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Abstract

A logistic regression model is a specialized model for product-binomial data. When a
proper, noninformative prior is placed on the unrestricted model for the
product-binomial model, the hypothesis H0 of a logistic regression model holding can
then be assessed by comparing the concentration of the posterior distribution about
H0 with the concentration of the prior about H0. This comparison is effected via a
relative belief ratio, a measure of the evidence that H0 is true, together with a measure
of the strength of the evidence that H0 is either true or false. This gives an effective
goodness of fit test for logistic regression.
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1 Introduction
Suppose there is a response Y ∈ {0, 1} related to k predictors (X1, . . . ,Xk) via the logistic
regression model p(x′β) = P(Y = 1 |X1 = x1, . . . ,Xk = xk) where

p(x′β) = exp
{
x′β

}
/
(
1 + exp

{
x′β

})
. (1)

and x = (x1, . . . , xk),β = (β1, . . . , βk) ∈ Rk . While the use of this model is quite com-
mon, the question concerning whether or not the model actually holds has not been fully
dealt with in the literature. It is our purpose here to develop a Bayesian approach to this
problem.
It is to be noted that, irrespective of whether or not (1) holds, Y |X1 = x1, . . . ,Xk =

xk ∼ Bernoulli(θ(x)) for some θ(x) ∈ [ 0, 1] and, if a sample of n(x) is taken at
these settings of the predictors, then s(x) = ∑n(x)

i=1 Yi |X1 = x1, . . . ,Xk = xk ∼
binomial(n(x), θ(x)). That such data is indeed binomial (independence and constant
probability) can be assessed via a runs test applied to each such subsample when n(x) > 1.
With random sampling from a large enough population the binomial assumption is
surely approximately correct and so this aspect of possible model failure is ignored here.
The question of interest is whether or not θ(x) is given by (1), at least to a reasonable
approximation, and this is the logistic regression assumption.
When there are only categorical predictors, so the Xi correspond to dummy variables,

then indeed (1) holds as then only one of the xi = 1 with the rest equal to 0 and the
relevant probability is exp{βi}/(1 + exp{βi}) where βi is the log of the odds in favor of 1.
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So in this case the logistic regression is just a reparameterization of the product-binomial
model. Goodness of fit beyond the runs tests is then not relevant.
The case when there is at least some quantitative predictors is thus the one of interest. It

is to be noted that in any well-designed study there should always be replication, namely,
n(x) > 1 for some of the x, for precisely the reason that model checking is a necessary
part of any statistical analysis in a scientific context. It may be, however, that the data was
collected in a somewhat haphazard way, and while model checking is still a requirement,
it can’t be expected that this will be as effective as in the designed context.
The general approach taken here can be described as follows. First a noninformative

prior is placed on the θ(x). A specific meaning is applied to the word noninformative
here, namely, we require that there is no possibility of there being prior-data conflict.
Prior-data conflict loosely means that the prior places the bulk of its mass in a region
of the parameter space which the data identifies as being unlikely to contain the true
value. Prior-data conflict can be measured in a number of ways and this is discussed in
Section 2.
Suppose that there are m values for x so the full space for the θ(x) is [ 0, 1]m . Let

H0 ⊂ [ 0, 1]m be the subset that corresponds to θ(x) = p(x′β) for some β ∈ Rk . The
prior on the θ(x) leads to a posterior distribution for these quantities. Intuitively, if the
posterior is more concentrated about H0 than the prior, then this is evidence in favor of
H0 with the opposite holding when the posterior is less concentrated about H0 than the
prior. Once a method of measuring concentration about H0 is selected, this evidence can
bemeasured via a relative belief ratio.While a relative belief ratio is somewhat like a Bayes
factor, it will be seen to differ in some key ways. Furthermore, a measure of the strength
of this evidence, whether for or againstH0, is presented. Several natural measures of con-
centration are considered. This is all discussed in Section 3. In Section 4 aspects of the
computations are considered including application to a number of examples.
Tsutukawa and Lin (1986) and Bedrick et al. (1996, 1997) are concerned with the

Bayesian analysis of logistic regression models although not with goodness of fit. With
a p-value based on asympotics, a commonly used goodness of fit statistic for logistic
regression is the deviance statistic which is twice the difference between the maxi-
mized log-likelihood with no constraints and the maximized log-likelihood, assuming
the logistic regression model holds. Chen and Chen (2004) also propose a frequentist
asymptotic goodness of fit test in the context of case-control studies. It is shown here
that a Bayesian goodness of fit test arises very naturally and that it has a number of
advantages. In particular, evidence can be obtained in favor of the logistic regression
model, as opposed to only evidence against as with p-values, and there is no appeal to
asymptotics.

