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Abstract

Mixture distributions provide flexibility in modeling data collected from populations
having unexplained heterogeneity. While interpretations of regression parameters from
traditional finite mixture models are specific to unobserved subpopulations or latent
classes, investigators are often interested in making inferences about the marginal
mean of a count variable in the overall population. Recently, marginal mean regression
modeling procedures for zero-inflated count outcomes have been introduced within
the framework of maximum likelihood estimation of zero-inflated Poisson and negative
binomial regression models. In this article, we propose marginalized mixture regression
models based on two-component mixtures of non-degenerate count data distributions
that provide directly interpretable estimates of exposure effects on the overall
population mean of a count outcome. The models are examined using simulations and
applied to two datasets, one from a double-blind dental caries incidence trial, and the
other from a horticultural experiment. The finite sample performance of the proposed
models are compared with each other and with marginalized zero-inflated count
models, as well as ordinary Poisson and negative binomial regression.

Keywords: Dental caries, Excess zeros, Marginal inference, Mixture model,
Over-dispersion, Zero-inflation

Introduction
The analysis of data from populations with unexplained heterogeneity presents special
challenges to researchers. When count data arise from mixtures of unobserved popula-
tions, models based on standard probability distributions are often inadequate to explain
observed variability (Frühwirth-Schnatter 2005; Wedel and DeSarbo 1995). For example,
in dental caries research and many other areas, proportions of observations with zero
counts are often higher than expected under the Poisson or negative binomial distribu-
tions, and regression models based on these distributions may result in biased estimates
and poor predictions. To account for such excess zeros, Mullahy (1986) and Lambert
(1992) proposed zero-inflated Poisson (ZIP) regression. ZIP models, which employ two-
component mixture distributions, hypothesize that observed counts arise from one of
two latent classes within the source population: one class provides only zeros and the
other produces both zero and non-zero values. However, the assumption of a model based
on ‘at-risk’ and ‘not-at-risk’ latent classes may not be appropriate in some settings or
may provide an inadequate fit. To model counts from multiple source populations, Wang
et al. (1996) proposed multi-component Poisson mixture distributions, and their
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approach has been extended to other finite mixtures of non-degenerate count distri-
butions. Despite the flexibility of finite mixtures for describing highly dispersed count
data, parameters from standard mixture regression models are not directly applicable
to making inferences about the overall effects of covariates on marginal means of count
outcomes (Albert et al. 2014; Preisser et al. 2012). Even with the application of indirect
methods of parameter estimation such as the use of post-modeling transformations, there
aremany instances where latent class model formulations fail to fully explain relationships
between covariates and population-wide parameters.
While the importance of the marginal mean as a target of inference in the analy-

sis of finite mixtures of counts is well established (Albert et al. 2014; Böhning et al.
1999; Lambert 1992; Preisser et al. 2012), marginally-specified mean models for finite
mixtures of count distributions have only recently been proposed. Within a ZIP likeli-
hood framework, Long et al. (2014) proposed marginalized zero-inflated Poisson (MZIP)
regression, which specifies a two-part model for counts with a set of regression coef-
ficients for the marginal mean and, to complete model specification, a second set of
regression coefficients for the latent parameter defining membership in the ‘excess-zero’
class. The marginalized zero-inflated negative binomial (MZINB) model (Preisser et al.
2016) extended theMZIPmodel to account for overdispersion in addition to excess zeros.
Todem et al. (2016) described a general representation of two-part marginalized mean
count models including distributions for bounded counts, e.g., the zero-inflated beta-
binomial distribution. In each case, the model is assumed to follow a two-component
mixture consisting of a standard count distribution with a degenerate point-mass at
zero. However, data-generating mechanisms based on mixtures of non-degenerate count
distributions can often provide better fits when the data suggest that a simple degener-
ate point-mass is insufficiently flexible to capture the heterogeneity in the counts. This
can arise, for example, when there is overdispersion in the counts that cannot be fully
explained by standard count data distributions (e.g., Poisson, negative binomial) amended
by excess zeros.
In this article, we seek to expand the class of marginalized mixture models for zero-

inflated and other heterogeneous count data to allow for greater model choice with
maximum likelihood estimation, when there is interest in evaluating the effects of expo-
sures on the overall mean count. For counts having unexplained heterogeneity, we extend
the degenerate component of marginalized zero-inflated models to standard count dis-
tributions for more flexible modeling of the marginal mean. Our motivation comes from
a randomized double-blind caries incidence trial conducted between 1988 and 1992
in Lanarkshire, Scotland, to compare the anti-caries efficacy of three toothpaste for-
mulations in 4294 children ages 11–12 (Stephen et al. 1994). The outcome variable of
interest was the number of new decayed, missing and filled surfaces (DMFS) two years
following the baseline dental exam. Caries development is a complex process, which
depends upon multiple biological and environmental factors; moreover, the clinical man-
ifestation of disease is influenced by preventive care and restorative dental treatment
decisions. For this reason, standard count models such as Poisson and negative bino-
mial regression may not adequately account for heterogeneity in the DMFS counts. We
consider marginalized, two-component finite mixture models to obtain direct inference
about the relationship between toothpaste formulation and the marginal mean caries
count in the trial population. “Methods and Results” section reviews traditional and
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marginalized zero-inflated count regression models, while “Models for mixtures of non-
degenerate count distributions” section discusses traditional finite mixture regression
models and proposes marginalized two-component count regression models involving
mixtures of non-degenerate distributions. Simulation studies and two applications of the
proposed models including the Lanarkshire caries trial are discussed in “Simulation study
& Applications” sections, respectively. Concluding remarks follow in “Discussion and
conclusions” section.

