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Abstract

A new nonparametric test is proposed for the multivariate two-sample problem. Similar
to Rosenbaum’s cross-match test, each observation is considered to be a vertex
of a complete undirected weighted graph; interpoint distances are edge weights.
A minimum-weight, r-regular subgraph is constructed, and the mean cross-count
test statistic is equal to the number of edges in the subgraph containing one observation
from the first group and one from the second, divided by r. Unequal distributions will
tend to result in fewer edges that connect vertices between different groups. The mean
cross-count test is sensitive to a wide range of distribution differences and has impressive
power characteristics. We derive the first and second moments of the mean cross-count
test, and note that simulation studies suggest this test statistic is asymptotically normal
regardless of underlying data distributions. A small simulation study compares the power
of the mean cross-count test to Hotelling’s T2 test and to the cross-match test. This new
test is a more powerful generalization of Rosenbaum’s test (the cross-match test is
the case r = 1) and constitutes a noteworthy addition to the class of multivariate,
nonparametric two-sample tests.

Keywords: Distribution-free test; Graph-theoretic procedure; Change point
1 Background
1.1 Objective

Consider N =m + n independent multivariate observations Y1, …,Ym and Ym + 1, …,YN,

where each Yi is drawn from distribution F for 1 ≤ i ≤m and from distribution G for m +

1 ≤ i ≤N. The dimension of the observations does not depend on N. The covariates may

be quantitative or categorical; there need only exist some function, d, that measures dis-

tance between observations. The null hypothesis is that F =G. The objective is a two-

sample test that has little or no dependence on the underlying distribution of the data.

Furthermore, this test should have sufficient power to be useful for applications.
1.2 Motivation

We follow in the vein of graph-theoretic tests for homogeneity: Consider each observation

to be a vertex of a complete, undirected, weighted graph, G, and assign interpoint distances

as edge weights. The distribution of these distances is sensitive to departures from homo-

geneity; Maa et al. (1996) prove that two distributions are identical if and only if the distri-

butions of inter-point distances within and between observations sampled from the two

populations are the same. Friedman and Rafsky (1979, 1981) fit a minimum spanning tree
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to G and count the number of edges in the tree that connect vertices from different groups

to test whether the sampling distributions are the same. Schilling (1986), Henze (1988), and

Hall and Tajvidi (2002) examine properties of nearest-neighbor subgraphs of G to test for

homogeneity.

Rosenbaum (2005) provides a novel approach to this problem: Suppose N is even.

Find a minimum-weight non-bipartite matching on G, which is the lowest-weight span-

ning subgraph for which the degree of each vertex with respect to the subgraph is one

and which consists of N/2 non-adjacent edges. Rosenbaum’s cross-match statistic, A1,

counts the number of edges in the matching that include one vertex from each of the

two groups. Under the null hypothesis of no group difference each vertex is equally

likely to be paired with any other vertex. Rosenbaum (2005) shows that the exact null

distribution of A1 is found by combinatorial argument to be

P A1 ¼ a1ð Þ ¼ 2a1 N=2ð Þ!
N
m

� ��
m−a1
2

�
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�
n−a1
2

�
!

ð1Þ

for a1 ∈ {0, 2,…, min(m, n)} and m and n even, or a1 ∈ {1, 3,…, min(m, n)} and m and n

odd; P(A1 = a1) = 0 otherwise. In the denominator of (1), 1
2 m−a1ð Þ is the number of

edges in the matching where both vertices are in the group of size m and 1
2 n−a1ð Þ is

the number of edges in the matching where both vertices are in the group of size n.

When the two groups are drawn from different distributions the number of within-

group pairs tends to be higher than for the null case, so the null hypothesis of homo-

geneity is rejected if A1 is sufficiently small. For odd N, this procedure may be simply

modified by introducing a pseudo-observation, Y0 such that d(Y0,Yi) = 0 for all i ∈ {1,
…,N}, and randomly assigning it to one of the two groups. Then find a minimum-

weight non-bipartite matching on this resulting graph with N + 1 vertices and compute

A1 with respect to observations Y0,…,YN.

