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Abstract

In this paper, we present some sharp upper bounds on the deviations of the mean
residual lifetime of progressive type II right censored order statistics from the mean
residual lifetime,m(t) = E(Xt) = E(X − t|X > t), for arbitrary t > 0. We also describe
the distributional forms for which the bounds are attained. The obtained bounds are
numerically evaluated and compared with other classical rough ones.
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1 Introduction
The scheme of progressive type II censored sampling is an important scheme in life-
testing experiments. The experimenter can remove units from a life test at various
stages during the experiments, possibly resulting in a saving of cost and of time (see
Sen 1986).
Suppose N units are randomly placed on a life test; at the first failure time of one

of the units, a number of R1 surviving units is randomly withdrawn from the test; at
the second failure time, R2 surviving units are selected at random and taken out of
the experiment, and so on; finally, at the time of the nth failure, the remaining Rn =
N − R1 − . . . − Rn−1 − n objects are removed. This type of schemes is applied in clinical
trials. In the context of life-testing, suppose that XR̃

1:n ≤ . . . ≤ XR̃
n:n are the lifetimes

of the completely observed units to fail, and that R̃ = (R1, . . . ,Rn) represents the num-
ber of units withdrawn at these failure times. The model of ordinary order statistics is
contained in the above set-up by choosing R̃ = (0, . . . , 0)(that is n = N) as censor-
ing scheme, where no withdrawals are made. The type II censored order statistics are
obtained by setting R1 = . . . = Rn−1 = 0 and Rn = N − n. For more details on pro-
gressive censoring, one can refer to Balakrishnan and Aggarwala (2000) and references
therein.
Let X be a lifetime variable with cumulative distribution function (cdf) F , probability

density function (pdf) f and finite first and second moments. Further, let t = F−1(p) > 0
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(0 ≤ p < 1) be the 100pth percentile of F . The mean and variance of the residual lifetime
(MRL) r.v. Xt are defined as

m(t) = E(Xt) = E (X − t|X > t) = 1
1 − p

∫ 1

p

[
F−1(u) − t

]
du,

σ 2(t) = EF (Xt − m(t))2 = 1
1 − p

∫ 1

p

[
F−1(u) − t − m(t)

]2 du.

The mean residual lifetime m(t) is of interest in many fields such as reliability, survival
analysis, actuarial studies, etc. It plays an important role in studying the conditional tail
measure of the lifetime data. In fact, m(t) can be considered as the conditional tail mea-
sure given that an object did not fail in (0, t). In actuarial studies, the insurer might ignore
the losses below the deductible t > 0 since they do not result in insurance payment
(insurer might not be aware of the losses below t). That is, the mean excess loss function
or MRL function m(t) does arise naturally. It is well-known that the MRL function m(t)
characterizes the distribution function F uniquely (see, for example, Kotz and Shanbhag
(1980)). Indeed, when X is non-negative, then for t > 0 we have

F(t) = m(0)
m(t)

exp
(

−
∫ t

0

1
m(x)

dx
)
.

In the spirit of order statistics, Li and Chen (2004) have discussed the aging proper-
ties of the residual life length of m-out-of-n system with independent (not necessarily
identical) components given that (n − m)th failure has occurred at time t > 0. The
aging properties of the parallel system have been studied by Abouammoh and El-Neweihi
(1986). Poursaeed and Nematollahi (2008) have studied the mean past and mean residual
life functions of the components of parallel system under double monitoring. Recently,
Hashemi et al. (2010) have studied some properties of the residual lifetime of progressively
type II right censored order statistics (PCOSs). For comprehensive review and applica-
tions of the mean residual function, we refer, for example, to Guess and Proschan (1988),
Bairamov et al. (2002), Asadi and Bayramoglu (2005) and Asadi and Bayramoglu (2006).
In fact, there are two concepts for the MRL of PCOSs appeared in the literature. The

first one represents the average of remaining waiting time after a certain time t > 0, to
the failure of the sth item from progressively type II censored sample. Precisely,

MR̃
s,n(t) = E

(
XR̃
s:n:N − t|XR̃

s:n:N > t
)
. (1)