Methods and Results
Zero-inflated Poisson and negative binomial models

Traditional zero-inflated models assume that counts arise from a two-component mix-
ture of a standard count distribution with a distribution degenerate at zero. Under such
models, counts are generated either from a ‘non-susceptible’ or ‘perfect’ state that always
gives zeros, or from a ‘susceptible’, ‘imperfect’ state that produces both zero and posi-
tive counts according to a standard count data distribution. Lambert (1992) introduced
the zero-inflated Poisson (ZIP) regression model and applied it for modeling defects in
manufacturing processes, where defects are assumed coming from a ‘perfect’ state with
a probability π or an ‘imperfect’ state with a probability 1 − π . While counts from the
‘perfect’, ‘no-defect’ state are always zero, those from the ‘imperfect’ state follow a Poisson
distribution. The probability mass function (pmf) of a random variable having a ZIP or
zero-inflated negative binomial (ZINB) distribution can be written as

Pr(Yi = k) = πiI(k = 0) + (1 − πi)g(k|θ i), k = 0, 1, 2, . . . , (1)

where the mixing parameter πi is interpreted as the probability of a count being from the
‘non-susceptible’ or ‘not-at-risk’ latent class, I(T) is an indicator variable taking 1 when
T is true, and 0 when T is false; g is a Poisson or negative binomial mass function, and
θ i is the vector of parameters in g. When g is the Poisson mass function, θ i is equal to
the mean μi of the distribution, and for a negative binomial probability mass function g,
θ i = (μi,α), where μi is the mean of the distribution and α is the dispersion parameter.
In this paper, we will use the following parameterization for the probability mass function
of a negative binomial distribution with mean μ and dispersion parameter α.

f (y|μ,α) = �(y + α)

y!�(α)

(
α

α + μ

)α (
μ

α + μ

)y
, where y = 0, 1, . . . .

In zero-inflated count models, the logit and the log link functions are typically speci-
fied for the mixing probability πi and the mean of the assumed standard distribution μi,
respectively, as

logit(πi) = w′
iγ and log(μi) = x′

iξ ,

where wi and xi are q × 1 and p × 1 vectors of covariates for the ith subject, and γ =
(γ1, γ2, . . . , γq)′ and ξ = (ξ1, ξ2, . . . , ξp)′ are regression parameters. For n independent
observations, the ZIP likelihood function is

L(ξ , γ |y) =
n∏

i=1
{1 + ew

′
iγ }−1

{
ew
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iγ + e− exp(x′
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The corresponding likelihood function for the ZINB model can be written as

L(ξ , γ ,α|y) =
n∏

i=1
{1 + ew

′
iγ }−1

{
ew

′
iγ +

(
α

α + ex′
iξ

)α}I(yi=0)

×
n∏

i=1

{
�(yi + α)

yi!�(α)

(
α

α + ex′
iξ

)α
(

ex′
iξ

α + ex′
iξ

)yi}I(yi>0)

Since interpretations of parameters γ and ξ in ZIP and ZINB models apply to the
two latent subpopulations, they do not directly describe the overall population mean.
Although the overall mean, E(Yi) = νi, for ith subject could be estimated from such
models by

νi = ex′
iξ

1 + ew′
iγ

and transformations such as the delta method could be applied to estimate the corre-
sponding variance, it is not always easy to understand the behavior of νi. In particular,
determining the overall effects of an exposure variable on incidence density ratios is chal-
lenging especially when the linear predictors from both the mixing proportions and the
Poisson mean model contain the exposure variable (Long et al. 2014).

Marginalized ZIP and ZINBmodels

To estimate the overall effects of covariates on the population mean, marginalized zero-
inflated Poisson (Long et al. 2014) and marginalized zero-inflated negative binomial
(Preisser et al. 2016) models specify parameters for the probability of being an excess zero
(i.e., πi) and the marginal mean νi = E(yi) = (1 − πi)μi as

logit(πi) = w′
iγ and log(vi) = x′

iβ ,

where β = (β1,β2, . . . ,βp) is a vector of regression parameters for νi that have the
same interpretations for the effects of exposures on the marginal mean as in Poisson and
negative binomial regression, whereas the parameters in γ have the same latent class
interpretations for zero-inflation as in ZIP and ZINB models. The MZIP and MZINB
likelihood functions are obtained by replacing μi by νi/(1 − πi) in the ZIP and ZINB
likelihoods, respectively.
The next section introduces methods of estimating regression parameters for the over-

all population mean of heterogeneous counts generated from non-degenerate mixture
distributions. With the aim of expanding the pool of two-part marginalized models for
counts, special consideration is given to data generating mechanisms based on mixtures
of two Poissons and a negative binomial with a Poisson distribution.

