF (6) and the random variable X has the geometric distributionwith the CDF (8). Since
the random variable T is defined on (0, 1), we use the function W (F(x)) = F(x) in (3) to
obtain the CDF of KGD as

G(x) =
∫ F(x)

0
r(t)dt = R(F(x)) = 1 −

[
1 − (

1 − qx+1)α]β , x = 0, 1, 2, . . . (9)

The corresponding PMF for the KGD now becomes

g(x) = [
1 − (

1 − qx
)α]β −

[
1 − (

1 − qx+1)α]β , x = 0, 1, 2, . . . , α > 0, β > 0, (10)
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by using Equation (4). Thus, a random variable X having the PMF expressed in
Equation (10) is said to follow the Kumaraswamy-geometric distribution with parame-
ters α, β and q, or simply X ∼ KGD(α, β , q). One can show that the PMF in Equation (10)
satisfies

∑∞
0 g(x) = 1 by telescopic cancellation.

It is interesting to note that the KGD can be generated from a different random vari-
able T and a different W (F(x)) function. Suppose a random variable Y follows the
Kumaraswamy’s distribution in (5), then its PDF is

f (y) = αβyα−1 (1 − yα
)β−1 , 0 < y < 1.

Suppose we define a new random variable as T = − ln(1 − Y ). By using the
transformation technique, the PDF of T is given by

f (t) = αβe−t (1 − e−t)α−1 [1 − (
1 − e−t)α]β−1 , t > 0. (11)

The corresponding CDF is given by

F(t) = 1 − [
1 − (

1 − e−t)α]β , t > 0. (12)

A random variable T with the CDF in (12) will be called the log-Kumaraswamy’s dis-
tribution (LKD). We are unable to find any reference to this distribution in the literature.
However, it is a special case of the log-exponentiated Kumaraswamy distribution stud-
ied by Lemonte et al. (2013). By using the LKD and the T-X distribution by Alzaatreh
et al. (2013b), we can define the log-Kumaraswamy-geometric distribution (LKGD) by
using Equation (3), where T follows the LKD, X follows the geometric distribution and
W (F(x)) = − ln(1− F(x)). By using 1− F(x) = qx+1 and − ln(1− F(x)) = − ln qx+1, the
probability mass function of LKGD can be obtained as

g(x)=G(x)−G(x−1)=R
[−ln qx+1]−R

[− ln qx
]=[1−(1 − qx

)α]β−
[
1 − (

1 − qx+1)α]β ,

(13)

which is the same as the KGD in (10) defined by using Kumaraswamy’s and geo-
metric distributions. The LKGD, and hence the KGD, is the discrete analogue of
log-Kumaraswamy’s distribution.

Special cases of KGD
The following are special cases of KGD:

(a) When α = β = 1, the KGD in (10) reduces to the geometric distribution in (7)
with parameter p.

(b) When α = 1, the KGD with parameters α, β and q reduces to the geometric
distribution with parameter p∗, where p∗ = 1 − qβ .

(c) When β = 1, the KGD reduces to the exponentiated-exponential-geometric
distribution (EEGD) discussed in Alzaatreh et al. (2012b).

It is easy to verify that limx→∞ G(x) = 1. The plots of the PMF of the KGD for various
values of α, β and q are given in Figure 1.

3 Some properties of Kumaraswamy-geometric distribution
Suppose X follows the KGD with CDF G(x) in (9). The quantile function X∗(= Q(U), 0 <

U < 1) of KGD is the inverse of the cumulative distribution. That is,

X∗ = Q(U) = (log q)−1 log
{
1 − [

1 − (1 − U)1/β
]1/α} , (14)
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Figure 1 Probability mass function for values of α,β and q.

where U has a uniform distribution with support on (0, 1). Equation (14) can be used to
simulate the Kumaraswamy-geometric random variable. First, simulate a random vari-
able U and compute the value of X∗ in (14), which is not necessarily an integer. The
Kumaraswamy-geometric random variate X is the largest integer ≤ X∗, which can be
denoted by [X∗].

Transformation: The relationship between the KGD and the Kumaraswamy’s, exponen-
tial, exponentiated-exponential, Pareto, Weibull, Rayleigh, and the logistic distributions
are given in the following lemma.

Lemma 1. Suppose [v] denotes the largest integer less than or equal to the quantity v.

(a) If Y has Kumaraswamy’s distribution with parameters α and β , then the
distribution of X =

[
logq(1 − Y )

]
is KGD.

(b) If Y is standard exponential, then X =
[
logq

{
1 − (

1 − e−Y/β
)1/α}] has KGD.

(c) If Y follows an exponentiated-exponential distribution with scale parameter λ and
index parameter c, then X =

[
logq

{
1 − [

1 − (1 − e−λY )c/β
]1/α}] has KGD.
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(d) If the random variable Y has a Pareto distribution with parameters θ , k and CDF

F(y) = 1 −
(

θ
θ+y

)k
, then X =

[
logq

{
1 −

(
1 −

(
θ

θ+Y

)k/β)1/α
}]

has KGD.

(e) If the random variable Y has a Weibull distribution with F(y) = 1 − exp{−(y/γ )c}
as CDF, then X =

[
logq

{
1 − (1 − exp[−(Y/γ )c/β])1/α

}]
has KGD.

(f) If the random variable Y has a Rayleigh distribution with F(y) = 1 − exp
[−y2
2b2

]
as

CDF, then X =
[
logq

{
1 −

(
1 − exp

[ −Y 2

2b2β

])1/α}]
has KGD.

(g) If Y is a logistic random variable with F(y) = [
1 + exp ({−(y − a)/b})]−1 as CDF,

then X =
[
logq

{
1 −

(
1 − [

1 + exp{−(Y − a)/b}]−1/β
)1/α}]

has KGD.

Proof. By using the transformation technique, it is easy to show that the random variable
X has KGD as given in (10). We will show the result for part (a). Let R be the CDF of the
Kumaraswamy’s distribution.

