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Abstract

We construct a d-dimensional discrete multivariate distribution for which any proper
subset of its components belongs to a specific family of distributions. However, the
joint d-dimensional distribution fails to belong to that family and in other words, it is
‘inconsistent’ with the distribution of these subsets. We also address preservation of this
‘inconsistency’ property for the symmetric Binomial distribution, and some discrete
distributions arising from the multivariate discrete normal distribution.

Keywords: Binomial distribution, Discrete normal and skew-normal, Multivariate
distributions, Sign function, Symmetric distributions

AMS Subject Classification: 62E10; 62H05

1 Introduction
If a multivariate distribution is parametrically specified, often the lower-dimensional
marginals follow the same distribution of an appropriate dimension. For example, all the
lower-dimensional distributions of amultivariate Gaussian distribution are Gaussian. The
converse is however not necessarily true. For example, Dutta and Genton (2014) gave
a construction of a non-Gaussian multivariate distribution with all lower-dimensional
Gaussians and considered some generalizations of this for a certain class of elliptical and
skew-elliptical distributions. In the discrete case, all the lower-dimensional marginals
of a bivariate Binomial distribution (Bairamov and Gultekin 2010) follow the Binomial
distribution. Conversely, given a set of marginal distributions, different dependence struc-
tures can give rise to different joint distributions. In a more general setting, Hoeffding
(1940) and Fréchet (1951) independently obtained a characterization of the class of bivari-
ate distributions with given univariate marginals. Characterization problems for discrete
distributions using conditional distributions and their expectations have been investi-
gated by several authors; see, e.g., Dahiya and Korwar (1977), Ruiz and Navarro (1995),
and Nguyen et al. (1996). The paper by Conway (1979) also discussed some additional
properties and derived appropriate relationships for such systems, while a method of
constructing multivariate distributions with specified univariate marginals and a given
correlation matrix was studied by Cuadras (1992).
The main aim of this paper is the converse question for the discrete multivariate setup.

More specifically, we construct a discrete multivariate distribution (see, e.g., Johnson et al.
(1997)), all of whose lower-dimensional marginals follow the same symmetric distribution
but the joint distribution does not conform to that pattern and has a different distribution.
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We say that the joint distribution is ‘inconsistent’ with the distribution of its marginals.
The main idea of this construction is based on a transformation using the sign function
applied to a class of discrete symmetric random variables. The sign function plays a key
role in yielding a distribution with ‘restricted support’.
The structure of the paper is as follows. In Section 2, we first motivate our construc-

tion for the bivariate set-up with a simple case starting from a symmetric Binomial
distribution. Generalization of this result to symmetric discrete distributions with a
specific support in higher dimensions is explored in Section 3 where our main result
is stated. We also address preservation of this ‘inconsistency’ property for the sym-
metric Binomial distribution in Section 4, a class of symmetric discrete distributions
constructed from symmetric continuous distributions in Section 5, and the multivariate
discrete skew-normal distribution in Section 6. Proofs of all the theorems are provided in
the Appendix.

2 Amotivating bivariate example
Consider a random variable U that follows a Binomial distribution with parameters n =
2 and p = 1

2 . The support of this distribution is the set N2 = {0, 1, 2}, and it has the
following probability mass function (pmf):

q0(u) =
(
2
u

)
1
4
ifu ∈ N2.

Let U1 and U2 be two independent copies of U. The support of the joint distribution of
U1 and U2 isN 2

2 = {0, 1, 2} × {0, 1, 2}. Thus, the joint pmf of U1 and U2 is

q0(u1,u2) =
(

2
u1

)(
2
u2

)
1
16

if (u1,u2) ∈ N 2
2 .

Define X = U − 1. The support of the distribution of X is the setZ1 = {−1, 0, 1}, and it
has the pmf:

q(x) =
(

2
x + 1

)
1
4
if x ∈ Z1.

Clearly, this is a version of the Binomial distribution which is symmetric about 0. Let X1
and X2 be two independent copies of X. The support of the joint distribution (X1,X2)T is
Z2
1 = {−1, 0, 1} × {−1, 0, 1}. Thus, the joint pmf of X1 and X2 is

q(x1, x2) =
(

2
x1 + 1

) (
2

x2 + 1

)
1
16

if (x1, x2) ∈ Z2
1 . (1)

Recall the univariate sign function, namely,

S(x) =

⎧⎪⎨
⎪⎩

−1, if x < 0,
0, if x = 0,
1, if x > 0.

We use a modified version of this sign function. Consider the following transformation:

X∗
1 = X1S2,1 and X∗

2 = X2S1,2,

where S1,2 and S2,1 are defined as follows:
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S1,2 =

⎧⎪⎨
⎪⎩

−1, if X1 < 0, or (X1 = 0 and X2 �= 0),
0, if (X1 = 0 and X2 = 0),
1, if X1 > 0,

and

S2,1 =

⎧⎪⎨
⎪⎩

−1, if X2 < 0, or (X2 = 0 and X1 �= 0),
0, if (X2 = 0 and X1 = 0),
1, if X2 > 0.