Another related concept of theMRL of PCOSs (Hashemi et al. (2010)) can be defined as
follows. Under the condition that exactly r items, have failed at or before time t, the MRL
of the sth failure time, for 0 ≤ r < s ≤ n ≤ N , is

M∗R̃
s,n(t) = E

(
XR̃
s:n:N − t|XR̃

r:n:N ≤ t < XR̃
r+1:n:N

)
. (2)

It should be noticed here that these definitions of MRL are different from the ordinary
definition ofm(t). The bounds for the moments of order statistics appeared frequently in
the literature in the last two decades. Arnold (1985) and Rychlik (1993) presented more
general sharp bounds for the maximum and arbitrary combination of order statistics,
respectively, of possibly dependent samples. Raqab (2003) developed p-norm bounds for
the moments of PCOSs, measured in scale units generated by absolute moments of the
parent distribution of a single observation. Recently, Raqab and Rychlik (2011) developed
sharp bounds for the MRL of a m-out-of-n system using the greatest convex minorant
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approximation combined with the Cauchy-Schwarz inequality. Balakrishnan et al. (2001)
applied several methods to derive different bounds for means and variances of PCOSs.
In this paper, we establish sharp bounds for the deviations of theMRLMR̃

s,n(t) of PCOSs
from the MRL m(t) of X for fixed t > 0. The so obtained bounds here are derived based
on L2- projection approach combined with the Cauchy-Schwarz inequality. These bounds
can be considered as optimal estimates of the residual lifetime of PCOSs. Our work is
quite general in nature as the bounds expressed in terms of m(t) and σ(t) units and the
bounds are valid for all parent distribution functions F such that F−1(t) = p, 0 < p < 1.
Evaluations of the resulting bounds for various choices schemes are also presented and
compared with other classical ones.

2 Bounds for MRL of PCOSs
Let X1, · · · ,Xn be the iid random variables (r.v.’s) with cdf F , pdf f , and finite first and
second moments. Assume that t = F−1(p) (0 ≤ p < 1) is the 100pth percentile of F .
Now, consider the deviation of the MRL of PCOSs from the MRL function of the parent
r.v. X1 as

MR̃
s,n(t) − m(t) = E

(
XR̃
s:n:N − t|XR̃

s:n:N > t
)

− EF(X1 − t|X1 > t)

=
∫ 1

p

[
F−1(u) − t

] f R̃s:n:N (u)

1 − FR̃
s:n:N (p)

du −
∫ 1

p

[
F−1(u) − t

] du
1 − p

=
∫ 1

p

[
F−1(u) − t − m(t)

] [ f R̃s:n:N (u)

1 − FR̃
s:n:N (p)

− 1
1 − p

]
du, (3)

where f R̃r:n:N and FR̃
r:n:N are the pdf and cdf of the rth PCOS from standard uniform

distribution over unit interval [0, 1] of the forms:

f R̃r:n:N (u) = Cr−1

r∑
i=1

ai,r(1 − u)γi−1, 1 ≤ r ≤ n,

FR̃
r:n:N (u) = 1 − Cr−1

r∑
i=1

ai,r
γi

(1 − u)γi , 1 ≤ r ≤ n,

with

Cr−1 =
r∏

i=1
γi; γi = N −

i−1∑
j=1

Rj − i + 1; γ1 = N , and ai,r =
r∏

j=1
j �=i

(γj − γi)
−1,

(cf., e.g., Kamps and Cramer 2001). The following lemma describe the variability of
functions f R̃s:n:N (u) in [0, 1].

Lemma 1 (Balakrishnan et al. (2001)). For n ≥ 2, f R̃1:n:N (u) is decreasing with f R̃1:n:N (0) = γ1
and limu↗1 f R̃1:n:N (u) = 0. For γn = 1, f R̃n:n:N (u) is increasing on (0, 1) with f R̃n:n:N (0) = 0
and limu↗1 f R̃n:n:N (u) = ∏n−1

j=1
γj

γj−1 . If either (1 < s < n) or (s = n ≥ 2, γn > 1), f R̃s:n:N (u)

is first increasing starting from 0 at 0, then ultimately decreasing to 0 at 1. Moreover, each
f R̃s:n:N (u) has a unique maximum in (0, 1) at εs,n,N > 0 satisfying

s∑
i=1

ai,s(γi − 1)(1 − εs,n,N )γi−2 = 0. (4)
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The following lemma describes the Moriguti’s inequality obtained by projecting the
integrable function h onto the convex cone of non-decreasing functions in L2([0, 1] , du).