P(X = x) = P
([

logq(1 − Y )
]

= x
)

= P
(
x ≤ logq(1 − Y ) < x + 1

)
= P

(
1 − qx ≤ Y < 1 − qx+1) = R

(
1 − qx+1)− R

(
1 − qx

)
= {

1 − (1 − qx)α
}β −

{
1 −(1 − qx+1)α}β

,

which is the PMF of the KGD in (10).

In general, if we have a continuous random variable Y and its CDF is F(y), then X =[
logq

{
1 − (

1 − F1/β(Y )
)1/α}] has KGD.

Limiting behavior: As x → ∞, limx→∞ g(x) = 0. Also, as x → 0, limx→0 g(x) = 1−[1−
(1 − q)α]β . This limit becomes 0 if q → 1 and/or α → ∞. Thus, the distribution starts
with probability zero or a constant probability as evident from Figure 1.

Mode of the KGD: Since the KGD is also LKGD, a T-geometric distribution, we use
Lemma 2 in Alzaatreh et al. (2012b), which states that a T-geometric distribution has a
reversed J-shape if the distribution of the random variable T has a reversed J-shape. We
only need to showwhen the distribution of log-Kumaraswamy distribution has a reversed
J-shape.
On taking the first derivative of (11) with respect to t, we obtain

f ′(t) = [
αe−t − 1 +(1 − e−t)α − αβe−t(1 − e−t)α]V (t) = Q(t)V (t), (15)

where V (t) = αβe−t(1 − e−t)α−2[1 −(1 − e−t)α]β−2 is positive. For β ≥ 1 and α ≤ 1,
it is straight forward to show that Q(t) ≤ 0. For β < 1 and α ≤ 1, the function Q(t) is
an increasing function of t. It is not difficult to show that limt→0 Q(t) = α − 1 ≤ 0 and
limt→∞ Q(t) = 0. Thus, for α ≤ 1 and any value of β and q, Q(t) ≤ 0 and so the PDF of
the log-Kumaraswamy distribution is monotonically decreasing or has a reversed J-shape.
Hence, the KGD has a reversed J-shape and a unique mode at x = 0 when α ≤ 1.
When α > 1, it is not easy to show that the KGD is unimodal. However, through numer-

ical analysis of the behavior of the PMF, and its plots in Figure 1 for various values of β

and q, we observe, that for values of α > 1, the KGD is concave down or has a reversed
J-shape with a unique mode.
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4 Moments
Using Equation (10), the rth raw moment is given by

E
(
Xr) = μ′

r =
∞∑
x=1

xr
{
1 − (

1 − qx
)α}β −

∞∑
x=1

xr
{
1 − (

1 − qx+1)α}β

=
∞∑
x=1

xr
⎡
⎣( ∞∑

i=1
(−1)i−1

(
α

i

)
qxi
)β

−
( ∞∑

i=1
(−1)i−1

(
α

i

)
q(x+1)i

)β
⎤
⎦ .

The two inner summations terminate at α, if α is a positive integer. When β = 1 in the
above, we have,

μ′
r =

∞∑
x=1

xr
α∑
i=1

(−1)i−1
(

α

i

)
qxi(1 − qi), for α ∈ Z+.

In particular, let r = 1 and α = 1, the expression for the first moment, or the mean of
the KGD may be written as,

E(X) = μ′
1 = q(1 − q)

∞∑
x=1

xqx−1 = q
p
,

which is the mean of the geometric distribution, a special case of KGD.
We discuss in what follows, an alternative approach of expressing the PMF of the KGD

in Equation (10).

g(x) = {
1 − (

1 − qx
)α}β −

{
1 − (

1 − qx+1)α}β

=
∞∑
i=0

(−1)i
(

β

i

)(
1 − qx

)αi − ∞∑
i=0

(−1)i
(

β

i

) (
1 − qx+1)αi

=
∞∑
i=0

(−1)i
(

β

i

) ∞∑
j=0

(−1)j
(

αi
j

)
qxj −

∞∑
i=0

(−1)i
(

β

i

) ∞∑
j=0

(−1) j
(

αi
j

)
q(x+1)j

=
∞∑
i=1

∞∑
j=1

(−1)i+j
(

β

i

)(
αi
j

)
(1 − q j)qxj. (16)

Using Equation (16), it is now easy to write the expressions for the moment, moment
generating function, and probability generating function for the KGD respectively as
follows:

μ′
r =

∞∑
x=0

∞∑
i=1

∞∑
j=1

(−1)i+j
(

β

i

)(
αi
j

)(
1 − q j) xr (q j)x ; ∣∣q j∣∣ < 1, (17)

M(t) =
∞∑
x=0

∞∑
i=1

∞∑
j=1

(−1)i+j
(

β

i

)(
αi
j

)(
1 − q j) (etq j)x ; ∣∣etq j∣∣ < 1, (18)

ϕ(t) =
∞∑
x=0

∞∑
i=1

∞∑
j=1

(−1)i+j
(

β

i

)(
αi
j

) (
1 − q j) (tq j)x ; ∣∣tq j∣∣ < 1. (19)

Equation (17) is equivalent to the series
∑∞

x=0 xrg(x), where g(x) is given by (10).
Observe that the series is absolutely convergent by using the ratio test and hence the
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series in (17) is absolutely convergent. Thus, interchanging the order of summation has
no effect. Using Equation (17), the rth moment may be written as

E(Xr) = μ′
r =

∞∑
x=0

∞∑
i=1

∞∑
j=1

(−1)i+j
(

β

i

)(
αi
j

)(
1 − q j) (q j)x xr

=
∞∑
i=1

∞∑
j=1

(−1)i+j
(

β

i

)(
αi
j

)(
1 − q j) ∞∑

x=1

(
q j)x xr

=
∞∑
i=1

∞∑
j=1

(−1)i+j β
(i)

i!
(αi)(j)

j!
(
1 − q j) L−r

(
q j) ,

where β(i) = β(β − 1)(β − 2) · · · (β − i + 1), and similarly for (αi)(j) . Also,

L−r(u) =
∞∑
k=1

uk

k−r , u = q j,

is the polylogarithm function, (http://mathworld.wolfram.com/Polylogarithm.html).
Expressions for the first few moments are thus:

μ′
1 =

∞∑
i=1

∞∑
j=1

(−1)i+j β
(i)

i!
(αi)(j)

j!
q j

1 − q j , (20)