We now study the distribution of X∗
1 .

P(X∗
1 = −1) = P(X1S2,1 = −1)

= P(X1 = 1, S2,1 = −1) + P(X1 = −1, S2,1 = 1)

= P(X1=1,X<0)+ P(X1 = 1,X2 = 0,X1 �= 0) + P(X1 = −1,X2 > 0)

= P(X1 = 1,X2 = −1) + P(X1 = 1,X2 = 0) + P(X1 = −1,X2 = 1)

= 1
16

+ 1
8

+ 1
16

= 1
4
,

and

P(X∗
1 = 0) = P(X1S2,1 = 0)

= P(X1 = 0, S2,1 �= 0) + P(X1 �= 0, S2,1 = 0) + P(X1 = 0, S2,1 = 0)

= {
P(X1 = 0,X2 < 0) + P(X1 = 0,X2 > 0)

} + 0 + P(X1 = 0,X2 = 0)

= P(X1 = 0,X2 = −1) + P(X1 = 0,X2 = 1) + P(X1 = 0,X2 = 0)

= 1
8

+ 1
8

+ 1
4

= 1
2
.

This now implies that P(X∗
1 = 1) = 1/4. Hence, the distribution of X∗

1 is the same
as that of the distribution of X. Similarly, one can show that X∗

2 is identically distributed
with X.
By our construction, the support of the joint distribution is on a restricted set, i.e.,

X∗
1 · X∗

2 = X1S2,1 · X2S1,2 = X1S1,2 · X2S2,1

which is non-negative with probability one. The joint distribution of (X∗
1 ,X∗

2 )
T is as

follows:

P(X∗
1 =−1,X∗

2 =−1)=P(X1=−1,X2 = 1) + P(X1 = 1,X2 = −1) = 1
16

+ 1
16

= 1
8
,

P(X∗
1 = −1,X∗

2 = 0) = P(X1 = 1,X2 = 0) = 1
8
,

P(X∗
1 = 0,X∗

2 = −1) = P(X1 = 0,X2 = 1) = 1
8
,

P(X∗
1 = 0,X∗

2 = 0) = P(X1 = 0,X2 = 0) = 1
4
,

P(X∗
1 = 0,X∗

2 = 1) = P(X1 = 0,X2 = −1) = 1
8
,

P(X∗
1 = 1,X∗

2 = 0) = P(X1 = −1,X2 = 0) = 1
8
, and

P(X∗
1 = 1,X∗

2 = 1) = P(X1 = −1,X2 = −1) + P(X1 = 1,X2 = 1) = 1
16

+ 1
16

= 1
8
.

Let IA(x) be the indicator function, which is defined as
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Fig. 1 3D plots of the two probability mass functions q(x1, x2) and q∗(x1, x2) onZ2
2

IA(x) =
{
1, if x ∈ A,
0, if x /∈ A.

It is easy to check that the joint pmf of (X∗
1 ,X∗

2 )
T can be re-written in a consise form as

follows:

q∗(x1, x2) = q(x1, x2)I{0}(x1x2) + 2q(x1, x2)I(0,∞)(x1x2) for (x1, x2) ∈ Z2
1 ,

where the expression of q(x1, x2) is defined in (1). The joint distribution of (X∗
1 ,X∗

2 )
T is

asymmetric, and clearly does not belong to the family of distributions containing the joint
distribution of (X1,X2)T as the support of

(
X∗
1 ,X∗

2
)T is restricted to two quadrants only,

although the univariate distributions of X∗
1 and X∗

2 are the same as that of the distribution
of X. The plot in Fig. 1 demonstrates the basic idea of shifting of probability mass to only
two quadrants (see the right panel of Fig. 1), and clearly shows the difference between the
pmfs q(x1, x2) and q∗(x1, x2).
This motivates us to construct a d-dimensional random vector such that the distribu-

tion of any proper subset of its components belongs to a certain family of distributions,
but the joint distribution, with all the d components taken together, fails to conform to
that family of distributions.

3 General symmetric discrete multivariate distributions
Wenow consider a general discrete distribution symmetric about the point 0 with support
on a finite or countably infinite set S, given by the pmf

q(x) =
∑
j∈S

δ(x − j)mj, (2)

where 0 ≤ mj ≤ 1 andmj = m−j for all j ∈ S with
∑

j∈Smj = 1.
Let X1, . . . ,Xd be independent copies of X ∼ q(·). Here, the function δ(·) is defined as

follows:

δ(x) =
{
1, if x = 0,
0, if x �= 0.
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We have I{0}(x) = δ(x). The joint pmf of (X1, . . . ,Xd)
T is given by

q(x) =
d∏

i=1
q(xi) =

d∏
i=1

⎧⎨
⎩

∑
j∈S

δ(xi − j)mj

⎫⎬
⎭ ,

where x = (x1, . . . , xd)T ∈ S
d.