Lemma 2 (Projection of f R̃s:n:N (u)). For either (1 < s < n) or (s = n ≥ 2, γn > 1), there
exists a unique us,n,N ∈ (p, 1) defined as the solution to equation

s∑
i=1

ai,s
(

γi − 1
γi

)
(1 − u)γi = 0, p < u < 1, (5)

such that for

f̂ R̃s:n:N (u) =
⎧⎨⎩ f R̃s:n:N

(
min

{
u,us,n,N

})
, if 0 < p < us,n,N ,

1−FR̃s:n:N (p)
1−p if us,n,N ≤ p < 1,

and every non-decreasing function w ∈ L1
([
p, 1
]
, du
)
, we have∫ 1

p
w(u) f R̃s:n:N (u) du≤

∫ 1

p
w(u) f̂ R̃s:n:N (u) du, (6)

with the equality iff

w(u) = const, us,n,N < u < 1. (7)

∇

Proof. The result of the above lemma is specifically based on a combination of the
statement of Lemma 1 withMoriguti (1953), (Lemma 1). It is enough to show that f̂ R̃s:n:N (u)

is the derivative of the greatest convex minorant (GCM) F̂ R̃
s:n:N (u) of the antiderivative

FR̃
s:n:N (u) of f R̃s:n:N (u). By Lemma 1, the function FR̃

s:n:N is convex increasing on [0, εr,n,N ),
and concave increasing on (εr,n,N , 1]. Therefore, the GCM of the antiderivative FR̃

s:n:N (u)−
FR̃
s:n:N (p) of f R̃s:n:N (u), p < u < 1, is defined as the supremum of all convex functions

dominated by FR̃
s:n:N (u) − FR̃

s:n:N (p), p < u < 1 and its form is defined as follows:

F̂ R̃
s:n:N (u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
FR̃
s:n:N (u) − FR̃

s:n:N (p), if p < u ≤ us,n,N ,

FR̃
s:n:N (us,n,N ) − FR̃

s:n:N (p) if us,n,N < u < 1,
+f R̃s:n:N (us,n,N )(u − us,n,N ),

for a unique u = us,n,N ∈ (p, εs,n,N ) > 0 satisfying

1 − FR̃
s:n:N (u) = f R̃s:n:N (u)(1 − u).

or equivalently Eq. (5). If p ≥ us,n,N , then

F̂ R̃
s:n:N (u) = 1 − FR̃

s:n:N (p)
1 − p

(u − p), p < u < 1.

Differentiating the function F̂ R̃
s:n:N , we complete the proof. Function f̂ R̃s:n:N (u) is called the

projection of f R̃s:n:N (u) onto the convex cone of nondecreasing functions in L2([0, 1] , du).
In fact, the deviation MR̃

s,n,N (t) − m(t) in (3) can be evaluated using the inequalities
of the integral of the product of two proportional functions. The Moriguti projection
method (see Moriguti (1953)) can be used effectively in developing improved bounds
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of the statistical functional over general families of distributions. Applying the Cauchy-
Schwarz inequality to (3), we have for either (1 < s < n) or (s = n ≥ 2, γn > 1),

MR̃
s,n,N (t) − m(t) ≤

{∫ 1

p

[
F−1(u) − t − m(t)

]2 du
1 − p

}1/2

×
⎧⎨⎩(1 − p)

∫ 1

p

[
f R̃s:n:N (u)

1 − FR̃
s:n:N (p)

− 1
1 − p

]2
du

⎫⎬⎭
1/2

(8)

= σ(t) BR̃
0 (s, n,N ; p).