μ′
2 =

∞∑
i=1

∞∑
j=1

(−1)i+j β
(i)

i!
(αi)(j)

j!
q j (1 + q j)(
1 − q j

)2 , (21)

μ′
3 =

∞∑
i=1

∞∑
j=1

(−1)i+j β
(i)

i!
(αi)(j)

j!
q j (1 + 4q j + q2j

)
(1 − q j)3

, (22)

μ′
4 =

∞∑
i=1

∞∑
j=1

(−1)i+j β
(i)

i!
(αi)(j)

j!
q j (1 + q j) (1 + 10q j + q2j

)
(
1 − q j)4 . (23)

The expression for the variance may be written as

σ 2 =
∞∑
i=1

∞∑
j=1

(−1)i+j β
(i)

i!
(αi)(j)

j!
q j (1 + q j)(
1 − q j

)2 −
⎛
⎝ ∞∑

i=1

∞∑
j=1

(−1)i+j β
(i)

i!
(αi)(j)

j!
q j

1 − q j

⎞
⎠

2

.

Expressions for the skewness and kurtosis for the KGD may be obtained by combining
appropriate expressions in Equations (20), (21), (22), and (23). In the particular case for
which α = 1 = β , the expressions for the central moments of the geometric distribution
are as follows:

μ1 = μ′
1 = q

p
, μ2 = σ 2 = q

p2
, μ3 = q(1 + q)

p3
, μ4 = q

(
p2 + 9q

)
p4

.

The results for this special case may be found in standard textbooks on probability. See
for example, Zwillinger and Kokoska (2000).
Both the moment generating function (M(t)) and the probability generating function

(ϕ(t)) can be simplified further. In the case of ϕ(t), we have

ϕ(t) =
∞∑
i=1

∞∑
j=1

(−1)i+j
(

β

i

)(
αi
j

) (
1 − q j) ∞∑

x=0

(
q j)x tx, |tq j| < 1 ∀ j.

(http://mathworld.wolfram.com/Polylogarithm.html)
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After further simplification, the above reduces to,

ϕ(t) =
∞∑
i=1

∞∑
j=1

(−1)i+j
(

β

i

)(
αi
j

)
(1 − q j)

(1 − tq j)
.

By letting

A(α, β|i, j) =
∞∑
i=1

∞∑
j=1

(−1)i+j
(

β

i

)(
αi
j

)
,

the first two factorial moments may be expressed as

ϕ′(t = 1) = μ[1] = E(X) = A(α, β|i, j) q j

1 − q j

ϕ′′(t = 1) = μ[2] = E(X(X − 1)) = A(α, β|i, j) 2q2j

(1 − q j)2
.

In general,

ϕ(m)(t) = A(α, β|i, j)m! (1 − q j)qmj

(1 − tq j)m+1 ,

which reduces to the result in Alzaatreh et al. (2012b) when β = 1.
Through numerical computation, we obtain themode, themean, the standard deviation

(SD), the skewness and the kurtosis of the KGD. The values of α and β for the numeri-
cal computation are from 0.2 to 10 at an increment of 0.1, while the values of q are from
0.2 to 0.9 at an increment of 0.1. For brevity, we report the mode, the mean and the stan-
dard deviation in Table 1 and the skewness and kurtosis in Table 2 for some values of
q, β and α. From the numerical computation, the mean, mode and standard deviation
are increasing functions of q. From Table 1, the mean, mode and standard deviation are
decreasing functions of β but increasing functions of α. For α ≤ 1, the skewness and kur-
tosis are decreasing functions of q but increasing functions of β . For α > 1, the skewness
and kurtosis first decrease and then increase as both q and β increase. The skewness and
kurtosis are decreasing functions of α. Some of these observations can be seen in Table 2
while others are from the numerical computation. Instead of Tables 1 and 2, contour plots
may be used to present the results in the tables. However, it becomes difficult to see the
patterns described above.

5 Hazard rate and Shannon entropy
The hazard rate function is defined as

h(x) = g(x)
1 − G(x)

,

where G(x) = ∑x
y=0 g(y). For the KGD, we have, after substituting expressions for the

PMF and CDF (Equations (10) and (9)),

h(x) =
(

1 − (1 − qx)α

1 −(1 − qx+1
)α
)β

− 1. (24)

The asymptotic behaviors of the hazard function are such that,

lim
x→0

h(x) = (1 − pα)−β − 1 = L1,

and in particular, limx→0 h(x;α = 1 = β) = p/q = 1/E(X). Also, limx→∞ h(x) = q−β −
1 = L2, after using the L’Hôspital’s rule. This result generalizes the limiting behavior of
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Table 1 Mode, mean and standard deviation (SD) of KGD for some values of α, β and q