Again, consider the transformation (X1, . . . ,Xd) → (
X∗
1 , . . . ,X∗

d
)
such that

X∗
1 = X1S2,1, . . . ,X∗

i−1 = Xi−1Si,i−1, . . . ,X∗
d−1 = Xd−1Sd,d−1,X∗

d = XdS1,d, (3)

where the modified sign function is defined as

Si,i−1 =

⎧⎪⎨
⎪⎩

−1, if Xi < 0 or (Xi = 0 and Xi−1 �= 0),
0, if (Xi = 0 and Xi−1 = 0),
1, if Xi > 0,

for i = 2, . . . , d, and

S1,d =

⎧⎪⎨
⎪⎩

−1, if X1 < 0 or (X1 = 0 and Xd �= 0),
0, if (X1 = 0 and Xd = 0),
1, if X1 > 0.

Now,
∏d

i=1 X∗
i = X1S2,1 · X2S3,2 · · ·XdS1,d = X1S1,d · X2S2,1 · · ·XdSd,d−1. Fix i ∈

{2, . . . , d}. Again, Xi < 0 ⇒ Si,i−1 = −1, hence XiSi,i−1 > 0, while Xi > 0 ⇒ Si,i−1 = 1,
hence XiSi,i−1 > 0. Also, Xi = 0 ⇒ XiSi,i−1 = 0. To summarize, XiSi,i−1 ≥ 0 for any
i = 2, . . . , d. Similarly, X1S1,d ≥ 0. Hence, we obtain

∏d
i=1 X∗

i ≥ 0.
Theorems 1 and 2 below state the joint distribution of

(
X∗
1 , . . . ,X∗

d
)T as well as the

distribution of the lower-dimensional vectors.

Theorem 1 The joint pmf of
(
X∗
1 , . . . ,X∗

d
)T is

q∗(x) = q(x)I{0}

⎛
⎝ d∏

i=1
xi

⎞
⎠ + 2q(x)I(0,∞)

⎛
⎝ d∏

i=1
xi

⎞
⎠ for x ∈ S

d.

Theorem 2 Any sub-vector
(
X∗
k1 , . . . ,X

∗
kd′

)T
of

(
X∗
1 , . . . ,X∗

d
)T with d′ < d is component-

wise independent, and the joint distribution of
(
X∗
k1 , . . . ,X

∗
kd′

)T
is the same as that of(

Xk1 , . . . ,Xkd′
)T .

In particular, this result holds true if S = Z = {. . . ,−1, 0, 1, . . .} or any proper subset of
Z which is symmetric about 0, (i.e., x ∈ S ⇔ −x ∈ S).

4 The symmetric binomial distribution
We started our investigation in Section 2 using a discrete distribution symmetric about 0
with support on the set N2, and extended it to the case of a general symmetric discrete
distribution symmetric about 0, supported on a finite or countably infinite subset S of R.
However, it is interesting to see whether such ‘inconsistency’ results continue to hold for
other symmetric distributions for which the point of symmetry is not necessarily 0.
Suppose that U follows a symmetric distribution with a finite or countably infinite

support and point of symmetry u0. Define X = U − u0. Then, X follows a symmetric
distribution about 0 with a finite or countably infinite support (as mentioned in (2)).
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Assume U ∼ Binomial(n, 1/2), and consider u0 to be n/2. We now have versions of
Theorems 1 and 2 for symmetric Binomial distributions.

5 Discrete symmetric distributions
Given any continuous distribution with distribution function (df ) F on R, we can define
its ‘discrete analogue’ (see, e.g., Alzaatreh et al. 2012) with pmf qd(·) as follows:

qd(x) = F(x + 1) − F(x), x ∈ Z,

with qd(x) ≥ 0 and
∑

x∈Z qd(x) = 1. If U ∼ F(·), then this implies that [U]∼ qd(·). Here,
[u] denotes the largest integer less than or equal to u.
Assume F to be symmetric about the point 0, i.e., F(x) + F(−x) = 1 for any x ∈ R.