Generally, the right hand side of (8) is not monotonic and then the bound BR̃
0 (s, n,N ; p)

is not attainable. By (3), (6), and the Cauchy-Schwarz inequality, we get

MR̃
s,n,N (t) − m(t) ≤

∫ 1

p

[
F−1(u) − t − m(t)

] [ f̂ R̃s:n:N (u)

1 − FR̃
s:n:N (p)

− 1
1 − p

]
du,

≤ BR̃
1 (s, n,N ; p) σ (t), (9)

with

BR̃
1 (s, n,N ; p) =

⎧⎪⎨⎪⎩(1 − p)
∫ us,n,N

p

[
f R̃s:n:N (u)

]2
[
1 − FR̃

s:n:N (p)
]2 +

(1 − p)(1 − us,n,N )
[
f R̃s:n:N (u)

]2
[
1 − FR̃

s:n:N (p)
]2 − 1

⎫⎪⎬⎪⎭
1/2

.

(10)

The latter inequality in Eq. (9) becomes equality iff

F−1(u) − t − m(t) = α

(
f̂ R̃s:n:N (u)

1 − FR̃
s:n:N (p)

− 1
1 − p

)
, p ≤ u < 1, for some α > 0. (11)

Note that for p < us,n,N , the right-hand side is nonnegative and nondecreasing as
desired. From (7), the former inequality of (9) becomes equality iff the right-hand side of
Eq. (11) is a constant on (us,n,N , 1). The moment condition∫ 1

p

[
F−1(u) − t − m(t)

]2 du
1 − p

= σ 2(t),

forces α = (1 − p)σ (t)/BR̃
1 (s, n,N ; p). Plugging it in Eq. (11) and using the fact that

F−1(u) ≤ t, 0 < u < p, we readily form the cdf that attains the bound in (10). The non-
negativity jump at t leads to the additional condition given below in (13). Thus we have
proven the following theorem.

Theorem 1. For a parent distribution F with finite mean μ, variance σ 2 and either
(1 < s < n) or (s = n ≥ 2, γn > 1) with p < us,n,N , we have

MR̃
s,n,N (t) − m(t)

σ (t)
≤ BR̃

1 (s, n,N ; p), (12)

where BR̃
1 (s, n,N ; p) is defined in Eq. (10) with unique us,n,N ∈ (p, εs,n,N ) solving Eq. (5).

Under the additional condition

m(t) ≥
(
1 − (1 − p) f R̃s:n:N (p)

1 − FR̃
s:n:N (p)

)
σ(t)

BR̃
1 (s, n,N ; p)

, (13)
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the equality in (12) is attained in limit by the distribution function

F(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F0(x), if x < t,
p, if t ≤ x < b1,

f R̃−1
s:n:N

(
1−FR̃s:n:N (p)

1−p

[
BR̃
1 (s, n,N ; p)

(
x−t−m(t)

σ (t)

)
+ 1
])

, if b1 ≤ x < b2,

1, if x ≥ b2,

(14)

where F0 is an arbitrary continuous function with F0(t) = p, and

b1 = t + m(t) −
(
1 − (1 − p) f R̃s:n:N (p)

1 − FR̃
s:n:N (p)

)
σ(t)

BR̃
1 (s, n,N ; p)

,

b2 = t + m(t) +
(

(1 − p) f R̃s:n:N (us,N ,p)

1 − FR̃
s:n:N (p)

− 1
)

σ(t)
BR̃
1 (s, n,N ; p)

.

∇

Remark 1. Distribution function (14) is a location-scale family of distributions con-
sisting any arbitrary continuous function supported on the left of t with probability p,
constant supported on (t, b1), has a smooth component on finite support [b1, b2], and one
atom of measure (1− us,n,N ) at the right end of the support interval. By the monotonicity
of f R̃s:n:N (u) on (p,us,n,N ), then the right-hand side of (13) is positive. The arbitrary dis-
tribution function F0 with F0(t) = p defined on the left tail can be assumed in all other
distributions attaining the bounds for the MRL function of PCOSs. In a consequence of
that, the distribution function F is not absolutely continuous function. However, it can
be approximated by sequences of absolutely continuous functions attaining the bound
asymptotically.
Let us consider the extreme progressive type II censored order statistics (i) (s = n,

γn = 1) (ii) s = 1 (iii) 1 < s < n or (s = n ≥ 2, γn > 1) with p ≥ us,n,N . In the former case,
it is easily checked that

[
FR̃
n:n:N (u)