Finite mixture models

Finite mixture distributions have been used to model counts obtained from heteroge-
neous populations (Wang et al. 1996; Schlattmann 2009; Morgan et al. 2014). In the
general finite mixture model, the source population is assumed to be a partition ofm ≥ 2
latent subpopulations; with a probability πij, the count random variable Yi corresponding
to the ith individual takes a value from the jth subpopulation according to a distribution
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specific to the subpopulation. An m-component mixture distribution can be defined as
(Frühwirth-Schnatter 2005; Wedel and DeSarbo 1995)

Pr(Yi = yi|π , θ i) =
m∑
j=1

πjfj(yi|θ ij)

where the components f1, f2, . . . , fm are probability mass functions of known distributions,
θ i = (θ i1, . . . , θ im)′ where θ ij is the vector of parameters in fj, and π = (π1,π2 . . . ,πm)′

is a vector of mixing probabilities with 0 ≤ πj ≤ 1 and
∑m

j=1 πj = 1. While the mixture
distribution for zero-inflated counts in equation (1) allows mixing probabilities to vary
across individuals, conventional finite mixture models assume a constant probability, πj,
corresponding to the jth subpopulation and impose heterogeneity through fj(yi|θ ij).
The Poisson mixture distribution, where

fj(yi|μij) = e−μijμ
yi
ij

yi!

with μij being the mean of the jth component distribution, is a popular finite mixture
model for count data. In Poisson mixture regression, the mean μij, j = 1, . . . ,m, is
modeled as a function of covariates using the log link. Wang et al. (1996) discuss that
such models are identifiable for full rank design matrices. While finite mixture mod-
els enable flexible modeling of counts from heterogeneous populations, their parameters
have latent class interpretations. Such coefficients do not directly provide inferences
regarding the effects of covariates on the overall population mean (Min and Agresti 2005;
Roeder et al. 1999).
For m = 2, the pmf of a random variable with a Poisson-Poisson mixture distribution

can be written as

f (yi|π ,μ1i,μ2i) = π fP1(yi|μ1i) + (1 − π)fP2(yi|μ2i)

where π is a mixing probability, and fP1 and fP2 are Poisson mass functions with corre-
sponding mean parameters μ1i and μ2i. Similarly, a negative binomial-Poisson random
variable has a pmf given by

f (yi|πi,μ1i,μ2i,α) = π fP(yi|μ1i) + (1 − π)fNB(yi|μ2i,α). (2)

In Eq. (2), fP is a Poisson pmf with mean parameter μ1i and fNB a negative binomial pmf
with mean and dispersion parameters μ2i and α, respectively. The marginal mean, νi, of a
random variable Yi having either of the two mixture distributions can be written as

νi = πμ1i + (1 − π)μ2i. (3)

In traditional finite mixture models, separate regression equations are specified for
the mean of each component of the mixture. In general, νi depends upon a complicated
function of the regression coefficients from the components. In the next section, new
marginalized models are specified for direct inference regarding the effects of covariates
on νi.

Marginalized finite mixture models

Solving for μ2i in Eq. (3) gives

μ2i = νi − πμ1i
1 − π

. (4)
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To estimate a model for νi, the likelihood functions of Poisson-Poisson and nega-
tive binomial-Poisson mixture models can be written as functions of νi by replacing
μ2i by the linear function of the marginal mean in Eq. (4). Thus, marginalized Poisson-
Poisson (MPois-Pois) and negative binomial-Poisson (MNB-Pois) pmfs can be written as
in Eqs. (5) and (6), respectively:

fMPP(yi|π ,μ1i, νi) = π
e−μ1iμ

yi
1i

yi!
+ (1 − π)

e−
νi−πμ1i
1−π

[
νi−πμ1i
1−π

]yi
yi!

(5)

fNBP(yi|π ,α,μ1i, νi) = π
e−μ1iμ

yi
1i

yi!
+(1−π)

�(yi + α)

yi!�(α)

(
α

α + νi−πμ1i
1−π

)α (
νi−πμ1i
1−π

α + νi−πμ1i
1−π

)yi

(6)

TheMPois-Pois model is defined through Eq. (5) with specification of generalized linear
models in (7) for the relationship of covariates to νi and μ1i,

log(νi) = x′
iβ (7)

log(μ1i) = z′
iξ

logit(π) = ρ

where xi and zi are vectors of covariates and β and ξ are corresponding vectors of regres-
sion coefficients, and −∞ < ρ < ∞ is a constant. Although ξ and ρ are considered
nuisance parameters that are not of primary interest, they need to be modeled to facilitate
maximum likelihood estimation of β in the marginal mean model. The logarithm of μ1i is
modeled by using a linear predictor that involves covariates as in standard finite mixture
Poisson models. The mixing parameter π is modeled as a constant using the logit link to
guarantee that its estimate is between 0 and 1.
A commonmodel specification is xi = zi such that β and ξ are p×1 vectors of parame-

ters. However, the covariates that are included in modeling νi andμ1i may be different. As
the main interest is in β , a reduced set of covariates zi may be considered when it is nec-
essary for computational tractability. Alternatively, a shared-parameter model (Preisser
et al. 2016) may be used to incorporate a large number of covariates with relatively few
parameters.
The MNB-Pois model defined through Eqs. (6) and (7) also requires estimation of the

dispersion parameter α via a model specified as

log(α) = −τ . (8)

The link functions in Eqs. (7) and (8) correspond to νi > 0,μ1i > 0, 0 < π < 1 and α > 0.
For n independent count random variables Y1,Y2, . . . ,Yn with corresponding realiza-

tions y1, y2, . . . , yn, the likelihood function for MPois-Pois models is given by Eq. (9).