Now, note that qd(0) = qd(−1) and the point of symmetry of [U] is clearly − 1
2 . Define

X =[U]+ 1
2 . Then, X is a discrete variate with support on a countably infinite set S which

is symmetric about the point 0, say, X ∼ qdS(·). In particular, if we take F(x) = �(x),
where �(·) is the df of the standard normal distribution, then we obtain the discrete nor-
mal distribution (dN) (Roy 2003). The pmf of X (say, qdN (·)) simplifies to be �(x+1/2)−
�(x − 1/2) with x ∈ S. Using this discretization idea, Chakraborty and Chakravarty
(2016) have proposed a discrete logistic distribution starting from the continuous two-
parameter logistic distribution. Now, we can construct versions of Theorems 1 and 2 for
such symmetric discrete probability distributions.

6 Themultivariate discrete normal and related distributions
In the multivariate setting (say, Rd), let Ud ∼ Nd(0, Id) be the d-dimensional normal
distribution with Id as the d×d identity matrix. We can define an analogue of the discrete
normal (dN) distribution on S

d as follows:

Xd =[Ud]+1
2
1d =

(
[U1]+1

2
, . . . , [Ud]+1

2

)T
. (4)

The joint pmf of Xd is the product
d∏

i=1
qdN (xi).

We now apply the transformation defined in Eq. (6) on the vector Xd stated in Eq. (4) to
obtain X∗

d. Define

Y∗
d = A1d + BX∗

d ,

where A,B ∈ S are discrete random variables independent of X∗
d. The support of the

random vector Y∗
d is the set Sd∗ , where S∗ is a countable set which depends on the joint

distribution of A and B. Define Y∗
d−1,d based on Y∗

d by selecting a subset of size d−1 from
the set {1, . . . , d}.

Theorem 3 The distributions of all the (d − 1)-dimensional random vectors Y∗
d−1,d

belong to the same family of distributions, but that of Y∗
d does not.

We now state consequences of Theorem 3 in some popular and important classes of
symmetric and asymmetric distributions derived from the multivariate discrete normal
distribution:
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• (Discrete Scale Mixture) Consider A = 0 (a degenerate random variable) and
B = W , where W is a non-negative, discrete random variable independent of X∗

d .
• (Discrete Skew-Normal ) Consider a discrete normal variate Xd+1 ∼ qdN (·)

independent of X∗
d . Define A = δ|Xd+1| and B = √

1 − δ2 (a degenerate random
variable) with −1 < δ < 1 (also see pp.128-129 of Azzalini (2014)).

Using Theorem 3, we now obtain this ‘inconsistency result’ for a class of discrete
skew-normal distributions. One can also extend this results to a class of skew-elliptical
distributions starting from the discrete scale mixture. More general results using the idea
of modulation of symmetric discrete distributions proposed recently by Azzalini and
Regoli (2014) still remain open.

Appendix: Proofs andMathematical Details
Proof 1 (Proof of Theorem 1) We break the proof into two parts, namely, Case I and

Case II.
Case I:

∏d
i=1 X∗

i = 0. This fact now implies that at least one of the X∗
i ’s is zero. With-

out loss of generality, let X∗
1 = 0 and consider the event

(
X∗
1 = 0,X∗

2 = x2, . . . ,X∗
d = xd

)
.

Under the assumption that X∗
1 = 0, we now establish the following facts:

(F1) X∗
i = 0 ⇒ Xi = 0 for any i = 1, . . . , d. To show this, we note that if X∗

1 = 0, then
X1S2,1 = 0. Now, either X1 = 0 or S2,1 = 0. If X1 = 0 then we are done. If S2,1 = 0, then
X2 = X1 = 0, in particular X1 = 0. More generally, X∗

i = 0 ⇒ Xi = 0 for any i = 1, . . . , d.
(F2) If X∗

1 = 0, then Xd = −xd . To show this, suppose that X∗
d �= 0, then we obtain

XdS1,d �= 0 and in particular Xd �= 0. We have assumed that X∗
1 = 0, now using (F1) we

know that X1 = 0. Combining the facts that X1 = 0 and Xd �= 0, we have by definition
S1,d = −1. Again, X∗

d = xd ⇒ XdS1,d = xd and thus we obtain Xd = −xd . On the
other hand, suppose that X∗

d = 0. In this case xd = 0. By (F1), X∗
d = 0 ⇒ Xd = 0.

Thus we trivially have Xd = −xd (both sides being equal to 0). Hence, in all the cases,
we have Xd = −xd .
(F3) We have Xi = xiSi+1,i for i = 2, . . . , d − 1. To show this, we start with any i ∈

{2, . . . , d − 1}. Now X∗
i = xi, which implies XiSi+1,i = xi. First take xi �= 0. Then Xi �= 0

and Si+1,i �= 0.
Since Xi �= 0, Si+1,i simplifies to the following function:

Si+1,i =
{ −1, if Xi+1 ≤ 0,

1, if Xi+1 > 0.