]′′ = (1− u)−1f R̃n−1:n:N (u) ≥ 0, and then the antideriva-

tive FR̃
s:n:N (u) of f R̃s:n:N (u) is convex on [0, 1]. Therefore, the projection of f R̃s:n:N (u) is the

function itself. Arguments similar to those in the above lines provide the corresponding
bound and the distribution function for which the bound is attained. For the second case,
the pdf is decreasing and its anti-derivative is concave for (p, 1). Therefore, the GCM for
the latter two cases amounts to the linear function

F̂ R̃
1:n:N (u) = (1 − p)N−1(u − p), p < u < 1,

and then the projection of f R̃s:n:N (u) is just constant. This turns out that the right-hand
side of the 2nd inequality amounts to 0. In this case, Moriguti’s method does not lead
to an improved bound and the equality becomes equality iff F−1(u) − t − m(t) is con-
stant on (p, 1). Combining this with the moment condition and the fact that F(t) = p,
we immediately obtain the distribution function attaining the bound. The so obtained
bounds for the extreme cases and their respective marginal distributions are summarized
in two subsequent theorems.
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Theorem 2. For γn = 1, the bound on
(
MR̃

n,n,N (t) − m(t)
)

/σ(t) is

BR̃
1 (n, n,N ; p) =

⎧⎪⎨⎪⎩(1 − p)
∫ 1

p

[
f R̃n:n:N (u)

]2
[
1 − FR̃

n:n:N (p)
]2 − 1

⎫⎪⎬⎪⎭
1/2

.

Under Condition (13) with (s = n, γn = 1), the bound is attained in the limit by
continuous distribution functions converging to the following cdf

F(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F0(x), if x < t,
p, if t ≤ x < c1,

f R̃−1
n:n:N

(
1−FR̃n:n:N (p)

1−p

[
BR̃
1 (n, n,N ; p)

(
x−t−m(t)

σ (t)

)
+ 1
])

, if c1 ≤ x < c2,

1, if x ≥ c2,

(15)

where F0 is an arbitrary continuous function with F0(t) = p, and

c1 = t + m(t) −
(
1 − (1 − p) f R̃n:n:N (p)

1 − FR̃
n:n:N (p)

)
σ(t)

BR̃
1 (n, n,N ; p)

,

c2 = t + m(t) +
⎛⎝ (1 − p)

∏n−1
j=1

γj
γj−1

1 − FR̃
n:n:N (p)

− 1

⎞⎠ σ(t)
BR̃
1 (n, n,N ; p)

.

∇
Theorem 3. If either s = 1 or (1 < s < n) with p ≥ us,n,N ) or (s = n ≥ 2, γn > 1) with
p ≥ us,n,N , then the bound on

(
MR̃

s,n,N (t) − m(t)
)

/σ(t) is 0, which is attained in the limit
by continuous distribution function converging to the cdf of the form

F(x) =

⎧⎪⎨⎪⎩
F0(x), if x < t,
p, if t ≤ x < t + m(t),
1, if x ≥ t + m(t).

(16)

∇
Now we use the integrand maximization-based approach to derive another bound

(Papadatos 1997). This bound depends only m(t) and then the previous assumption of
finiteness of the second moment can be removed here.
The MRL of PCOSs can be rewritten as

MR̃
s,n,N (t) = E

(
XR̃
s:n:N − t|XR̃

s:n:N > t
)

=
∫ ∞

t

1 − FR̃
s:n:N (F(x))

1 − FR̃
s:n:N (p)

dx

= 1 − p
1 − FR̃

s:n:N (p)

∫
p<F(x)<1

1 − FR̃
s:n:N (F(x))

1 − F(x)
1 − F(x)
1 − p

dx

≤ 1 − p
1 − FR̃

s:n:N (p)
sup

p<u<1

(
1 − FR̃

s:n:N (u)

1 − u

)
m(t). (17)

The function to be maximized in (17) represents the slopes of the straight lines join-
ing the points of the graph of FR̃

s:n:N at u and 1. It increases on (0,us,n,N ) and then
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decreases on (us,n,N , 1) with a maximal value at u = us,n,N . In the spirit of these lines,
we have

sup
p<u<1

(
1 − FR̃

s:n:N (u)

1 − u

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p)N−1, if s = 1,∏n−1
i=1

γi
γi−1 , if (s = n, γn = 1)

f R̃s:n:N (us,n,N ), if (1 < s < n) or (s = n ≥ 2, γn > 1)
with p < us,n,N

1−FR̃s:n:N (p)
1−p , if (1 < s < n) or (s = n ≥ 2, γn > 1)

with p ≥ us,n,N .