2 TheModel and prior
Supposed there are m observations s(X) = (s(x1), . . . , s(xm)) where s(xi) ∼
binomial(n(xi), θ(xi)), the s(xi) are independent, θ(X) = (θ(x1), . . . , θ(xm))′ ∈ [0, 1]m

and X = (x1, . . . , xm)′ ∈ Rm×k . Intuitively, a noninformative prior for the θ(Xm) is then
given by the uniform distribution on [ 0, 1]m as this allows for any of the possible values
and they are all weighted equally. Of course, other definitions can be provided for non-
informativity but this definition seems most suitable for this context as it possesses a key
property.
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To see this suppose that we have a statistical model {fθ : θ ∈ �} for the data x, and
a prior π . Let T denote a minimal sufficient statistic for the model with marginal model
{fθ ,T : θ ∈ �}. Then mT (t) = ∫

�
fθ ,T (t) �(dθ) is the prior predictive density of T . In

Evans and Moshonov (2006) a basic check on the prior is to compute the tail probability
MT (mT (t) ≤ mT (T(x))) and conclude that prior-data conflict exists whenever this prob-
ability is small as this implies that the observed data is a priori surprising. The consistency
of this check, under quite general conditions, is established in Evans and Jang (2011). If,
for example, MT (mT (t) ≤ mT (T(x))) ≡ 1 for all possible T(x), then it is never the case
that there is prior-data conflict and the prior can be called noninformative. Clearly this
criterion for noninformativity can be weakened but this is all that is required here.
For the product-binomial, T can be taken equal to s(X). Since the counts are indepen-

dent and the priors on the θ(xi) are independent and uniform, the prior predictives of the
s(xi) are independent. The prior predictive for s(xi) is easily seen to equal 1/(n(xi) + 1),
namely, it is uniform on {0, 1, . . . , n(xi)}. As such, for the product-binomial with a uniform
prior, MT (mT (t) ≤ mT (T(x))) ≡ 1 and our criterion for noninformativity is satisfied.
The posterior on θ(X) induced by this prior and the observed data s(X) is a product of
beta distributions where θ(xi) | s(xi) ∼ beta(s(xi) + 1, n(xi) − s(xi) + 1). Note that is easy
to generate from both the prior and posterior of θ(X).

3 Hypothesis assessment via relative belief and concentration
Suppose for the model {fθ : θ ∈ �} it is desired to assess the hypothesis H0 ⊂ �. In
many cases there is a parameter of interest ψ = �(θ) with H0 = �−1{ψ0}. The evi-
dence for or against H0 can then be assessed via a relative belief ratio RB�(ψ0 | x) =
π�(ψ0 | x)/π�(ψ0), the ratio of the posterior to prior densities of � evaluated at the
hypothesized value. If RB�(ψ0 | x) > 1, then there is evidence in favor ofH0, as the poste-
rior probability for ψ0 is greater than the prior probability for ψ0, while RB�(ψ0 | x) < 1
implies there is evidence against H0 and when RB�(ψ0 | x) = 1 there isn’t evidence either
way. The strength of the evidence is measured by the posterior probability

��(RB�(ψ | x) ≤ RB�(ψ0 | x) | x). (2)

For when RB�(ψ0 | x) < 1 and (2) is small, then there is a strong belief that the true
value of � has a larger relative belief ratio than ψ0 and so the evidence against ψ0 is
strong. When RB�(ψ0 | x) < 1 and (2) is large, then there is only weak evidence against
H0 as this says that there is a large belief that the true value of ψ has the value of its
relative belief ratio no greater than RB�(ψ0 | x). When RB�(ψ0 | x) > 1 and (2) is large,
then there is a weak belief that the true value of � has a larger relative belief ratio than
ψ0 and so the evidence in favor of ψ0 is strong. Note that in the set {ψ : RB�(ψ | x) ≤
RB�(ψ0 | x)} the value ψ0 has the most evidence in its favor when RB�(ψ0 | x) > 1.
When RB�(ψ0 | x) > 1 and (2) is small, then there is only weak evidence in favor H0 as
this says that there is a large belief that the true value of ψ has the value of its relative
belief ratio greater than RB�(ψ0 | x). The relative belief ratio is discussed in Baskurt and
Evans (2013) and a full development of a theory of inference based on this is presented in
Evans (2015).
The interpretation of the relative belief ratio as the evidence demands that a rela-