Thus, Si+1,i only takes the values −1 or 1, which implies that S2i+1,i = 1. We can multiply
Si+1,i on both sides of the equation XiSi+1,i = xi to obtain Xi = xiSi+1,i.
On the other hand, suppose xi = 0. Using (F1), we obtain Xi = 0 which trivially satisfies

Xi = xiSi+1,i (as both sides equal zero). This is true for all i = 2, . . . , d − 1.
(F4) We have P(Xi = xiSi+1,i) = P(Xi = xi). To show this, we first consider the case

when xi �= 0. Then Si+1,i = ±1. Hence P(Xi = xiSi+1,i) = P(Xi = ±xi), which is
P(Xi = xi) by virtue of symmetry. The claim follows trivially when xi = 0.
Now, we consider the probability
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P(X∗
1 = 0,X∗

2 = x2, . . . ,X∗
d = xd)

= P(X1 = 0,X2 = x2S3,2, . . . ,Xd−1 = xd−1Sd,d−1,Xd = −xd)

= P(X1=0)P(X2=x2S3,2) · · ·P(Xd−1=xd−1Sd,d−1)P(Xd = −xd)
[
Using independence

]
= P(X1 = 0)P(X2 = x2) · · ·P(Xd−1 = xd−1)P(Xd = xd)

[
Using (F4)

]
= P(X1 = 0,X2 = x2, . . . ,Xd−1 = xd−1,Xd = xd)

In this case, the joint pmf of
(
X∗
1 , . . . ,X∗

d
)T denoted by q∗(x) is given as

q∗(x) = q(x).

This completes the first part.
Case II:Assume

∏d
i=1 X∗

i > 0. This implies that none of the X∗
i ’s are zero. Since X∗

i �= 0
implies that Xi �= 0 for i = 1, . . . , d, we can ignore the value of the sign function S(·) at 0
and it simplifies to the following function:

S(x) =
{

−1, if x < 0,
1, if x > 0.

Thus, in this case we always have S(x) = ±1. Also, note that here the modified sign
function Si,i−1 simplifies to S(Xi), and hence X∗

i = XiS(Xi+1), i = 1, . . . , d − 1 and X∗
d =

XdS(X1).
We now consider enumerating the joint probability P

(
X∗
1 = x1, . . . ,X∗

d = xd
)
with the

restriction that
∏d

i=1 xi > 0.

Lemma 1 The event
(
X∗
1 = x1, . . . ,X∗

d = xd
)
is equivalent to the occurrence of either of

the following two events:

(i)
(
X1 = x1,X2 = x2S(x2),X3 = x3S(x2x3), . . . ,Xd = xdS

(∏d
j=2 xj

))
, or

(ii)
(
X1 = −x1,X2 = −x2S(x2),X3 = −x3S(x2x3), . . . ,Xd = −xdS

(∏d
j=2 xj

))
.

Proof 2 (Proof of Lemma 1) Note that |Xk| = |X∗
k | for all k = 1, . . . , d. Also, in this case,

the value of S(X2) can either be 1, or −1. We now consider two separate cases.
Case (i): Assume S(X2) = 1, and we get X1 = x1. Recall that X∗

2 = X2S(X3) =
|X2|S(X2)S(X3), hence we get X∗

2 = |X2|S(X3) and X2 = X∗
2/S(X3). Now, the following

holds:

X∗
2 = x2 ⇒ |X2|S(X3) = x2 ⇒ |x2|S(X3) = x2 ⇒ S(X3) = x2

|x2| = S(x2).

Then X∗
2 = X2S(X3) ⇒ X2 = X∗

2
S(X3)

= X∗
2S(X3) = x2S(x2). Here, we use the fact that

S(u) = 1/S(u).
Again, X∗

3 = X3S(X4) = |X3|S(X3)S(X4). Using the expression of S(X3) derived above,
we obtain

X∗
3 = x3 ⇒ |X3|S(X3)S(X4) = x3 ⇒ |x3|S(x2)S(X4) = x3.

Therefore,

S(X4) = x3
|x3|S(x2) = S(x3)

S(x2)
= S(x3)S(x2) = S(x2x3).

Note that S(xy) = S(x)S(y). Then

X∗
3 = X3S(X4) ⇒ X3 = X∗

3
S(X4)

= X∗
3S(X4) = x3S(x2x3).
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Further, X∗
4 = X4S(X5) = |X4|S(X4)S(X5) and using the expression of S(X4) obtained

above we have, X∗
4 = x4 ⇒ |X4|S(X4)S(X5) = x4 ⇒ |x4|S(x2x3)S(X5). This implies that

S(X5) = x4
|x4|S(x2x3) = S(x4)

S(x2x3)
= S(x2x3x4).