q = 0.4 q = 0.6 q = 0.8

α β Mode Mean SD Mode Mean SD Mode Mean SD

0.4 0.4 0 1.60 2.48 0 3.16 4.51 0 7.74 10.40

0.6 0 0.83 1.52 0 1.72 2.81 0 4.39 6.54

0.8 0 0.48 1.04 0 1.06 1.96 0 2.82 4.60

1.5 0 0.10 0.39 0 0.29 0.79 0 0.92 1.96

2.0 0 0.04 0.22 0 0.13 0.49 0 0.49 1.26

4.0 0 0.001 0.04 0 0.01 0.11 0 0.07 0.35

0.6 0.4 0 1.87 2.59 0 3.67 4.69 0 8.97 10.80

0.6 0 1.04 1.65 0 2.14 3.02 0 5.43 6.99

0.8 0 0.64 1.17 0 1.41 2.18 0 3.71 5.08

1.5 0 0.18 0.51 0 0.48 1.00 0 1.48 2.42

2.0 0 0.08 0.32 0 0.26 0.67 0 0.91 1.67

4.0 0 0.005 0.07 0 0.04 0.20 0 0.21 0.62

0.8 0.4 0 2.08 2.66 0 4.08 4.81 0 9.93 11.04

0.6 0 1.21 1.74 0 2.49 3.16 0 6.27 7.27

0.8 0 0.79 1.27 0 1.71 2.33 0 4.47 5.38

1.5 0 0.26 0.60 0 0.68 1.16 0 2.01 2.74

2.0 0 0.13 0.40 0 0.41 0.82 0 1.35 1.99

4.0 0 0.01 0.12 0 0.08 0.31 0 0.43 0.87

1.5 0.4 1 2.61 2.79 1 5.06 5.00 3 12.22 11.44

0.6 0 1.68 1.89 1 3.39 3.39 2 8.38 7.76

0.8 0 1.21 1.44 1 2.54 2.59 2 6.43 5.92

1.5 0 0.54 0.81 0 1.31 1.47 1 3.61 3.35

2.0 0 0.35 0.62 0 0.95 1.14 1 2.77 2.61

4.0 0 0.08 0.29 0 0.38 0.63 0 1.42 1.46

2.0 0.4 1 2.87 2.83 2 5.55 5.06 4 13.35 11.57

0.6 1 1.93 1.94 1 3.85 3.47 4 9.45 7.92

0.8 1 1.44 1.50 1 2.97 2.68 3 7.45 6.10

1.5 0 0.73 0.89 1 1.69 1.58 2 4.51 3.57

2.0 0 0.51 0.71 1 1.30 1.26 2 3.61 2.83

4.0 0 0.18 0.40 0 0.65 0.77 1 2.11 1.69

4.0 0.4 2 3.56 2.89 3 6.79 5.16 8 16.19 11.79

0.6 1 2.59 2.02 3 5.05 3.59 7 12.21 8.19

0.8 1 2.09 1.59 2 4.14 2.81 6 10.13 6.41

1.5 1 1.32 1.01 2 2.77 1.74 5 7.00 3.94

2.0 1 1.08 0.84 2 2.34 1.43 4 5.99 3.23

4.0 1 0.64 0.61 1 1.57 0.96 3 4.24 2.10

6.0 0.4 2 3.99 2.90 4 7.55 5.19 10 17.92 11.87

0.6 2 3.01 2.04 4 5.79 3.63 9 13.90 8.29

0.8 2 2.50 1.61 3 4.87 2.86 8 11.80 6.53

1.5 1 1.72 1.03 3 3.47 1.80 7 8.59 4.08

2.0 1 1.46 0.87 2 3.02 1.50 6 7.55 3.38

4.0 1 1.02 0.62 2 2.21 1.02 5 5.71 2.27

the hazard rate function for the EEGD discussed in Alzaatreh et al. (2012b). Observe that
L1 > L2 when α < 1. For α < 1, we check the behavior of h(x). The function h(x)
is monotonically decreasing when α < 1 if h(x) ≥ h(x + 1) for all x. When α = 1,
observe that h(x) is a constant. For values of α < 1, we numerically evaluate d(x) =
h(x) − h(x + 1) for α and q from 0.1 to 0.9 at an increment of 0.1. All the values are
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Table 2 Skewness and kurtosis of KGD for some values of α, β and q