Plugging the extreme values into (17), we readily establish the new bound. For either
(1 < s < n) or (s = n ≥ 2, γn > 1) with p < us,n,N , the inequality becomes equality if
F(x) = us,n,N or F(x) = 1 for x > t. That is, we have two jumps (us,n,N −p) and (1−us,n,N )

at t and some point η > t, respectively. Using the moment condition, the value of η is
found to be

η = t + 1 − p
1 − us,n,N

m(t).

If either (1 < s < n) with p ≥ us,n,N or (s = n ≥ 2, γn > 1) with p ≥ us,n,N or s = 1,
the bounds here are the same as the ones in Theorem 3. So the attainability conditions
in Theorem 3 are applied here. For (s = n, γn = 1), we should take the distribution that
have values F(x) close to 1 if x > t and F(x) < 1. We may assume F(x) = 1 − ϑ for
{x : p < F(x) < 1}. The moment condition implies that the distribution function has the
jump from 1 − ϑ to 1 at η = t + 1−p

ϑ
m(t). The bounds obtained as well as the marginal

distributions attaining these bounds are described in Theorem 4 below.

Theorem 4. For any continuous parent distribution F having a finite mean μ, we have for
every point t > 0 from the support of F,

MR̃
s,n,N (t)
m(t)

≤ BR̃
2 (s, n,N ; p)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−p)
1−FR̃s:n:N (p)

∏n−1
i=1

γi
γi−1 , if (s = n, γn = 1),

(1−p) f R̃s:n:N (us,n,N )

1−FR̃s:n:N (p)
, if (1 < s < n) or (s = n ≥ 2, γn > 1)

with p < us,n,N ,
1, if s = 1 or (1 < s < n) with p ≥ us,n,N

or (s = n ≥ 2, γn > 1) with p ≥ us,n,N .

(18)

The bounds are attained in the limit by continuous distribution functions converging to
the following distribution functions. If 1 < s < n and p < us,n,N , the limiting distribution
is of the form

F(x) =

⎧⎪⎨⎪⎩
F0(x), if x < t,
us,n,N , if t ≤ x < t + 1−p

1−us,n,N m(t),
1, if x ≥ t + 1−p

1−us,n,N m(t).
(19)
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If (s = n, γn = 1), then the bound is attained in limit by continuous approximations of
the family of distribution functions

F(x) =

⎧⎪⎨⎪⎩
F0(x), if x < t,
1 − ϑ , if t ≤ x < t + 1−p

ϑ
m(t),

1, if x ≥ t + 1−p
ϑ

m(t),
(20)

as ϑ tends to 0. Finally, if either s = 1 or (1 < s < n) with p ≥ us,n,N or (s = n ≥ 2, γn > 1)
with p ≥ us,n,N , then the limiting distribution is (16).

∇

3 Numerical experiments and discussion
In this section, we have conducted a numerical study to evaluate the resulting
bounds on the MRL of the PCOSs

(
MR̃

s,n,N (t) − m(t)
)

/σ(t). The bounds are evalu-
ated for s = 3, 5, n = 5 and N = 10, 20 with different censoring schemes and
p = 0, 0.1, 0.2, 0.3. Clearly, large values of p need not to be considered here since
if p is getting large (p ≥ us,n,N ), the bounds are reduced to the trivial minimal
values.
The numbers εs,n,N ’s and us,n,N ’s can be obtained by solving (4) and (5). The solutions

of (4) and (5) are determined numerically by means of the Newton-Raphson method. The
solutions are plugged in (10) and (18) and obtain the final results. For the extreme cases,
the bounds do not depend on us,n,N ’s and their evaluations can be performed directly. The
results are presented in Tables 1 and 2. In Table 1, we compare the bounds BR̃