Therefore, X∗
4 = X4S(X5) ⇒ X4 = X∗

4
S(X5)

= x4
S(x2x3x4) = x4S(x2x3x4). Proceeding in a

similar fashion, we obtain Xd = xdS(x2 · · · xd).
Case (ii): The proof follows by taking S(X2) = −1, and repeating the line of arguments

stated above for Case (i).
Now, we can enumerate the quantity P

(
X∗
1 = x1,X∗

2 = x2, . . . ,X∗
d = xd

)
as follows

P
(
X∗
1 = x1,X∗

2 = x2, . . . ,X∗
d = xd

)
= P(X1S(X2) = x1,X2S(X3) = x2, . . . ,XdS(X1) = xd)

= P

⎛
⎝X1 = −x1,X2 = −x2S(x2), . . . ,Xi = −xiS

⎛
⎝ i∏

j=1
xj

⎞
⎠ , . . . ,Xd = −xdS

⎛
⎝ d∏

j=1
xj

⎞
⎠

⎞
⎠

+ P

⎛
⎝X1 = x1,X2 = x2S(x2), . . . ,Xi = xiS

⎛
⎝ i∏

j=1
xj

⎞
⎠ , . . . ,Xd = xdS

⎛
⎝ d∏

j=1
xj

⎞
⎠

⎞
⎠

= P(X1=−x1)P(X2=−x2S(x2))· · ·P
⎛
⎝Xi=−xiS

⎛
⎝ i∏

j=1
xj

⎞
⎠

⎞
⎠ · · ·P

⎛
⎝Xd =−xdS

⎛
⎝ d∏

j=1
xj

⎞
⎠

⎞
⎠

+ P(X1 = x1)P(X2 = x2S(x2)) · · ·P
⎛
⎝Xi = xiS

⎛
⎝ i∏

j=1
xj

⎞
⎠

⎞
⎠ · · ·P

⎛
⎝Xd = xdS

⎛
⎝ d∏

j=1
xj

⎞
⎠

⎞
⎠

[
Using independence

]
= P(X1 = x1) · · ·P(Xi = xi) · · ·P(Xd = xd) + P(X1 = x1) · · ·P(Xi = xi) · · ·P(Xd = xd)[
Using symmetry about 0, and the fact that S(·) = ±1

]
= 2P (X1 = x1, . . . ,Xd = xd) .

Hence in this case, the joint pmf of
(
X∗
1 , . . . ,X∗

d
)T is given by

q∗(x) = 2q(x).

This completes the proof of the second part.
Combining these two cases, we may write the joint pmf of

(
X∗
1 , . . . ,X∗

d
)T as follows:

q∗(x) = q(x)I{0}

⎛
⎝ d∏

i=1
xi

⎞
⎠ + 2q(x)I(0,∞)

⎛
⎝ d∏

i=1
xi

⎞
⎠ . (5)

This completes the proof.

Proof 3 (Proof of Theorem 2) First we consider the univariate distributions, namely,
when d = 1 and compute the probability P(X∗

t = xt), denoted by q∗(xt) for a fixed
t ∈ {1, . . . , d}. Now, suppose that xt = 0. Note that X∗

t = XtSt+1,t = 0 ⇔ Xt = 0 since
St+1,t = 0 also requires Xt to be zero. We trivially have the reverse, i.e., Xt = 0 ⇒ X∗

t = 0.
So, we have X∗

t = 0 ⇐⇒ Xt = 0 and hence P
(
X∗
t = 0

) = P (Xt = 0). Thus, we obtain
q∗(xt) = q(xt) for any t = 1, . . . , d.
On the other hand, if xt �= 0, then St+1,t simplifies to the following function
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St+1,t =
{

−1, if Xt+1 ≤ 0,
1, if Xt+1 > 0,

and we get

P(X∗
t = xt) = P(XtSt+1,t = xt)

= P(Xt = xt , St+1,t = 1) + P(Xt = −xt , St+1,t = −1)

= P(Xt = xt ,Xt+1 > 0) + P(Xt = −xt ,Xt+1 ≤ 0)

= P(Xt = xt)P(Xt+1 > 0) + P(Xt = −xt)P(Xt+1 ≤ 0)

= P(Xt = xt){P(Xt+1 > 0) + P(Xt+1 ≤ 0)}
= P(Xt = xt).

Thus, in all these cases, we obtain

q∗(xt) = q(xt) for t = 1, . . . , d. (6)

Define the following random vectors:

X(−1) =(X2, . . . ,Xd)
T ,X(−t) =(X1, . . . ,Xt−1,Xt+1, . . . ,Xd)

T ,X(−d) =(X1, . . . ,Xd−1)
T and

X∗
(−1) = (

X∗
2 , . . . ,X∗

d
)T ,X∗

(−t) = (
X∗
1 , . . . ,X∗

t−1,X∗
t+1, . . . ,X∗

d
)T ,X∗

(−d) = (
X∗
1 , . . . ,X∗

d−1
)T ,

and the sets I(−1) = {2, . . . , d}, I(−t) = {1, . . . , t − 1, t + 1, . . . , d}, I(−d) = {1, . . . , d − 1}.