tive belief ratio greater than 1 be interpreted as evidence in favour of the hypothesis no
matter how much greater it is than 1, assuming it is computed exactly. This is because
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RB�(ψ0 | x) > 1 occurs only when the posterior probability is greater than the prior
probability of the hypothesis and that is the basic criterion for saying the data has
led to evidence in favor. A similar comment applies to evidence against, namely, when
RB�(ψ0 | x) < 1. To understand what RB�(ψ0 | x) = 1 means consider a discrete con-
text as then this occurs iff the posterior probability of {ψ0} equals the prior probability of
{ψ0} and this occurs iff the events {ψ0} and {x} are statistically independent in the joint
probability model for (θ , x). In other words RB�(ψ0 | x) = 1 iff the actual observed data
x tells us nothing about the hypothesis that the true value of ψ = �(θ) is ψ0. This is
clearly a very unusual circumstance but one can easily construct such situations generally
when the model contains nonidentifiability. In essence the relative belief ratio is giving
the correct assessment of evidence in such a case.
The size of RB�(ψ0 | x) does not necessarily reflect the strength of the evidence. Note

that in the discrete case RB�(ψ0 | x) = π�(ψ0 | x)/π�(ψ0) ≤ 1/π�(ψ0) so there is an
upper bound on this value. From this it is seen that relative belief ratios do not measure
evidence on an absolute scale but they need to be calibrated in each context and that is
the role of the strength (2). So even if RB�(ψ0 | x) = 1.000005 the strength could be high
when (2) is close to 1 as this says our belief that the true value of ψ has a larger relative
belief ratio is small. Note that the strength is playing the role of the standard error here as
it measures how reliable we believe our assessment of the evidence is. Also, it can happen
that even though RB�(ψ0 | x) is very high, (2) can be very small and so the evidence is only
weak evidence in favor. This phenomenon is associated with the Jeffreys-Lindley paradox
as is discussed in Evans (2015). In short, relative belief ratios need to be calibrated and
the calibration depends on the context. The issues concerning measuring strength are a
somewhatmore involved than themeasure of the evidence itself and additional discussion
can be found in Evans (2015).
In a number of situationsH0 does not arise viaH0 = �−1{ψ0} for some� in an obvious

way and also �(H0) = 0. The prior nullity may arise because H0 is a lower dimensional
subset of � and not because there is no belief thatH0 is true. This is the case with logistic
regression when k < m and � is the uniform prior on � =[ 0, 1]m. In such a context it is
reasonable to choose � = dH0 where dH0(θ(X)) is a measure of the distance of θ(X) to
H0. So withψ0 = 0 thenH0 = �−1{ψ0} andH0 can be assessed using relative belief. Note
that it is clear that in assessingH0 a comparison is beingmade between the concentrations
of the prior and posterior about H0. If RB�(ψ0 | x) > 1, then the data has lead to the
posterior being more concentrated about H0 than the prior. If RB�(ψ0 | x) < 1, then the
data has lead to the posterior being less concentrated aboutH0 than the prior. Themethod
of concentration, with dH0 equal to squared Euclidean distance as discussed in Example 1,
was developed for some specific inference problems in Evans et al. (1993, 1997).
While there are many possible choices for dH0 , two are considered here.

Example 1 Squared Euclidean distance. Let μ(x) = log(θ(x)/(1 − θ(x))) denote the
logit associated with x and note that the logistic regression model holds iff μ(x) = x′β
for some β ∈ Rk for every x ∈ Rk . The logistic regression model thus implies that
μ(X) = Xβ for some β ∈ Rk . If a probability distribution is placed on θ(X), then this
induces a probability distribution on μ(X) which in turn induces a probability distri-
bution on dH0(θ(X)) = infβ∈Rk ||μ(X) − Xβ||2/m = μ(X)t(I − X(XtX)−1Xt)μ(X)/m
where it is assumed that X is of full rank. The reason for dividing by the dimension m of
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μ(X) will become apparent in Example 3 although this clearly has no effect on the opti-
mization. Note that dH0(θ(X)) = 0 iff the logistic regression model holds for the observed
s(X). So it is natural to measure the concentration of the probability distribution placed
on θ(X) about H0 by seeing how concentrated the induced distribution on dH0(θ(X)) is
about 0.

Example 2 Kullback-Leibler (KL) distance. The KL distance between the Bernoulli(θ)

and the Bernoulli(p) distribution is given by KL(θ , p) = θ log(θ/p) + (1 − θ) log((1 −
θ)/(1− p)). It follows that the KL distance between the product-Bernoulli(θ1, . . . , θm) and
the product-Bernoulli(p1, . . . , pm) equals

∑m
i=1 KL(θi, pi). So we put

dH0(θ(X)) = inf
β∈Rk

m∑

i=1
KL(θ(xi), pi(x′β))/m

and the reason for dividing by m is discussed in Example 4. Given an efficient algorithm
for finding the optimal β , it is straightforward to generate from the prior and posterior
distributions of dH0(θ(X)).