q = 0.4 q = 0.6 q = 0.8

α β Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

0.4 0.4 2.4529 8.4883 2.3789 8.0612 2.3360 7.8215

0.6 2.8022 10.920 2.6534 9.9332 2.5656 9.3787

0.8 3.1918 14.035 2.9430 12.172 2.7954 11.133

1.5 4.9662 32.736 4.0792 23.245 3.5894 18.553

2.0 6.8722 60.013 5.0708 35.519 4.1724 25.214

4.0 30.524 990.63 12.671 196.82 7.1320 72.567

0.6 0.4 2.2480 7.2663 2.1956 7.0004 2.1684 6.8666

0.6 2.4465 8.4649 2.3387 7.8659 2.2823 7.5649

0.8 2.6694 9.9363 2.4883 8.8459 2.3932 8.3020

1.5 3.6723 17.839 3.0582 13.119 2.7529 10.999

2.0 4.6998 27.856 3.5337 17.209 2.9979 13.043

4.0 14.964 238.38 6.6621 54.450 4.0916 23.691

0.8 0.4 2.1208 6.5743 2.0847 6.4108 2.0685 6.3383

0.6 2.2269 7.1361 2.1498 6.7675 2.1151 6.6063

0.8 2.3522 7.8283 2.2198 7.1642 2.1603 6.8772

1.5 2.9553 11.535 2.5010 8.8497 2.3055 7.8006

2.0 3.5861 16.072 2.7466 10.413 2.4048 8.4499

4.0 9.2202 90.141 4.3332 22.881 2.8543 11.487

1.5 0.4 1.9024 5.5182 1.9015 5.5273 1.9038 5.5384

0.6 1.8485 5.2051 1.8400 5.2063 1.8433 5.2269

0.8 1.8105 4.9322 1.7862 4.9087 1.7894 4.9374

1.5 1.8191 4.4671 1.6645 4.1552 1.6529 4.1894

2.0 1.9494 4.6197 1.6281 3.8307 1.5890 3.8375

4.0 3.3608 11.0492 1.7629 3.5961 1.4574 3.0767

2.0 0.4 1.8322 5.2176 1.8440 5.2733 1.8503 5.2983

0.6 1.7260 4.6855 1.7442 4.7835 1.7563 4.8321

0.8 1.6352 4.2020 1.6551 4.3386 1.6733 4.4121

1.5 1.4620 3.0364 1.4309 3.2239 1.4664 3.3814

2.0 1.4564 2.6068 1.3301 2.7152 1.3700 2.9254

4.0 2.0958 3.6392 1.1838 1.6496 1.1546 1.9922

4.0 0.4 1.7344 4.8228 1.7559 4.9001 1.7627 4.9251

0.6 1.5605 4.0589 1.6019 4.1951 1.6151 4.2403

0.8 1.4043 3.3984 1.4675 3.5897 1.4874 3.6530

1.5 1.0049 1.9031 1.1406 2.2381 1.1833 2.3432

2.0 0.8155 1.2870 0.9925 1.7112 1.0500 1.8310

4.0 0.4669 −0.1633 0.6666 0.8077 0.7728 0.9349

6.0 0.4 1.7069 4.7081 1.7246 4.7731 1.7310 4.7964

0.6 1.5197 3.8941 1.5522 4.0017 1.5641 4.0428

0.8 1.3558 3.2107 1.4034 3.3521 1.4207 3.4078

1.5 0.9572 1.7788 1.0513 1.9565 1.0843 2.0406

2.0 0.7743 1.2870 0.8984 1.4383 0.9394 1.5299

4.0 0.3102 0.6548 0.5863 0.5921 0.6444 0.6837

positive, which indicates that the function h(x) is monotonically decreasing. Similarly,
we analytically evaluate d(x) for small values of α > 1 and the difference d(x) is always
negative. Numerically, we use the values of q from 0.1 to 0.9 at an increment of 0.1 with
values of α from 1.5 to 10.0 at an increment of 0.5. All the d(x) values are negative which
indicates that the function h(x) is monotonically increasing. Thus, we have a decreasing
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hazard rate when α < 1 and an increasing hazard rate when α > 1. For α = 1, L1 =
L2 and we have a constant hazard rate. The graphs of the hazard rate function defined
in Equation (24) are shown in Figure 2 for various values of the parameters. We see in
Figure 2 that the hazard rate decreases for values of α < 1 and increases for α > 1.
The entropy of a random variable is a measure of variation of uncertainty. For a discrete

random variable X with probability mass function g(x), the Shannon entropy is defined
as,

S(x) = −
∑
x

g(x) log2 g(x) ≥ 0. (25)

In probabilistic context, S(x) is a measure of the information carried by g(x),
with higher entropy corresponding to less information. Substituting Equation (10) in
Equation (25), we have

S(x) = −
∑
x

{
[1 − (1 − qx)α]β −

[
1 −(1 − qx+1)α]β}

× log2

{
[1 − (1 − qx)α]β −

[
1 −(1 − qx+1)α]β} .

Suppose we write the PMF as

[1 − (1 − qx)α]β
⎧⎨
⎩1 −

(
1 −(1 − qx+1)α
1 − (1 − qx)α

)β
⎫⎬
⎭ .
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Figure 2 Hazard functions for values of α,β and q.
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Let α = 1 for simplicity. We may now write the entropy as

S(x) = −
∞∑
x=0

(
1 − qβ

)
qxβ log2

{(
1 − qβ

)
qxβ
}
. (26)

After some algebra, Equation (26) becomes,

S(x) = − (1 − qβ
)
log2

(
1 − qβ

)− qβ log2 qβ

1 − qβ
> 0. (27)

On setting β = 1 in Equation (27), we have, for the geometric distribution,

S(x) = − q
1 − q

log2 q − log2(1 − q) = −(1 − p) log2(1 − p) − p log2 p
p

.

Note that when β = 1, p = q = 1/2, S(x) = 2. It is not difficult to show that S(x) is an
increasing function of q for any given β . This is consistent with the pattern of the standard
deviation. We also note that limβ→∞ S(x) = 0, with the proviso that 0 log 0 = 0. This
indicates that smaller values of β increase the uncertainty in the distribution, while higher
values of β increase the amount of information measured in terms of the probability.
Actually, a zero entropy indicates that all information needed is measured solely in terms
of the probability. In a way, the KGD has smaller entropy (more probabilistic information)
than the geometric distribution for values of β > 1.

6 Maximum likelihood estimation
We discuss the maximum likelihood estimation of the parameters of the KGD in
subsection 6.1. Subsection 6.2 contains the results of a simulation that is conducted to
evaluate the performance of the maximum likelihood estimation method.

6.1 Estimation

Let a random sample of size n be taken from KGD, with observed frequencies nx, x =
0, 1, 2, . . . , k, where

∑k
x=0 nx = n. From Equation (10), the likelihood function for a

random sample of size nmay be expressed as

L(x|α, β , q) =
k∏

x=0

{[
1 − (

1 − qx
)α]β −

[
1 − (

1 − qx+1)α]β}nx . (28)

The log-likelihood function is

l(α, β , q) = ln L(x|α, β , q) = n0 ln
{
1 − [

1 − (1 − q)α
]β}

+
k∑

x=1
nx ln

{[
1 − (

1 − qx
)α]β −

[
1 − (

1 − qx+1)α]β} . (29)
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Differentiating the log-likelihood function with respect to the parameters, we obtain

∂l(α, β , q)
∂α

= n0β(1 − q)α
[
1 − (1 − q)α

]β−1 ln(1 − q)

1 − [
1 − (1 − q)α

]β
+

k∑
x=1

nx [Ax + Bx]{
1 − (1 − qx)α

}β − {
1 −(1 − qx+1

)α}β , (30)

∂l(α, β , q)
∂β

= −n0
[
1 − (1 − q)α

]β ln
[
1 − (1 − q)α

]
1 − [

1 − (1 − q)α
]β

+
k∑

x=1

nx [Cx − Dx]{
1 − (1 − qx)α

}β − {
1 −(1 − qx+1

)α}β , (31)

∂l(α, β , q)
∂q

= −n0αβ
[
1 − (1 − q)α

]β−1
(1 − q)α−1

1−[1 − (1 − q)α]β

+
k∑

x=1

nx [Ex − Fx]{
1 − (1 − qx)α

}β − {
1 −(1 − qx+1

)α}β , (32)

where,

Ax = −β
[
1 − (

1 − qx
)α]β−1 (1 − qx

)α ln (1 − qx
)
,

Bx = β
[
1 − (

1 − qx+1)α]β−1 (
1 − qx+1)α ln

(
1 − qx+1) ,

Cx = [
1 − (

1 − qx
)α]β ln

[
1 − (

1 − qx
)α] ,

Dx =
[
1 − (

1 − qx+1)α]β ln
[
1 − (

1 − qx+1)α] ,
Ex = αβxqx−1 [1 − (

1 − qx
)α]β−1 (1 − qx

)α−1 ,

Fx = αβ (x + 1) qx
[
1 − (

1 − qx+1)α]β−1 (
1 − qx+1)α−1 .