Let x(−t) =(x1, . . . , xt−1, xt+1, . . . , xd)T , and q(x(−t))=P
(
X(−t) = x(−t)

)
for t=1, . . . , d.

Wewant to compute the probability P
(
X∗

(−t) = x(−t)
)
, and denote it by q∗(x(−t)). Further,

we denote the joint probability P
(
X(−t) = x(−t),Xt = xt

)
by q(x(−t), xt), which is noth-

ing but P (X1 = x1, . . . ,Xd = xd), and the joint probability P
(
X∗

(−t) = x(−t),X∗
t = xt

)
by

q∗ (
x(−t), xt

)
, which is nothing but P

(
X∗
1 = x1, . . . ,X∗

d = xd
)
. We now consider three

separate cases.
Case I:

∏
i∈I(−t)

xi = 0
Note that

∏
i∈I(−t)

xi = 0 ⇒ ∏d
i=1 xi = 0. Hence, we get q∗(x) = q(x) = q(x(−t))q(xt).

This now gives the following:

q∗(x(−t))=
∑
xt∈S

q∗(x)=q
(
x(−t)

) ∑
xt∈S

q(xt)=q
(
x(−t)

)=
∏

i∈I(−t)

q(xi)=
∏

i∈I(−t)

q∗(xi) [Using (6)] .

Case II:
∏

i∈I(−t)
xi > 0

Consider three separate sub-cases
(i) If xt = 0, then

∏d
i=1 xi = 0, and q∗(x) = q(x) = q

(
x(−t)

)
q(0). So, q∗ (

x(−t), 0
) =

q
(
x(−t)

)
q(0).

(ii) If xt > 0, then
∏d

i=1 xi > 0. Thus, q∗(x) = 2q(x) = 2q
(
x(−t)

)
q(xt). Hence,

q∗ (
x(−t), xt

) = 2q
(
x(−t)

) ∑
t:xt>0 q(xt).

(iii) If xt < 0, then
∏d

i=1 xi < 0, which cannot happen by the construction of X∗
i ’s.

Hence, q∗ (
x(−t), xt

) = 0.
Considering these three sub-cases, we have



Ghosh et al. Journal of Statistical Distributions and Applications  (2017) 4:7 Page 11 of 13

q∗(x(−t)) =
∑
t:xt<0

q∗ (
x(−t), xt) + q∗(x(−t), 0

) +
∑
t:xt>0

q∗ (
x(−t), xt

)
= 0 + q

(
x(−t)

)
q(0) + 2q

(
x(−t)

) ∑
t:xt>0

q(xt)

= q
(
x(−t)

) ∑
xt∈S

q(xt) [Using symmetry about 0]

= q
(
x(−t)

) =
∏

i∈I(−t)

q(xi) =
∏

i∈I(−t)

q∗(xi) [Using (6)] .

Case III:
∏

i∈I(−t)
xi < 0

Again, consider three separate sub-cases
(i) If xt = 0, then

∏d
i=1 xi = 0. Hence, q∗(x) = q(x) = q

(
x(−t)

)
q(0), i.e., q∗(x(−t), 0) =

q
(
x(−t)

)
q(0).

(ii) If xt < 0, then
∏d

i=1 xi > 0. Hence, q∗(x) = 2q(x) = 2q
(
x(−t)

)
q(xt), i.e.,

q∗ (
x(−t), xt

) = 2q
(
x(−t)

) ∑
t:xt<0 q(xt).

(iii) If xt > 0, then
∏d

i=1 xi < 0. Hence, q∗ (
x(−t), xt

) = 0.
Combining these three sub-cases, we obtain

q∗(x(−t)) =
∑
xt<0

q∗ (
x(−t), xt

) + q∗ (
x(−t), 0

) +
∑
xt>0

q∗ (
x(−t), xt

)
= 2q

(
x(−t)

) ∑
t:xt<0

q(xt) + q
(
x(−t)

)
q(0) + 0

= q
(
x(−t)

) ∑
xt∈S

q(xt)
[
Using symmetry about 0

]
= q

(
x(−t)

) =
∏

i∈I(−t)

q(xi) =
∏

i∈I(−t)

q∗(xi)
[
Using (6)

]
.