That the exact null distribution of A1 is known, regardless of the underlying data dis-

tribution, is a particularly attractive property for a multivariate two-sample test. Fur-

thermore, the asymptotic normality of A1 facilitates testing for large-sample problems.

However, the cross-match test has relatively low power. Since only a single non-

bipartite matching is considered in this test, information contained in the proximity of

many pairs of points is ignored. Friedman and Rafsky (1979, 1981) observe that the

power of their single-tree test is enhanced by evaluating successive disjoint low-weight

spanning trees. Similarly, Ruth and Koyak (2011) show that ensembles of disjoint low-

weight non-bipartite matchings carry significant information regarding whether a distri-

butional change occurs over a sequence of independent observations. A drawback asso-

ciated with examining collections of such subgraphs is that null distributions are

extremely difficult to determine. Mindful of this caveat, we offer an extension of the

cross-match test which exploits the information contained in the distances between

many pairs of points.

2 Methods
2.1 Illustrating example

Consider the bivariate sample of size N = 20 listed in Table 1 and displayed in Figure 1.

The sample consists of independent observations in groups 1 (○) and 2 (△); observations



Table 1 Bivariate data for illustrating example

Observation number Group Covariate 1 Covariate 2

1 1 -0.323 -1.389

2 1 1.020 -2.078

3 1 -0.269 -1.020

4 1 0.296 -0.144

5 1 0.602 1.021

6 1 0.814 -0.508

7 1 -0.475 -0.690

8 1 -0.079 1.360

9 1 -0.228 0.926

10 1 -0.481 1.958

11 2 1.269 1.275

12 2 0.954 2.133

13 2 -0.103 2.763

14 2 -0.581 -0.428

15 2 2.367 0.222

16 2 0.980 1.870

17 2 0.494 1.981

18 2 0.293 0.236

19 2 1.535 0.981

20 2 1.993 -0.120
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within groups are identically distributed. For the purposes of this example, these data were

simulated from distributions whose locations differ by one unit in each dimension. Figure 1

also shows the minimum-weight non-bipartite matching associated with this sample with

respect to Euclidean distance. The present goal is to identify the distribution difference be-

tween these groups, making no assumptions about the underlying distributions.

The cross-match test is applicable here; for this example the value of the cross-match

statistic is A1 = 4 with a corresponding p‐value = 0.433. So, the cross-match test is in-

sufficiently powerful to identify a distribution difference in this case. In the next sec-

tion, we introduce an extension of the cross-match test that enhances test power

significantly.
2.2 The mean cross-count (MCC) test

As before, we assume an even number N of observations forming a complete, undirected,

weighted graph, G. Rather than find a minimum-weight non-bipartite matching, we find a

minimum-weight r-regular spanning subgraph of G, where 1 ≤ r ≤N − 2, denoted G�
r . That

is, G�
r is a subgraph of G with the following properties:

a) Every vertex in G is also in G�
r .

b) Every vertex in G�
r has degree r.

c) The total weight of all edges in G�
r is the lowest among all subgraphs of G which

satisfy properties (a) and (b).



Figure 1 Bivariate data for illustrating example with optimal non-bipartite matching on groups 1
(○) and 2 (△) with m = n = 10. Cross-group pairs are connected by solid lines; within-group pairs by
dotted lines.
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In graph theory, an r-regular spanning subgraph of G is sometimes called an r-factor

of G. Note that G�
1 is the special case of a minimum-weight non-bipartite matching used

by Rosenbaum (2005), and G�
N−1 is identical to G. In practice, we are mainly interested

in 2 ≤ r ≤N/2, although the theoretical details are not so constrained. Minimum-weight

r-factors may be computed as follows: For any subgraph of G , let xij be an indicator

variable equal to 1 if the edge connecting vertices i and j is included in the subgraph

and let dij be the distance between vertex i and vertex j. Then the edges of G�
r solve fol-

lowing the combinatorial optimization problem:

minx
XN
j¼2

Xj−1
i¼1

dijxij

subject to
Xk−1
i¼1

xik þ
XN
j¼kþ1

xkj ¼ r ∀k∈ 1;…;Nf g

xij∈ 0; 1f g ∀j∈ iþ 1;…;Nf g; ∀i∈ 1;…;N−1f g:

ð2Þ

Anderson (1972) assures the existence of a solution for r ≤N/2. Solutions for r >N/2 are
guaranteed by the fact that the complement of an r-regular subgraph of G is an

(N − 1 − r) -regular graph. For this paper, solutions are found in R using the package

“lpSolve” for N ≤ 400. For N > 400, solutions are found in R using the package “gurobi”

due to the computational complexity of larger problems.

Similar to the cross-match test, we count the number of edges Ar in G�
r that include a

vertex from each group. We call Tr = Ar/r the mean cross-count (MCC) statistic. The

idea here is that the number of within-group edges in G�
r will be higher for cases of a

distribution difference than for the null case. So, small values of Tr are evidence against
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the null hypothesis. Note that T1 = A1 is the cross-match statistic as before. One could

use the total cross-count, Ar, as an equivalent test-statistic; however, we choose to scale

this value to give some notion of “average cross-count per vertex degree” (hence the

name “mean cross-count”). For odd N, randomly introduce a pseudo-observation in the

same manner as the r = 1 case discussed in Section 1.2.
2.3 Illustrating example, continued

Figure 2 shows a minimum-weight 3-factor, G�
3 , for the data in Table 1 with respect to

Euclidean distance. Cross-group edges are shown with solid lines. For this case, A3 =

12⇒ T3 = 4, so the test statistic value here is the same as Rosenbaum’s cross-match test

statistic. A discussion of the distribution of Tr is in Section 3.1; for this example, we es-

timate the p-value for Tr by permutation test on the observation vertex labels. Using

10,000 permutations yields an estimated p‐value = 0.146. While not enough evidence to

conclude a group difference, this reduction in p-value relative to the r = 1 case

(p-value = 0.433) suggests that considering minimum-weight r-factors for r > 1 may

improve test power. In Section 3.2 we demonstrate significant power advantages that

are realized for the MCC statistic.
3 Results and discussion
3.1 MCC moments and normal approximation

For the following discussion we assume N is even, adopting the convention that if the

number of observations is odd then we will consider N to be the number of observa-

tions including a pseudo-observation as previously discussed. To find the mean and

variance of Tr under the null hypothesis, we proceed as follows: Let G be the complete
Figure 2 Bivariate data for illustrating example with optimal 3-factor on groups 1 (○) and 2 (△) with
m = n = 10. Cross-group pairs are connected by solid lines; within-group pairs by dotted lines.
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undirected graph (ℤN, EN) where the vertex set ℤN consists of the indices 1, 2,…,N and

the edge set consists of all N(N - 1)/2 pairs of vertices; by convention, write the pairs

with smaller vertex first, so EN = {(i, j) : 1 ≤ i < j ≤N}. Partition ℤN into two sets S and T,

with |S| =m and |T| = n, so m + n =N. Denote E S;Tð Þ
N as the set of all edges with one

vertex in S and the other in T. Let Xij be the random variable that indicates whether

edge (i, j) is included in a minimum-weight r-regular subgraph, G�
r , with 1 ≤ r ≤N − 2.