Setting the non-linear Equations (30), (31) and (32) to zero and solving them iteratively,
we get the estimates θ̂ = (α̂, β̂, q̂)T for the parameter vector θ = (α, β , q)T . The initial
values of parameters α and β can be set to 1 and that of parameter q can be set to 0.5.
For interval estimation and hypothesis tests on the parameters, we require the infor-

mation matrix I(θ), with elements −∂2l/(∂i∂ j) = −lij, where, i, j ∈ {α, β , q}. Under
conditions that are fulfilled for parameters in the interior of the parameter space but
not on the boundary, the asymptotic distribution of

√
n(θ̂ − θ) is N3(0, I−1(θ)). The

asymptotic multivariate normal distribution N3(0, I−1(θ̂ )) of θ̂ can be used to construct
approximate confidence intervals for the parameters. For example, the 100(1 − ξ)%
asymptotic confidence interval for the ith parameter θi is given by

(
θ̂i − zξ/2

√Ii,i, θ̂i + zξ/2
√Ii,i

)
,

where Ii,i is the ith diagonal element of I−1(θ) for i = 1, 2, 3, and zξ/2 is the upper ξ/2
point of standard normal distribution. See for example, Mahmoudi (2011).
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The information matrix I(θ) is of the form,

I(α, β , q) =
⎛
⎜⎝ lαα lαβ lαq
lβα lββ lβq
lqα lqβ lqq

⎞
⎟⎠ .

The expressions for the elements lij are given in the Appendix.

6.2 Simulation

A simulation study is conducted to evaluate the performance of the maximum likelihood
estimation method. Equation (14) is used to generate a random sample from the KGD
with parameters α, β and q. The different sample sizes considered in the simulation are
n = 250, 500 and 750. The parameter combinations for the simulation study are shown in
Table 3. The combinations were chosen to reflect the following cases of the distribution:
under-dispersion (α = 6, β = 4, q = 0.8), over-dispersion (all other cases), monoton-
ically decreasing (α = 1.6, β = 2.0, q = 0.6), and unimodal with mode greater than 0
(all other cases). For each parameter combination and each sample size, the simulation
process is repeated 100 times. The average bias (actual − estimate) and standard devi-
ation of the parameter estimates are reported in Table 3. The biases are relatively small
when compared to the standard deviations. In most cases, as the sample size increases,
the standard deviations of the estimators decrease.

7 Applications of KGD
We apply the KGD to two data sets. The first data set is the observed frequencies of the
distribution of purchases of a brand X breakfast cereals purchased by consumers over
a period of time (Consul 1989). The other data set is the number of absences among
shift-workers in a steel industry (Gupta and Ong 2004). Comparisons are made with the
generalized negative binomial distribution (GNBD) defined by Jain and Consul (1971) and

Table 3 Bias and standard deviation formaximum likelihood estimates

Actual values Bias with standard deviation in parentheses

n α β q α̂ β̂ q̂ Mode

250 1.6 2.0 0.6 −0.1295(0.2099) 0.1128(0.4697) 0.0409(0.0733) 0

4.0 2.0 0.4 −0.3136(0.7844) 0.1047(0.4617) 0.0237(0.0698) 1

4.0 2.0 0.6 −0.1977(0.5714) 0.1021(0.4571) 0.0198(0.0571) 2

4.0 2.0 0.8 −0.2467(0.5521) 0.0852(0.4020) 0.0126(0.0293) 4

6.0 4.0 0.8 −0.3931(0.8570) 0.2084(0.9507) 0.0121(0.0278) 5

500 1.6 2.0 0.6 −0.0437(0.1436) 0.0121(0.4496) 0.0153(0.0665) 0

4.0 2.0 0.4 −0.3142(0.5876) 0.1383(0.4421) 0.0290(0.0639) 1

4.0 2.0 0.6 −0.2015(0.4728) 0.0808(0.4504) 0.0194(0.0527) 2

4.0 2.0 0.8 −0.2747(0.4630) 0.1526(0.3781) 0.0157(0.0278) 4

6.0 4.0 0.8 −0.3283(0.7771) 0.2187(0.9375) 0.0116(0.0267) 5

750 1.6 2.0 0.6 −0.0533(0.1305) 0.1184(0.4250) 0.0278(0.0669) 0

4.0 2.0 0.4 −0.3181(0.5939) 0.1707(0.4195) 0.0328(0.0622) 1

4.0 2.0 0.6 −0.1787(0.4775) 0.0562(0.4469) 0.0159(0.0522) 2

4.0 2.0 0.8 −0.1717(0.4739) 0.0813(0.4117) 0.0101(0.0299) 4

6.0 4.0 0.8 −0.2472(0.5940) 0.1947(0.8090) 0.0087(0.0227) 5
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the exponentiated-exponential geometric distribution (EEGD) defined by Alzaatreh et al.
(2012b).

7.1 Purchases by consumers

Consul (1989), p. 128 stated that, “The number of units of different commodities pur-
chased by consumers over a period of time”, appears to follow the generalized Poisson
distribution (GPD). In support of this assertion, the author analyzed some relevant data
sets and observed that theGPDmodel provided adequate fits. One of the data sets consid-
ered by Consul (1989) consists of observed frequencies of the distribution of purchases of
a brand X breakfast cereals. The original data in Table 4 was taken from Chatfield (1975).
The data contains the frequency of consumers who bought r units of brand X over

a number of weeks. The data is fitted to the KGD, EEGD, and the GNBD. We are not
sure how the frequencies for the (10-11), (12-15) and (16-35) were handled in previous
applications of the data set. In our analysis, the probabilities for the classes (10-11) and
(12-15) were obtained by adding the corresponding individual probabilities in each class.
When finding the maximum likelihood estimates, the probability for the last class was
obtained by subtracting the sum of all previous probabilities from 1. The results in Table 4
show that all the three distributions provide adequate fit to the data. Since the parameter
β in KGD is not significantly different from 1, it may be more appropriate to apply the
two-parameter EEGD to fit the data. Also, the likelihood ratio test to compare the EEGD
with the KGD is not significant at 5% level.