1 (s, n,N ; p)
presented in Theorems 1, 2 and 3 with the rough ones BR̃

0 (s, n,N ; p). The bounds are
identical for (s = n, γn = 1) [See, for example, the bounds for (N = 10, s = 5, R̃ =
(5, 0, 0, 0, 0)) and (N = 20, s = 5, R̃ = (15, 0, 0, 0, 0))]. The bounds combined with the
Moriguti’s method BR̃

1 (n, n,N ; p) compare very well with the classical bounds derived by
direct application of the Cauchy-Schwarz inequality, BR̃

0 (n, n,N ; p). For fixed censoring

Table 1 Values of BR̃0(s, 5,N;p) and BR̃1(s, 5,N;p) for different censoring schemes and p

p = 0 p = 0.1 p = 0.2 p = 0.3

N s ˜R BR̃0(.) BR̃1(.) BR̃0(.) BR̃1(.) BR̃0(.) BR̃1(.) BR̃0(.) BR̃1(.)

10 3 (2,0,0,0,3) 0.9689 0.2148 0.9389 0.0000 1.0455 0.0000 1.1663 0.0000

(5,0,0,0,0) 0.6591 0.3130 0.5722 0.1235 0.5711 0.0009 0.6218 0.0000

(1,1,1,1,1) 0.9976 0.2069 0.9750 0.0000 1.0924 0.0000 1.2170 0.0000

(0,0,3,0,2) 1.1087 0.1848 1.1130 0.0000 1.2702 0.0000 1.4162 0.0000

10 5 (2,0,0,0,3) 0.8555 0.5342 0.7486 0.3976 0.6468 0.2287 0.6017 0.0628

(5,0,0,0,0) 1.2341 1.2341 1.1273 1.1273 1.0103 1.0103 0.8830 0.8830

(1,1,1,1,1) 0.7593 0.6325 0.6477 0.5105 0.5256 0.3651 0.4203 0.2102

(0,0,3,0,2) 0.7957 0.5426 0.6865 0.4077 0.5800 0.2429 0.5253 0.0808

20 3 (5,4,3,2,1) 1.3773 0.1325 1.4928 0.0000 1.7098 0.0000 1.8312 0.0000

(15,0,0,0,0) 0.6463 0.2671 0.5758 0.0629 0.6014 0.0000 0.6571 0.0000

(3,3,3,3,3) 1.5385 0.1182 1.7214 0.0000 1.9888 0.0000 2.1359 0.0000

(5,0,5,0,5) 1.5285 0.1199 1.7054 0.0000 1.9769 0.0000 2.1345 0.0000

20 5 (5,4,3,2,1) 0.6666 0.4871 0.5504 0.3407 0.4493 0.1700 0.4206 0.0312

(15,0,0,0,0) 1.1842 1.1842 1.0780 1.0780 0.9618 0.9618 0.8363 0.8363

(3,3,3,3,3) 0.9126 0.3631 0.8155 0.1675 0.8067 0.0000 0.8982 0.0000

(5,0,5,0,5) 1.0145 0.3474 0.9206 0.1413 0.9340 0.0000 1.05954 0.0000



Raqab Journal of Statistical Distributions and Applications 2014, 1:21 Page 10 of 12
http://www.jsdajournal.com/content/1/1/21

Table 2 Values of BR̃2(s, 5,N;p) for different censoring schemes and p

BR̃2(s, 5,N; p)

N s ˜R p = 0 p = 0.1 p = 0.2 p = 0.3

10 3 (2,0,0,0,3) 1.0611 1.0000 1.0000 1.0000

(5,0,0,0,0) 1.1355 1.0377 1.0000 1.0000

(1,1,1,1,1) 1.0566 1.0000 1.0000 1.0000

(0,0,3,0,2) 1.0448 1.0000 1.0000 1.0000

10 5 (2,0,0,0,3) 1.3572 1.2222 1.0992 1.0169

(5,0,0,0,0) 4.4444 4.0001 3.5575 3.1231

(1,1,1,1,1) 1.5260 1.3737 1.2282 1.1064

(0,0,3,0,2) 1.3733 1.2366 1.1117 1.0249

20 3 (5,4,3,2,1) 1.0228 1.0000 1.0000 1.0000

(15,0,0,0,0) 1.0994 1.0143 1.0000 1.0000

(3,3,3,3,3) 1.0180 1.0000 1.0000 1.0000

(5,0,5,0,5) 1.0185 1.0000 1.0000 1.0000

20 5 (5,4,3,2,1) 1.3062 1.1769 1.0676 1.0071

(15,0,0,0,0) 4.2105 3.7896 3.3712 2.9631

(3,3,3,3,3) 1.1607 1.0497 1.0000 1.0000

(5,0,5,0,5) 1.1458 1.0374 1.0000 1.0000

scheme, as p increases, the bounds decrease in p, and become zero if p ≥ us,n,n. It is
not surprising to observe that while we can’t see a regular behavior for BR̃