By the r-regularity of G�
r , for each i ∈ ℤN we have r ¼

Xi−1
j¼1

Xji þ
XN
j¼iþ1

Xij; and so

r ¼ E r½ � ¼ E
Xi−1
j¼1

Xji þ
XN
j¼iþ1

Xij

" #
¼

Xi−1
j¼1

E Xji
� �þ XN

j¼iþ1

E Xij
� �

¼
Xi−1
j¼1

P Xji ¼ 1
� �þ XN

j¼iþ1

P Xij ¼ 1
� �

:

ð3Þ

But under the null hypothesis, each edge is equally likely to be included in G�
r , so
r = (N − 1)P(X12 = 1). Therefore, for all (i, j) ∈ EN

E Xij
� � ¼ P Xij ¼ 1

� � ¼ r
N−1

ð4Þ

and
Var Xij
� � ¼ P Xij ¼ 1

� �
P Xij ¼ 0
� � ¼ r N−1−rð Þ

N−1ð Þ2 : ð5Þ

The total cross-count, Ar, may be written
Ar ¼
X

i;jð Þ∈E S;Tð Þ
N

Xij ð6Þ

resulting in
E Tr½ � ¼ 1
r
E Ar½ � ¼ 1

r
E

X
i;jð Þ∈E S;Tð Þ

N

Xij

2
64

3
75 ¼ mn

r
E Xij
� �

¼ mn
N−1

:

ð7Þ

Finding the variance of Tr is slightly more involved. First take

Var Ar½ � ¼ Var
X

i;jð Þ∈E S;Tð Þ
N

Xij

2
64

3
75 ¼

X
i;jð Þ∈E S;Tð Þ

N

Var Xij
� �þ X

i;jð Þ; k;lð Þ∈E S;Tð Þ
N

i;jð Þ≠ k;lð Þ

Cov Xij;Xkl
� �

: ð8Þ

The sum of variances is computed directly as
X
i;jð Þ∈E S;Tð Þ

N

Var Xij
� � ¼ mnVar Xij

� � ¼ mnr N−1−rð Þ
N−1ð Þ2 : ð9Þ
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The sum of covariances may be partitioned into terms that include pairs of adjacent

edges and terms that include disjoint (i.e., non-adjacent) edges:X
i; k∈S
j; l∈T

i; jð Þ≠ k; lð Þ

Cov Xij;Xkl
� � ¼ X

i∈S
j; l∈T
j≠l

Cov Xij;Xil
� �þ X

i; k∈S
i≠k
j∈T

Cov Xij;Xkj
� �þ X

i; k∈S
i≠k
j; l∈T
j≠l

Cov Xij;Xkl
� � ð10Þ

For any two adjacent edges (k, l) and (i, j),

� � � � � �

P XijXkl ¼ 1 ¼ P Xkl ¼ 1jXij ¼ 1 P Xij ¼ 1 ¼ r−1ð Þr

N−2ð Þ N−1ð Þ
¼ E XijXkl

� �
;

ð11Þ

so
 X
i∈S
j; l∈T
j≠l

Cov Xij;Xil
� �þ X

i; k∈S
i≠k
j∈T

Cov Xij;Xkj
� �

¼ mn n−1ð Þ þm m−1ð Þnð Þ r−1ð Þr
N−2ð Þ N−1ð Þ−

r
N−1

� 	2
� �

¼ −
mnr N−1−rð Þ

N−1ð Þ2 : ð12Þ

For any two disjoint edges (k, l) and (i, j),
P XijXkl ¼ 1
� � ¼ P Xkl ¼ 1jXij ¼ 1

� �
P Xij ¼ 1
� � ¼ r N−4ð Þ þ 2ð Þ

N−3ð Þ N−2ð Þ
r

N−1ð Þ
¼ E XijXkl

� �
;

ð13Þ

So � �
� 	
X
i; k∈S
i≠k
j; l∈T
j≠l

Cov Xij;Xkl
� � ¼ m m−1ð Þn n−1ð Þ r N−4ð Þ þ 2ð Þ

N−3ð Þ N−2ð Þ
r

N−1ð Þ−
r

N−1

2

¼ 2m m−1ð Þn n−1ð Þ N−1−rð Þr
N−3ð Þ N−2ð Þ N−1ð Þ2 :