Table 4 The number of units r purchased by observed number (fr) of consumers

Expected

r-value Observed EEGD GNBD KGD

0 299 300.11 298.98 299.33

1 69 63.10 68.03 65.59

2 37 41.13 41.12 42.02

3 34 30.68 29.89 30.92

4 23 24.36 23.51 24.28

5 20 20.06 19.32 19.81

6 12 16.92 16.32 16.58

7 18 14.52 14.04 14.14

8 14 12.61 12.25 12.21

9 9 11.06 10.80 10.67

10-11 17 18.47 18.16 17.72

12-15 27 26.69 26.63 25.50

16-35 63 62.29 62.95 63.23

Total 642 642 642 642

Parameter α̂ = 0.2910(0.0212) θ̂ = 0.9658(0.0148) α̂ = 0.3373(0.0924)

Estimates θ̂ = 0.9267(0.0076) m̂ = 0.2264(0.0339) β̂ = 1.5114(1.3648)

β̂ = 0.9882(0.0126) q̂ = 0.9592(0.0544)

χ2 4.34 3.92 4.11

df 10 9 9

p-value 0.9307 0.9166 0.9040

AIC 2471.3 2472.8 2473.0

LL∗ −1233.64 −1233.38 −1233.50
*LL = log-likelihood value.
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7.2 Number of absences by shift-workers

The KGD is also applied to a data set from Gupta and Ong (2004), which represents the
observed frequencies of the number of absences among shift-workers in a steel industry.
The data in Table 5 was originally studied by Arbous and Sichel (1954) in an attempt
to create a model that can describe the distribution of absences to a group of people in
single- and double-exposure periods. The original data contains the number of absences,
x-value, of 248 shift workers in the years 1947 and 1948. Arbous and Sichel (1954) used
the negative binomial distribution (NBD) to fit the data. Gupta and Ong (2004) proposed
a four-parameter generalized negative binomial distribution to fit the data and compared
it to the NBD and the GPD. The chi-square value for their distribution was 8.27 with 15

Table 5 The number of absences among shift-workers in a steel industry

Observed Expected

x-value Frequency EEGD GNBD KGD

0 7 10.18 9.86 6.52

1 16 16.41 16.44 18.21

2 23 18.30 19.32 21.40

3 20 18.57 19.84 20.92

4 23 18.02 19.09 19.31

5 24 17.03 17.73 17.45

6 12 15.82 16.13 15.64

7 13 14.52 14.50 13.97

8 9 13.22 12.93 12.46

9 9 11.95 11.49 11.11

10 8 10.74 10.17 9.90

11 10 9.62 9.00 8.83

12 8 8.59 7.95 7.87

13 7 7.65 7.02 7.01

14 2a 6.79 6.21 6.25

15 12a 6.02 5.49 5.57

16 3b 5.33 4.86 4.96

17 5b 4.71 4.30 4.42

18 4c 4.16 3.81 3.94

19 2c 3.67 3.38 3.51

20 2d 3.23 3.00 3.13

21 5d 2.85 2.67 2.79

22 5e 2.51 2.38 2.49

23 2e 2.21 2.11 2.21

24 1e 1.94 1.88 1.97

25-48 16 13.96 16.44 16.16

Total 248 248 248 248

Parameter α̂ = 1.5255(0.1471) θ̂ = 0.0026(0.0001) α̂ = 3.1859(1.6702)

Estimates θ̂ = 0.8767(0.0093) m̂ = 1242.96(4.259) β̂ = 0.1292(0.0882)

β̂ = 254.77(20.785) q̂ = 0.4099(0.2374)

χ2 12.18 9.62 7.78

df 17 16 16

p-value 0.7891 0.8857 0.9551

AIC 1517.8 1517.3 1515.2

Log-likelihood −756.88 −755.66 −754.62

Observed frequencies with the same letters are pooled together.
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degrees of freedom. The chi-square value obtained by Gupta and Ong for the GPD was
27.79 with 17 degrees of freedom (DF). The DF = k − s − 1, where k is the number of
classes and s is the number of estimated parameters.
We re-analyzed the data for the EEGD, the GNBD, and the GPD. We obtained a chi-

square of 9.62 for the GPD, which is much smaller than the 27.79 provided by Gupta and
Ong. Thus, our estimates from the GPD (not reported in Table 5) differ significantly from
the results in Gupta and Ong (2004). When finding the maximum likelihood estimates,
the probability for the last class was obtained by subtracting the sum of all previous prob-
abilities from 1. In view of this, the results obtained from the EEGD are slightly different
from those of Alzaatreh et al. (2012b) who applied the EEGD to fit the data. We apply the
KGD to model the data in Table 5, and the results from the table indicate that the KGD,
EEGD and GNBD provide good fit to the data.
If m → ∞, the GNBD with parameters θ ,m and β goes to the GPD with parameters α

and λ, where α = mθ and λ = θβ on page 218 of Consul and Famoye (2006). We fitted
the GPD to the data and we got the same log-likelihood with α̂ = 3.2250 and λ̂ = 0.6597.
From the GNBD, we obtained m̂θ̂ = 1242.96 × 0.002591 = 3.22 ≈ 3.2250 = α̂ and
β̂θ̂ = 254.77 × 0.002591 = 0.66 ≈ 0.6597 = λ̂.
We observe that the parameter β in the KGD is significantly different from 1. This

makes the KGD a more appropriate distribution over the EEGD. The likelihood ratio
statistic for testing the EEGD against the KGD is χ2

1 = −2(754.62 − 756.88) = 4.52
with a p-value of 0.0335. Thus, we reject the null hypothesis that the data follows the
EEGD at the 5% level. The likelihood ratio test supports the claim that the parameter β is
significantly different from 1, and hence the KGD appears to be superior to the EEGD.