L(ρ,β , ξ |y) =
n∏

i=0

1
(1 + eρ)yi!

{
eρ exp(−ez

′
iξ )ez

′
iξyi + e−η(ρ,β ,ξ ;xi,zi)η(ρ,β , ξ ; xi, zi)yi

}

(9)
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with

η(ρ,β , ξ ; xi, zi) = ex
′
iβ(1 + eρ) − eρez

′
iξ . (10)

Similarly, the likelihood function for the MNB-Pois model can be specified as

L(ρ, τ ,β , ξ |y) =
n∏

i=0

{
�(yi + e−τ )

(1 + eρ)�(yi + 1)�(e−τ )

(
e−τ

e−τ + η(ρ,β , ξ ; xi, zi)

)e−τ

×
(

η(ρ,β , ξ ; xi, zi)
e−τ + η(ρ,β , ξ ; xi, zi)

)yi }
+

n∏
i=0

eρ exp(−ez′
iξ )ez′

iξyi

(1 + eρ)yi!

where η(ρ,β , ξ ; xi, zi) has the same expression as in Eq. (10). With carefully chosen
starting parameter values, marginalized finite mixture models can be fitted using quasi-
Newton optimization. Guidance for specifying starting values and use of SAS Proc
NLMIXED for fitting the proposed models is presented as Additional file 1 (Benecha
et al., 2017) along with further discussion of connections between the models in
“Marginalized ZIP and ZINBmodels” and “Marginalized finite mixture models” sections.
Finally, with respect to mixture Eq. (2), solving for μ1i in (3) gives

μ1i = νi − (1 − π)μ2i
π

. (11)

Inserting this expression for μ1i in the standard mixture likelihood function based
on Eq. (2) gives a likelihood function for a model that is different from MNB-Pois.
The alternative model, which marginalizes over the Poisson part versus MNB-Pois that
marginalizes over the NB part, is not considered owing to unresolved computational
issues in the applications.

Simulation study

Simulation studies were performed to examine the properties of MPois-Pois and MNB-
Pois models for various sample sizes. Counts from these models were generated from the
probability mass functions in Eqs. (5) and (6), where π , μ1i, νi and α are determined from

log(νi) = x′
iβ = β0 + β1x1i + β2x2i + β3x3i

log(μ1i) = z′
iξ = ξ0 + ξ1x1i + ξ2x2i + ξ3x3i

logit(π) = ρ,

log(α) = −τ

with xi = zi and x1i ∼ Poisson(2)/3, x2i ∼ exp(1), x3i ∼ Benoulli(0.4), β0 = 1.5, β1 =
−0.1, β2 = −0.2, β3 = 0.5, ξ0 = 1.5, ξ1 = −0.5, ξ2 = −0.5 , ξ3 = 1, ρ = −0.4 and τ =
−0.5. Using these specifications, samples of sizes 100, 200, 500 and 1000 were generated
corresponding toMPois-Pois andMNB-Pois models. Poisson and negative binomial (NB)
regression and four marginalized count models, namely MZIP, MZINB, MPois-Pois and
MNB-Pois, were then fitted to the data, where each simulation was repeated 10,000 times.
To estimate Type I error rates of testingH0 : β1 = 0 vs H1 : β1 �= 0, all the simulations
were repeated by generating data using β1 = 0, but keeping all the remaining parameter
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and covariate values the same as described previously. For each of the sixmodels, the Type
I error rates were calculated among converged model fits as the proportion of p-values
from two-sided Wald tests that were less than 0.05.
For MPois-Pois generated data, estimates of β1, β2 and β3 had low biases for all models

and all sample sizes (Table 1). The MPois-Pois model had Type I error rates for β1 close
to 0.05, while the remaining models tended to over-estimate the error rates (Table 2). The
MPois-Pois model estimated coverages of 95% confidence intervals for β1, β2 and β3 that
were close to the nominal value (Table 3). Whereas NB, MZINB and MNB-Pois models
tended to have only slight undercoverage, Poisson and MZIP had coverage ranging from
88 to 92%. Convergence rates for MPois-Pois simulation scenarios ranged from 96.2 to
99.3%, while convergence rates ranged from 88.0 to 90.2% for MNB-Pois, from 75.9 to
98.4% for MZIP, and from 72.0 to 96.6% for the MZINB models. Convergence was 100%
for Poisson and NB regression for all sample sizes.
When the data are generated from the MNB-Pois model, the MNB-Pois model had low