ð14Þ
Combining terms yields

Var Ar½ � ¼
X
i∈S
j∈T

Var Xij
� �

þ
X
i∈S
j; l∈T
j≠l

Cov Xij;Xil
� �þ X

i; k∈S
i≠k
j∈T

Cov Xij;Xkj
� �þ X

i; k∈S
i≠k
j; l∈T
j≠l

Cov Xij;Xkl
� �

¼ mnr N−1−rð Þ
N−1ð Þ2 −

mnr N−1−rð Þ
N−1ð Þ2

þ 2m m−1ð Þn n−1ð Þ N−1−rð Þr
N−3ð Þ N−2ð Þ N−1ð Þ2

¼ 2m m−1ð Þn n−1ð Þ N−1−rð Þr
N−3ð Þ N−2ð Þ N−1ð Þ2 :

ð15Þ
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Therefore,

Var Tr½ � ¼ 1
r2
Var Ar½ � ¼ 2m m−1ð Þn n−1ð Þ N−1−rð Þ

r N−3ð Þ N−2ð Þ N−1ð Þ2 : ð16Þ

We note in particular that the first and second moment results in (7) and (16) match
the results in Rosenbaum (2005) for the special case r = 1.

Simulation suggests that the null distribution of Tr is negatively skewed, but that for

sufficiently large N and possibly certain conditions on r this distribution is asymptotic-

ally normal, independent of distribution function F. Rosenbaum (2005) proves that Tr

is asymptotically normal for r = 1 for any distribution function; proof of this conjecture

for r > 1 remains an open problem. This conjecture is supported by the normal QQ-

plots shown in Figures 3 and 4 for 1,000 simulated values of Tr−E Tr½ �ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Trð Þp

at

r = 5, 50 and N = 150, 600 with m/n = 1/2, under sampling from uniform distributions

on [−1, 1]5 and [−1, 1]20. For the smaller sample size (N = 150), negative skewness is

stronger for lower dimension and for higher r, with r = 50 and Dim = 5 being the most

strongly skewed case shown. For the larger sample size (N = 600), skewness effects ap-

pear to vanish for all but the r = 50 and Dim = 5 case, and even in this case skewness is

vastly diminished compared to the smaller sample size. Other distribution families and

other values of m/n produce similar results.
Figure 3 Normal QQ-plots of 1,000 simulated values of Tr for m = 50, n = 100 and r = 5, 50. Panels
(a) and (b) are from independent samples of Unif [−1, 1]5 variates. Panels (c) and (d) are from independent
samples of Unif [−1, 1]20 variates.



Figure 4 Normal QQ-plots of 1,000 simulated values of Tr for m = 200, n = 400 and r = 5, 50. Panels
(a) and (b) are from independent samples of Unif [−1, 1]5 variates. Panels (c) and (d) are from independent
samples of Unif [−1, 1]20 variates.

Figure 5 Power estimates for the MCC test at r = 1, 4, 10, and 30 and exact power for Hotelling’s T2

statistic for 5-variate normal mean alternatives with m = 20 and n = 40. The horizontal dashed line is
test level α = .05.
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Figure 6 Power estimates for the MCC test at r = 1, 4, 10, and 30 and estimated power for
Hotelling’s T2 statistic for 5-variate lognormal location parameter alternatives with m = 20 and
n = 40. The horizontal dashed line is test level α = .05.
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Future work remains to bound rejection region probabilities in terms of sample size,

dimension, and choice of r. In the absence of such theoretical bounds, for practical pur-

poses a permutation test on observation indices serves as a suitable method to estimate

p-values for the MCC test in cases where a normal approximation cannot be justified.
3.2 Small simulation study

We compare power characteristics of tests for two different location-shift scenarios.

For each case, 1000 simulations are conducted for each shift in location parameter,

group sizes are m = 20 and n = 40, and tests are conducted at significance level α = .05.