8 Conclusion
Discrete distributions are often derived by using the Lagrange expansions framework (see
for example Consul and Famoye 2006) or using difference equations (see for example
Johnson et al. 2005). Recently, Alzaatreh et al. (2012b, 2013b) developed a general method
for generating distributions and these distributions are members of the T-X family. The
method can be applied to derive both the discrete and continuous distributions. This
article used the T-X family framework to define a new discrete distribution named the
Kumaraswamy-geometric distribution (KGD).
Some special cases, and properties of the KGD are discussed, which include moments,

hazard rate and entropy. The method of maximum likelihood estimation is used in
estimating the parameters of the KGD. The distribution is applied to model two real
life data sets; one consisting of the observed frequencies of the distribution of pur-
chases of a brand X breakfast cereals, and the other, the observed frequencies of
the number of absences among shift-workers in a steel industry. Two other distri-
butions, the EEGD and the GNBD are compared with KGD. It is found that the
KGD performed as well as the EEGD in modeling the observed numbers of con-
sumers. The results also show that the KGD outperformed the EEGD in modeling the
number of absences among shift-workers. It is expected that the additional param-
eter offered by the Kumaraswamy’s distribution will enable the use of the KGD in
modeling events where the EEGD or the geometric distribution may not provide
adequate fits.
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Appendix
Elements of the information matrix

lα α = A0
[
1 − β(1 − q)α

]
ln(1 − q)

P0
[
1 − (1 − q)α

] − A0B0

P20
+

k∑
x=1

nx
Px

[
∂ (Ax + Bx)

∂α
− (Ax + Bx)

2

Px

]
,

lα β = A0
P0β

+ A0 ln
[
1 − (1 − q)α

]
P20

+
k∑

x=1

nx
Px

[
∂ (Ax + Bx)

∂β
− (Ax + Bx) (Cx − Dx)

Px

]
,

lα q = A0
P0

[
α{β(1 − q)α − 1 + [

1 − (1 − q)α
]β }

(1 − q)
[
1 − (1 − q)α

]
P0

− 1
(1 − q) ln(1 − q)

]

+
k∑

x=1

nx
Px

[
∂ (Ax + Bx)

∂q
− (Ax + Bx) (Ex − Fx)

Px

]
,

lβ β = C0 ln
[
1 − (1 − q)α

]
P20

+
k∑

x=1

nx
Px

[
∂(Cx − Dx)

∂β
− (Cx − Dx)

2

Px

]
,

lβ q = C0
P0

[
αβ(1 − q)α−1[
1 − (1 − q)α

]
P0

+ α(1 − q)α−1[
1 − (1 − q)α

]
ln
[
1 − (1 − q)α

]
]

+
k∑

x=1

nx
Px

[
∂ (Cx − Dx)

∂q
− (Cx − Dx) (Ex − Fx)

Px

]
,

lq q = E0
P0

[
αβ(1 − q)α−1 [1 − (1 − q)α

]β−1

P0
+ (αβ − 1) (1 − q)α − α + 1

(1 − q)
[
1 − (1 − q)α

]
]

+
k∑

x=1

nx
Px

[
∂ (Ex − Fx)

∂q
− (Ex − Fx)2

Px

]
,

where,

Px = [
1 − (

1 − qx
)α]β −

[
1 − (

1 − qx+1)α]β ,

P0 = 1 − [
1 − (1 − q)α

]β ,

A0 = n0β(1 − q)α
[
1 − (1 − q)α

]β−1 ln(1 − q),

B0 = β(1 − q)α
[
1 − (1 − q)α

]β−1 ln(1 − q),

C0 = −n0
[
1 − (1 − q)α

]β ln
[
1 − (1 − q)α

]
,

E0 = −n0αβ
[
1 − (1 − q)α

]β−1
(1 − q)α−1,

∂Ax
∂α

= Ax
[
1 − β (1 − qx)α

]
ln (1 − qx)

1 − (1 − qx)α
,

∂Ax
∂β

= Ax
(
1/β + ln

[
1 − (

1 − qx
)α]) ,

∂Ax
∂q

= Axαxqx−1 [β (1 − qx)α − 1
]

(1 − qx)
[
1 − (1 − qx)α

] − Axxqx−1

(1 − qx) ln (1 − qx)
,

∂Bx
∂α

= Bx
[
1 − β

(
1 − qx+1)α] ln (1 − qx+1)
1 − (

1 − qx+1
)α ,

∂Bx
∂β

= Bx
(
1/β + ln

[
1 − (

1 − qx+1)α]) ,
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∂Bx
∂q

= Bxα(x + 1)qx[β(1 − qx+1)α − 1](
1 − qx+1

)[
1 −(1 − qx+1

)α] − Bx(x + 1)qx(
1 − qx+1) ln(1 − qx+1) ,

∂Cx
∂α

= −Cx(1 − qx)α ln(1 − qx)
1 − (1 − qx)α

(
β + 1

ln[1 − (1 − qx)α]

)
,

∂Cx
∂β

= Cx ln[1 − (1 − qx)α] ,

∂Cx
∂q

= Cxαxqx−1(1 − qx)α−1

1 − (1 − qx)α

(
β + 1

ln[1 − (1 − qx)α]

)
,

∂Dx
∂α

= −Dx
(
1 − qx+1)α ln

(
1 − qx+1)

1 −(1 − qx+1
)α

(
β + 1

ln
[
1 −(1 − qx+1

)α]
)
,

∂Dx
∂β

= Dx ln
[
1 −(1 − qx+1)α] ,

∂Dx
∂q

= Dxα(x + 1)qx
(
1 − qx+1)α−1

1 −(1 − qx+1
)α

(
β + 1

ln
[
1 −(1 − qx+1

)α]
)
,

∂Ex
∂α

= Ex
(
1/α + [1 − β(1 − qx)α] ln(1 − qx)

1 − (1 − qx)α

)
,

∂Ex
∂β

= Ex
(
1/β + ln[1 − (1 − qx)α]

)
,

∂Ex
∂q

= Ex(x − 1)
q

+ Ex[(αβ − 1)(1 − qx)α − α + 1] xqx−1

(1 − qx)[1 − (1 − qx)α]
,

∂Fx
∂α

= Fx

(
1/α +

[
1 − β

(
1 − qx+1)α] ln(1 − qx+1)
1 −(1 − qx+1

)α
)
,

∂Fx
∂β

= Fx
(
1/β + ln

[
1 −(1 − qx+1)α]) , and

∂Fx
∂q

= Fxx
q

+ Fx
[
(αβ − 1)

(
1 − qx+1)α − α + 1

]
(x + 1)qx(

1 − qx+1
)[
1 −(1 − qx+1

)α] .

The values of Ax, Bx, Cx, Dx, Ex, and Fx are given in Section 6.
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