percent relative median biases for β1, β2 and β3, and the biases appear to decrease as
sample sizes increase (Table 4). The corresponding estimates from the Poisson, NB and
MZINB models also have low biases, but those from MPois-Pois and MZIP models are
generally higher. In addition, the performance of the true MNB-Pois model with regard
to Type I error rates (for β1) and coverages of 95% confidence intervals (for β1, β2 and
β3) is superior to Poisson, MZIP and MPois-Pois models at all sample sizes (Tables 5
and 6, respectively) and has better performance than NB andMZINB for the sample sizes
of 500 and 1000. Over 96% of MNB-Pois models converged for sample sizes of 200 or
more, with 91% convergence for sample size of 100. Coverage ranged from 97.4 to 100%
for MZIP, from 92.0 to 99.4% for the MPois-Pois models, from 85.3 to 91.4% for MZINB
models and rates were 100% for Poisson andNB regression. Overall, the simulation results
indicate that when the true model is specified, MPois-Pois or MNB-Pois models esti-
mate marginal mean regression parameters with small biases, Type I errors close to the
assumed rate and coverages of 95% confidence intervals near 95% for sample sizes of 200
or greater.

Table 1 Percent relative median biases of estimates of β1, β2 and β3 from marginalized mixture
models fitted to data generated from the MPois-Pois model with 10,000 replications

Sample size Parameter Poisson MZIP MPois-Pois NB MZINB MNB-Pois

100 β1 2.03 1.40 −2.04 2.18 0.97 0.56

β2 0.77 −3.11 0.08 1.00 −3.45 1.54

β3 −0.30 −0.61 −0.70 −0.26 −0.74 −0.33

200 β1 0.97 1.70 −0.68 1.38 1.89 1.34

β2 −0.02 −2.64 −0.69 0.08 −2.65 0.62

β3 0.15 −0.43 −0.29 −0.09 −0.41 0.06

500 β1 −0.68 −0.36 −0.87 −0.79 −1.18 0.07

β2 0.04 −1.51 0.11 0.09 −1.44 0.78

β3 0.08 −0.16 −0.14 0.05 −0.11 0.19

1000 β1 −0.14 −0.37 −0.40 −0.07 −0.64 0.43

β2 0.48 −1.43 0.27 0.50 −0.91 0.88

β3 0.09 −0.08 0.06 0.07 −0.07 0.22
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Table 2 Type I error rates for the estimate of β1 from marginalized models fitted to data generated
from the MPois-Pois model with 10,000 replications

Sample size Poisson MZIP MPois-Pois NB MZINB MNB-Pois

100 0.127 0.102 0.068 0.077 0.070 0.073

200 0.131 0.106 0.067 0.077 0.072 0.069

500 0.135 0.112 0.060 0.079 0.073 0.065

1000 0.134 0.112 0.054 0.072 0.066 0.061

Applications
A caries incidence trial

The methods described in this article were applied to the Lanarkshire caries incidence
trial introduced in “Introduction” section. A total of 4294 children ages 11–12 were ran-
domized to either sodium fluoride (NaF), sodium fluoride plus sodium trimetaphosphate
(NaFTMP) or sodiummonofluorophosphate (SMFP) toothpaste formulations and dental
exams were performed at baseline and after 1, 2 and 3 years. The analysis was based on
3412 children followed up until year 2 and the response variable of interest was the num-
ber of new decayed, missing and filled surfaces (DMFS). Let NaF = 1 if the child was
given sodium fluoride and 0 otherwise and let NaFTMP = 1 if the child was random-
ized to the NaFTMP group and 0 otherwise; children in the SMFP group make up the
reference treatment category (NaF = NaFTMP = 0). In addition to treatment allocation,
baseline caries (bc: 1= high, 0 = low) and baseline calculus (calc:1=yes, 0= no) were con-
sidered as explanatory variables. High baseline caries values correspond to at least one
decayed, missing or filled anterior tooth or premolar, and a baseline calculus value of ‘1’
refers to the existence of calcified deposits on the teeth formed by the continuous pres-
ence of dental plaque (Stephen et al. 1994; Preisser et al. 2014). An important feature of
the data is the large number of zero counts in the outcome variable, as 658 (19.28%) of the
3412 children had zero DMFS counts (Fig. 1). Since the percentage of zeros is high, two-
part marginalized models may provide less biased estimates and better model fits than
one-part generalized linear models.
Poisson, NB, MZIP, MZINB, MPois-Pois and MNB-Pois models were applied to com-

pare the efficacy of the toothpaste formulations with respect to the marginal mean DMFS

Table 3 Coverages of 95% confidence intervals for estimates of β1, β2 and β3 from marginalized
models fitted to data generated from the MPois-Pois model with 10,000 replications

Sample size Parameter Poisson MZIP MPois-Pois NB MZINB MNB-Pois

100 β1 89.9 91.3 93.7 93.3 93.4 93.8

β2 89.2 90.9 93.2 92.4 92.8 92.9

β3 91.8 92.9 95.2 94.9 94.7 95.1

200 β1 89.4 91.2 94.1 93.6 93.8 94.1

β2 88.9 90.9 93.3 92.2 92.9 93.2

β3 91.4 92.6 95.1 95.1 94.9 95.2

500 β1 88.9 90.7 94.1 92.9 93.5 93.9

β2 88.6 90.5 94.4 92.0 93.1 93.9

β3 91.0 92.0 94.9 95.1 94.8 94.9

1000 β1 89.3 90.9 94.7 93.5 93.9 94.4

β2 88.5 90.8 94.7 92.1 93.1 93.8

β3 91.1 92.1 95.0 95.0 95.0 94.9
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Table 4 Percent relative median biases of estimates of β1, β2 and β3 from marginalized mixture
models fitted to data generated from the MNB-Pois model with 10,000 replications