0 (s, n,N ; p), the
Moriguti’s bound increases when s increases.
Table 2 presents numerical values of bounds BR̃

2 (n, n,N ; p) of Theorem 4. The bounds
of PCOSs here are represented in the scale units m(t). The values of the bounds take the
maximized values when p = 0 and then decrease to theminimum value when p gets large.
It is observed that the large bound occurs when (s = n, γn = 1).
It is of interest to point out that the two estimates of the MRL of PCOSs MR̃

s,n,N (t)
presented in Tables 1 and 2 are quite different. For comparison purposes, we have to
rewrite both bounds as follows:

MR̃
s,n,N (t) ≤ BR̃

11(s, n,N ; p) = m(t) + BR̃
1 (s, n,N ; p) σ (t),

MR̃
s,n,N (t) ≤ BR̃

22(s, n,N ; p) = BR̃
2 (s, n,N ; p) m(t).

The former bound competes the latter one iff

m(t) ≥ BR̃
1 (s, n,N ; p)

BR̃
2 (s, n,N ; p) − 1

σ(t).

This means that the mean-variance bound BR̃
11(s, n,N ; p) compares well with respect to

BR̃
22(s, n,N ; p) when the residual mean m(t) is large with respect to the residual standard

deviation. Let illustrate that via a specific example. We calculate bounds BR̃
11(s, n,N ; p)

and BR̃
22(s, n,N ; p) in the cases (m(t) = 0.5, σ(t) = 1) and (m(t) = 3, σ(t) = 0.25). In the

first case, we obtain BR̃
11(3, 5, 10; 0.1) = 0.6235 > BR̃

22(3, 5, 10; 0.1) = 0.5189, whereas for
the latter case, we have BR̃

11(3, 5, 10; 0.1) = 3.0309 < BR̃
22(3, 5, 10; 0.1) = 3.1133. It assures

the superiority of Moriguti projection method over maximization-based method
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[Papadatos (1997)] when m(t) is large with respect to σ(t). The result is reversed when
m(t) tends to be small when compared to σ(t).

4 Concluding remarks
In this paper, we have developed the maximized evaluations of the MRL function of
PCOSs of order statistics, measured in location and scale units of the residual life
random variable Xt = (X − t|X > t) and expressed in terms of percentile points
t = F−1(p), 0 < p < 1. The projection based approach as well as the maximum func-
tional based approach method are used to obtain two different bounds. It is shown that
the mean-variance bound derived based on the projection method competes well when
compared with the ordinary bounds obtained via Cauchy-Schwarz inequality. For com-
paring the two so obtained bounds, we recommend choosing the mean-variance bound
if we can assume that the mean residual life is large with respect to the residual variance.
Similar results can be done for the second concept of the MRL of PCOSs, M∗R̃

s,n(t) =
E

(
XR̃
s:n:N − t|XR̃

r:n:N ≤ t < XR̃
r+1:n:N

)
. Specifically, the bounds for M∗R̃

s,n(t) are identical to

the optimal bounds for the unconditional expectation E
(
XS̃
s−r:n−r:γr+1

)
, where S̃ =

(Rr+1, . . . ,Rn) (see, Lemma 2.1, Hashemi et al. (2010)). Accordingly, the optimal bounds
for M∗R̃

s,n(t) will be free of the parameter p (0 < p < 1). Therefore, the results for the
alternative concept of MRL of PCOSs M∗R̃

s,n(t) are similar to those of progressive type II
censored order statistics established in Raqab (2003). While the bounds do not depend
on p, the probability distributions characterized via these bounds are described in terms
of p,m(t), and σ(t).
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