In all these cases, the components of a sub-vector
(
X∗
k1 , . . . ,X

∗
kd−1

)T
of

(
X∗
1 , . . . ,X∗

d
)T

are independent of each other. Again, if we take a sub-vector with size less than d − 1,
then the components will also be independent as all the sub-vectors of size d − 1 are
component-wise independent. Thus, we can say that any sub-vector

(
X∗
k1 , . . . ,X

∗
kd′

)T
of(

X∗
1 , . . . ,X∗

d
)T with d′ < d is component-wise independent. Now,

P
(
X∗
k1 = x1,X∗

k2 = x2, . . . ,X∗
kd′ = xd′

)
= P

(
X∗
k1 = x1

)
P

(
X∗
k2 = x2

)
· · ·P

(
X∗
kd′ = xd′

) [
Using independence

]
= P

(
Xk1 = x1

)
P

(
Xk2 = x2

) · · ·P (
Xkd′ = xd′

)
[
Since the marginal distributions of X∗

i and Xi are identical for i = k1, . . . , kd′
]

= P
(
Xk1 = x1,Xk2 = x2, . . . ,Xkd′ = xd′

) [
Again using independence

]
.

Hence, the joint distribution of
(
X∗
k1 , . . . ,X

∗
kd′

)T
is same as that of

(
Xk1 , . . . ,Xkd′

)T .
Proof 4 (Proof of Theorem 3) Let us denote the joint distribution of (A,B) by the pmf

G(a, b) with a, b ∈ S. Recall that we have assumed A,B to be independent of X∗
d. So,

the conditional distribution of Y∗
d given (A = a,B = b) is same as its unconditional

distribution. We will use this fact throughout the proof of this theorem.
The joint distribution of Y∗

d is given by
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r∗(yd) =
∑

a,b ∈ S

P
(
Y∗
d = yd|a, b

)
G(a, b)

=
∑

a,b ∈ S

P
(
X∗
d = yd − a1d

b

)
G(a, b)

=
∑

a,b ∈ S

q∗
(
yd − a1d

b

)
G(a, b)

=
∑

a,b ∈ S

⎧⎨
⎩q

(
yd − a1d

b

)
I

⎛
⎝ d∏

i=1

yi − a
b

= 0

⎞
⎠ + 2q

(
yd − a1d

b

)
I

⎛
⎝ d∏

i=1

yi − a
b

> 0

⎞
⎠

⎫⎬
⎭G(a, b).

Recall the expression of q∗(x) from Eq. (5).
Define Y∗

(−1) = (
Y ∗
2 ,Y ∗

3 , . . . ,Y ∗
d
)T with I(−1) = {2, 3, . . . , d}; Y∗

(−t) = (
Y ∗
1 , . . . ,Y ∗

t−1,
Y ∗
t+1, . . . ,Y ∗

d
)T with I(−t) = {1, . . . , t − 1, t + 1, . . . , d}, t = 2, . . . , (d − 1); and Y∗

(−d)
=(

Y ∗
1 ,Y ∗

2 , . . . ,Y ∗
d−1

)T
with I(−d) = {1, 2, . . . , d}. Also, define y(−t) = (y1, . . . , yt−1,

yt+1, . . . , yd). Consider

r∗(y(−t)) =
∑
k∈S∗

∑
a,b ∈ S

P
(
Y ∗
1 = y1, . . . ,Y ∗

t = k, . . . ,Y ∗
d = yd|a, b

)
G(a, b).

Now, for any fixed a, b ∈ S, we have

P
(
Y ∗
1 =y1, . . . ,Y ∗

t =k, . . . ,Y ∗
d =yd

)=P
(
X∗
1 = y1 − a

b
, . . . ,X∗

t = k − a
b

, . . . ,X∗
d = yd − a

b

)
.

Then,

r∗(y(−t)) =
∑

a,b ∈ S

∑
k∈S∗

P
(
X∗
1 = y1 − a

b
, . . . ,X∗

t = k − a
b

, . . . ,X∗
d = yd − a

b

)
G(a, b)

=
∑

a,b ∈ S

P
(
X∗
1 = y1 − a

b
, . . . ,X∗

t−1 = yt−1 − a
b

,X∗
t+1 = yt+1 − a

b
, . . . ,X∗

d = yd − a
b

)
G(a, b)

=
∑

a,b ∈ S

q∗
(
y(−t) − a1d−1

b

)
G(a, b)

[
Recall the expression of q∗(x(−t))

]

=
∑

a,b ∈ S

q
(
y(−t) − a1d−1

b

)
G(a, b) =

∑
a,b ∈ S

⎧⎨
⎩

∏
i∈I(−t)

q
(
yi − a
b

)⎫⎬
⎭ G(a, b).

Thus, the random vectors Y∗
(−t) for t = 2, . . . , d− 1 possess the same joint distribution.

Similarly, one may argue that the random vectors Y∗
(−1) and Y∗

(−d)
also follow the same

joint distribution as well. Further, we can argue that any sub-vector
(
Y ∗
k1 ,Y

∗
k2 , . . . ,Y

∗
kd′

)T
of

(
Y ∗
1 ,Y ∗

2 , . . . ,Y ∗
d
)T , where d′ < d, has the same joint distribution.
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