Sample size Parameter Poisson MZIP MPois-Pois NB MZINB MNB-Pois

100 β1 6.94 23.51 6.80 10.48 13.72 11.95

β2 2.98 7.95 4.00 5.26 1.89 4.44

β3 0.01 1.40 −4.35 0.80 0.88 −0.25

200 β1 5.27 20.12 −14.85 5.45 7.41 4.57

β2 1.45 5.11 −1.12 2.49 0.07 2.02

β3 0.18 1.49 −5.44 0.38 0.36 0.33

500 β1 0.57 11.79 −29.97 1.31 0.73 −0.75

β2 0.66 2.81 −3.90 1.18 0.14 0.62

β3 0.39 1.52 −7.66 0.59 0.61 0.46

1000 β1 1.19 10.34 −34.68 1.92 2.39 0.00

β2 0.79 2.63 −4.75 1.00 0.39 0.87

β3 −0.01 0.97 −10.13 0.03 −0.01 −0.19

count. In the two-part models, the four binary covariates defined above were included
in each model part. The three best models were NB, MZINB and MNB-Pois, which pro-
duced fitted values that best matched the observed distribution of DMFS counts (Fig. 2)
and have the lowest AICs (Table 7). On the other hand, Poisson, MZIP and MPois-Pois
models, which did not directly account for overdispersion, had poor fits and gave standard
errors of regression coefficients for the marginal mean model that were too small. The
MNB-Pois model gave the best fit (lowest AIC) while its marginal mean model parameter
estimates and standard errors were similar in value to those of the next best fitting model,
MZINB.
Based on theMNB-Pois model, the estimated caries incidence density ratio for the chil-

dren who used the NaF toothpaste formulation versus children with the same baseline
status of caries and calculus who used SMFP was exp(−0.060) = 0.942 (95% CI: 0.874,
1.015; Table 8). The estimated caries incidence density ratio for the NaFTMP toothpaste
relative to SMFP was exp(−0.033) = 0.968 (95% CI: 0.882, 1.062). Thus, children in the
NaF and NaFTMP groups had a decrease in the marginal mean DMFS count by 5.8 and
3.2%, respectively, compared to children with the same baseline characteristics who were
assigned to the SMFP group. However, the associations are not statistically significant
since the confidence intervals of the two incidence density ratios include 1. Conversely,
inappropriate selection of the Poisson, MZIP or MPois-Pois models would have resulted
in the potentially misleading conclusion that toothpaste formulation with sodium fluo-
ride significantly reduces two-year incident caries relative to SMFP in this population of
children.

Table 5 Type I error rates for the estimate of β1 from marginalized models fitted to data generated
from the MNB-Pois model with 10,000 replications

Sample size Poisson MZIP MPois-Pois NB MZINB MNB-Pois

100 0.325 0.271 0.262 0.084 0.079 0.103

200 0.334 0.272 0.255 0.079 0.073 0.064

500 0.341 0.273 0.232 0.081 0.074 0.053

1000 0.340 0.273 0.240 0.076 0.072 0.049
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Table 6 Coverages of 95% confidence intervals for estimates of β1, β2 and β3 from marginalized
models fitted to data generated from the MNB-Pois model with 10,000 replications

Sample size Parameter Poisson MZIP MPois-Pois NB MZINB MNB-Pois

100 β1 72.3 77.4 76.9 92.5 92.4 89.7

β2 74.0 79.6 77.8 90.8 91.8 89.6

β3 74.4 79.4 83.0 94.0 93.7 92.0

200 β1 71.6 77.6 78.1 92.2 92.3 93.0

β2 72.8 79.1 78.9 91.0 91.8 92.7

β3 74.1 80.0 83.9 94.4 94.0 93.5

500 β1 71.2 77.0 78.1 92.1 92.2 94.2

β2 72.3 78.6 80.8 90.5 91.3 94.5

β3 73.6 79.7 80.2 94.3 93.9 94.5

1000 β1 71.7 77.5 76.2 92.7 93.1 95.0

β2 73.0 78.9 81.5 90.2 91.6 95.0

β3 74.1 80.7 71.6 94.6 94.6 95.3

Number of roots produced by shoots of the apple cultivar Trajan

In a horticultural experiment, Marin et al. (1993) recorded the number of roots pro-
duced by 270 micro-propagated shoots of the columnar apple cultivar Trajan. During
the rooting period, all shoots were maintained under identical conditions, but the shoots
themselves were cultured on media containing different concentrations of the cytokinin
6-benzylaminopurine (BAP), i.e., 2.2, 4.4, 8.8, and 17.6 μM, in growth cabinets with an 8
or 16 hour photoperiod. These data have been previously analyzed by Ridout et al.(1998,
2001) and Yang et al. (2009).
Each of the eight treatment combinations consisted of either 30 or 40 shoots, hence

resulting in a total of 270 shoots. Overall, 23.7% of the root counts were zero. However,
only two of 140 shoots produced under the 8 hour photoperiod were zeros whereas 62 of
130 shoots produced under the 16 h photoperiod failed to produce roots.