Distances are Euclidean. Estimated power is shown for MCC tests with r = 1, 4, 10, and 30

(where r = 1 is the cross-match test), and the performance of these tests is compared

directly to that of Hotelling’s T2 test. Critical values for the MCC test were estimated

through simulation for this study. All simulations were performed in R.

For the first example, the smaller group is drawn from a multivariate normal distribu-

tion with mean vector 0, identity covariance matrix, and dimension 5. The larger group

is drawn from the same family, but the location vector of the second group is Δ, where

Δ ranges in magnitude from 0 to 1.5 by increments of 0.3. Hotelling’s T2 test is known

to be the uniformly most powerful invariant test for location shift under these condi-

tions (Bilodeau and Brenner 1999) and the exact power of the test is known for all loca-

tion alternatives.

Figure 5 displays the estimated power results. We notice immediately that a modest

increase of r = 1 to r = 4 substantially improves on the power of the cross-count test. As

r continues to increase, MCC performance is even more impressive; the r = 30 =N/2

case performs nearly as well as Hotelling’s T2 test. Power estimates for cases r >N/2 are

not shown. Not surprisingly, test power generally decreases as r increases beyond N/2

toward N − 1; in the extreme case TN − 1 takes the fixed value mn
N−1 and hence the MCC

test with r =N − 1 has power equal to zero against all alternatives.
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For the second example, the first group is drawn from the multivariate log-normal

distribution, where each of the 5 dimensions consists of independent, univariate log-

normal draws with location parameter 0 and scale parameter 1. As before, the second

group is drawn from the same family, but the location parameter vector for the second

group is Δ, where the magnitude of Δ ranges from 0 to 1.5 by increments of 0.3 and

each dimension of Δ takes equal value. The lognormal distribution is considered here

to examine the effects of a skewed distribution on the tests in question. Since the

underlying distributions are no longer multivariate normal, the power of Hotelling’s T2

test is estimated by simulation for this example.

Figure 6 displays the estimated power results. As before, we see that the power of the

MCC test with r = 4 is much better than for r = 1. It is particularly noteworthy that for

sufficiently large r the MCC test outperforms Hotelling’s T2 test.
4 Conclusions
The mean cross-count test is a powerful, non-parametric multivariate two-sample test

that is applicable to any case where a notion of distance between observations exists.

While this paper considers only location shifts, other simulations show that the MCC

test has power in a variety of alternative cases as well. A shortcoming of the MCC test

is that the null distribution for Tr is not simple (and perhaps not possible) to compute

for all r > 1 and is not exactly distribution-free in these cases; in contrast, the test upon

which it is based, the cross-match test with r = 1, has a known distribution that is inde-

pendent of the distribution being tested.

It is known that T1 is asymptotically normal, and while the mean and variance of Tr

are derived herein and simulation suggests that the normal approximation for Tr is ap-

propriate for sufficiently large N with r > 1, this property remains to be proven. This

proof is part of ongoing work, as is sharpening the normal approximation via Edge-

worth expansion based on higher moments of Tr. Likewise, finding useful criteria for

choosing r is another area for future work. This choice is subject to competing factors:

On the one hand, the power of Tr appears to improve as r increases to N/2 when group

sizes are equal (i.e., m = n =N/2); therefore, r =N/2 seems a good choice for equal

group sizes. On the other hand, the normal approximation appears to worsen as r in-

creases; thus it may be desirable to restrict the size of r for this sake. Furthermore, an

additional effect exists when group sizes are different. For example, assume m < n. If

r ≥m, then at least one edge in G�
r contains a vertex from each group and contributes

to the cross-count, increasing the value of Tr. This is true even if the two groups are

very different. Since a higher cross-count weakens the evidence against a group differ-

ence, this consideration suggests choosing r <min(m, n). A similar effect exists for

multimodal distributions, suggesting that the size of r might be restricted as the num-

ber of modes grows. In any case, the best choice of r in practice clearly depends upon

application specifics.
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