Fig. 1 Histogram of two-year DMFS increment for 3412 children ages 11–12 from a dental caries incidence
trial conducted in Lanarkshire, Scotland between 1988 and 1992
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Fig. 2 Observed (circles) and predicted relative frequencies of two-year DMFS increment for children in the
Lanarkshire caries trial

Five models including Poisson and NB regression were fitted with the following covari-
ates for the marginal mean: photoperiod (taking a value of 0 if 8 h and 1 if 16 h), log(BAP
concentration/2.2), and their interaction; the MZIP and MZINB models additionally
included photoperiod in the logit model part for zero-inflation whereas a MPois-Pois
model had a constant mixing parameter while including photoperiod in the latent mean
model part. Computational issues precluded fitting the MNB-Pois model.
Among the five models, the MPois-Pois model provided the best fit having the lowest

AIC with the MZINB model fitting the second best (Table 9). Based on the MPois-Pois
model, under the 8 hour photoperiod, each doubling of BAP concentration (i.e., a nat-
ural log(2) change) resulted in a statistically significant 5.7% (= [exp(log(2) × 0.080) −
1]×100%) increase in the number of roots produced (95% CI: 0.9%, 10.7%). Conversely,
under the 16 hour photoperiod, each doubling of BAP concentration resulted in a statis-
tically significant 9.1% (=[ 1 − exp(0.693 × −0.138)]×100%) decrease in the number of
roots produced (95% CI: 0.5%, 17.1%). The 16 hour photoperiod produced about half the
number of roots as the 8 hour photoperiod (Table 10).

Discussion and conclusions
In this article, marginal means of counts with unexplained heterogeneity were modeled
using two-component finite mixture distributions. Regression parameters were specified
in two-part marginalized models for direct estimation of exposure effects on the overall
mean count using maximum likelihood methods. Specifically, the proposed MPois-Pois
and MNB-Pois mixture models provide alternative model choices to MZIP and MZINB
for counts that are overdispersed or have many zeros. It may not always be clear whether
a zero-inflated count model or a model based on a finite mixture of two non-degenerate
components is more appropriate as Poisson and negative binomial distributions with
small means can generate a large amount of zeros. In the case of dental caries, zero-
inflated count regression models are sometimes used (Preisser et al. 2012) even though
caries researchers question whether any child can be immune to developing caries
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Table 8 Estimated log-likelihood, AIC and incidence density ratios (95% CI) comparing NaF and
NaFTMP with SMFP in the Lanakshire trial, based on four marginalized models

Incidence Density Ratio (95% CI)

Model NaF NaFTMP

Poisson 0.931 (0.898, 0.965) 0.949 (0.909, 0.992)

NB 0.946 (0.875, 1.022) 0.979 (0.890, 1.076)

MZIP 0.907 (0.867, 0.948) 0.902 (0.852, 0.953)

MZINB 0.942 (0.874, 1.015) 0.967 (0.881, 1.061)

MPois-Pois 0.866 (0.820, 0.915) 0.940 (0.879, 1.006)

MNB-Pois 0.942 (0.874, 1.015) 0.968 (0.882, 1.062)

(Mwalili et al. 2008). In many fields, use of finite mixtures of non-degenerate components
may have a stronger theoretical basis than assuming a mixture of at-risk and not-at-risk
latent classes. While there is sometimes interest in latent classes, researchers across many
fields of inquiry are frequently interested in quantifying the effects of covariates on the
overall mean count while adjusting for unexplained heterogeneity. In such cases, marginal
mean regression parameters in MZIP, MZINB, MPois-Pois and MNB-Pois models have
straightforward interpretations in describing overall exposure effects on count outcomes.
As described in the Additional file 1 (Benecha et al. 2017), the marginalizedmodels pro-

posed in this article belong to a larger class of marginalized mixture models for counts.
In particular, when the mixing probability component of the model is fixed either with
or without covariates, the MZIP and MZINB models may be viewed as special cases of
corresponding MPois-Pois and MNB-Pois models where the Poisson component of the
latter twomodels has a mean of zero, rendering that component degenerate. In this sense,
the proposed models expand the family of two-part marginalized regression models by
providing alternatives to MZIP and MZINB regression. In the absence of theoretical jus-
tification, the merit of each model in the larger class of alternative marginalized models is
judged based on goodness of fit considerations. Because our main interest is in modeling
marginal means of counts, model parameters that are not of primary interest are allowed
to depend on covariates, or none whatsoever, to complete specification of the likelihood
function. This provides for model parsimony as needed while allowing all the relevant
covariates to be estimated in the marginal mean model.
A simulation study indicated that when the truemodel is specified, each of the proposed

marginalized mixture models provides low biases, Type I errors and confidence interval
coverages close to the nominal levels. As shown in additional simulation studies reported
in Benecha et al. (2017), model mis-specification can result in undercoverage and inflated
Type I errors. Use of empirical covariance estimation as proposed by Long et al. (2014)
for MZIP models would likely improve coverage and Type I errors for large samples. In
any case, assessment of model goodness-of-fit is highly recommended. Unfortunately,
such assessment is often hampered by computational difficulties in fitting complex mod-
els such as MNB-Pois when the data at hand do not contain sufficient information to
estimate all the model parameters. Reducing the number of covariate parameters often
provides an expeditious remedy for this situation. Another advance would be to develop
score tests for goodness of fit, as proposed by Ridout et al. (2001) in comparing ZIP and
ZINB models, that do not require fitting the model under the alternative hypothesis.
In summary, the proposed marginalized mixture modeling framework provides a wide

range of alternatives to directly estimate exposure effects on marginal means of counts



Benecha et al. Journal of Statistical Distributions and Applications  (2017) 4:3 Page 15 of 17

Ta
b
le

9
M
ar
gi
na
liz
ed

co
un

tr
eg

re
ss
io
n
m
od

el
es
tim

at
es

(e
st
)a
nd

st
an
ar
d
er
ro
rs
(s
e)
fo
rt
he

nu
m
be

ro
fr
oo

ts
pr
od

uc
ed

by
27
0
sh
oo

ts
of

th
e
ap

pl
e
cu
lti
va
rT
ra
ja
n

Po
is
so
n

N
Ba

M
ZI
P

M
ZI
N
Bb

M
Po

is
-P
oi
s

Va
ria
bl
e

es
t

se
es
t

se
es
t

se
es
t

se
es
t

se

M
ar
gi
na
lm

ea
n
m
od

el

In
te
rc
ep

t
1.
88
0

0.
05
8

1.
87
6

0.
12
6

1.
85
4

0.
06
0

1.
85
5

0.
07
2

1.
86
3

0.
05
6

Ph
ot
op

er
io
d,
16
h

-0
.7
11

0.
10
4

-0
.7
06

0.
18
8

-0
.6
20

0.
13
4

-0
.6
18

0.
15
2

-0
.6
87

0.
14
4

lo
g(
BA

P/
2.
2)

0.
06
9

0.
04
2

0.
07
3

0.
09
2

0.
09
2

0.
04
2

0.
09
1

0.
05
2

0.
08
0

0.
03
4

In
te
ra
ct
io
n

-0
.1
76

0.
07
7

-0
.1
82

0.
13
8

-0
.2
58

0.
07
8

-0
.2
59

0.
09
4

-0
.2
18

0.
07
5

Ze
ro
-in

fla
tio

n
m
od

el
La
te
nt

cl
as
s
m
ea
n
m
od

el

In
te
rc
ep

t
-4
.2
62

0.
73
2

-4
.3
81

0.
82
7

2.
14
2

0.
05
1

Ph
ot
op

er
io
d,
16
h

4.
15
9

0.
75
3

4.
26
4

0.
84
6

-4
.2
38

0.
55
2

M
ix
in
g
pr
ob

ab
ili
ty
m
od

el
c

ρ
0.
17
8

0.
18
4

π
0.
54
4

M
od

el
fit
st
at
is
tic
s

-2
lo
gl
ik

15
66
.4

14
02
.1

12
50
.2

12
36
.5

12
36
.4

A
IC

15
74
.4

14
12
.1

12
62
.2

12
50
.5

12
50
.4

a I
n
th
e
N
B
m
od

el
,φ̂

=
0.
52
2
(s
.e
.=

0.
08
3)

b
In
th
e
M
ZI
N
B
m
od

el
,τ̂

=
−2

.6
62

(s
.e
.0
.3
51
)c
or
re
sp
on

di
ng

to
φ̂

=
eτ̂

=
0.
07
0.

c I
n
th
e
M
Po

is
-P
oi
s
m
od

el
,π

=
1/

(1
+

e−
ρ
)



Benecha et al. Journal of Statistical Distributions and Applications  (2017) 4:3 Page 16 of 17

Table 10Model-predicted mean number of roots of the apple cultivar Trajan produced by the eight
treatments

Treatment No. of
shoots

Observed
mean

Count regression modela

Poisson NB MZIP MZINB MPP

8h + BAP 2.2 30 5.83 6.55 6.53 6.39 6.39 6.44

8h + BAP 4.4 30 7.77 6.87 6.87 6.81 6.81 6.81

8h + BAP 8.8 40 7.50 7.21 7.22 7.25 7.25 7.20

8h + BAP 17.6 40 7.15 7.56 7.60 7.73 7.72 7.60

16h + BAP 2.2 30 3.27 3.22 3.22 3.43 3.45 3.24

16h + BAP 4.4 30 2.73 2.99 2.99 3.06 3.07 2.95

16h + BAP 8.8 30 3.13 2.78 2.77 2.73 2.73 2.68

16h + BAP 17.6 40 2.45 2.58 2.57 2.43 2.43 2.43
aMPP = MPois-Pois model

generated from heterogeneous populations. The methods are fairly straightforward while
requiring consideration of carefully chosen starting values and can be implemented in
most statistical software. Future research could extend the marginalized count regression
models to mixtures of two negative binomial distributions or to those based on Eq. (11)
as an alternative to MNB-Pois, to allow the mixing probabilities to depend on covariates,
and to longitudinal data.

Additional file

Additional file 1: Marginalized Mixture Models for Count Data from Multiple Source Populations. Supplemental
Material. (PDF 100 kb)
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