After a choice is made of dH0 , the methodology proceeds via simulation from the prior
and posterior distributions of dH0(θ(X)), then computing RBdH0 (0 | s(X)) and its strength.
A significant aspect of this computation is that the prior and posterior densities of dH0

typically both vanish at 0 and so the ratio cannot be directly computed. This is a sup-
port measure issue arising due to continuity and is dealt with theoretically by defining
the relative belief ratio at a point as the limiting ratio of the posterior to prior probabil-
ities of shrinking neighborhoods. Practically this is dealt with by the choice of δ since
dH0(p) ∈[ 0, δ) implies that H0 holds to the accuracy required in the application. In other
words, H0 holds whenever the difference between the true model and the logistic regres-
sion model is of no practical consequence as measured by dH0 . The range of the prior
distribution of dH0 is then discretized via the partition {[ 0, δ), [ δ, 2δ), . . . , [ (k − 1)δ, kδ)}
where k is chosen so that the effective range of this prior distribution is covered. The
prior and posterior probability contents of these intervals are estimated by generating
large samples from the prior and the posterior distributions of θ , computing dH0(θ) for
each sampled value, which gives samples from the prior and posterior distributions of
dH0(θ), and then using the approximate contents for the approximation of the relative
belief ratios of the intervals. The relevant relative belief ratio for assessing H0 is then
RBdH0 ([ 0, δ) | s(X)) and the strength of this evidence is assessed by comparing this rel-
ative belief ratio against the other values by computing the posterior probability that
RBdH0 ([ iδ, (i + 1)δ) | s(X)) ≤ RBdH0 ([ 0, δ) | s(X)) where the Monte Carlo estimates were
used for these computations. It is proved in Evans (2015) that this procedure is consistent
as the amount of data increases in the sense that the relative belief ratio converges to the
maximum possible value (always greater than 1) and the strength converges to 1 whenH0
is true, and the relative belief ratio converges to 0 and the strength converges to 0 when
H0 is false.
The choice of δ is application dependent as it represents the deviation from the precise

null that is just of practical consequence. The two distance measures considered here lead
to very natural choices for δ.
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Example 3 Squared Euclidean distance and absolute error. For this distance measure let
δ equal the maximum squared distance between two logits such that any difference smaller
than δ is practically speaking immaterial. In other words, ifmaxi(log(θ(xi)/(1− θ(xi))) −
x′
iβ)2 < δ, then this difference is irrelevant from the point of view of the application. It is

clear then that (μi(X) − x′
iβ)2< δ for i = 1, . . . ,m implies ||μ(X) − Xβ||2/m< δ while

||μ(X) − Xβ||2/m< δ implies that the average squared absolute error between individual
logits is less than δ. So in practice we proceed by selecting δ and discretizing the prior and
posterior distributions of dH0 as previously described. Note that it is also reasonable to
choose a discretization parameter δ∗ < δ for dH0 . For example, if δ∗ = δ/m then ||μ(X) −
Xβ||2/m < δ∗ impliesmaxi(μi(X) − x′

iβ)2<δ but this might be deemed overly rigorous.
While the interpretation of error in the value of x′β is straightforward in linear regression,

this is more difficult in logistic regression and it then seems clearer to state bounds on the
probabilities. Note, however, for probabilities θ and p, the logits satisfy (log(θ/(1 − θ)) −
log(p/(1−p)))2 = (log(θ(1−p)/p(1− θ)))2 < δ iff exp(−δ1/2) < 1+ (θ −p)/p(1− θ) <

exp(δ1/2), and using ex ≈ 1+ x for small x, this is approximately equivalent to (θ − p)2 <

p2(1−θ)2δ ≤ δ when δ is small. So, if δ is chosen to reflect what is considered a meaningful
absolute squared difference in the probabilities, then the logits satisfying this error bound
implies that the probabilities also satisfy this, at least when δ is small.

Example 4 Kullback-Leibler (KL) distance and relative error. For this distance measure
let δ equal the maximum relative error in the probabilities. So it is desired thatmaxi |(θi −
pi)/θi| < δ and maxi |((1 − θi) − (1 − pi))/(1 − θi)| < δ. These inequalities hold iff
− log(1+δ) < log(θi/pi) < − log(1−δ) and− log(1+δ) < log((1−θi)−(1−pi))/(1−θi) <

− log(1−δ) for every i,which implies− log(1+δ) <
∑m

i=1 KL(θi, pi)/m < − log(1−δ) and
the lower bound can be replaced by 0 since the KL distance is always nonnegative. Using
log(1 + x) ≈ x when x is small, a small relative error of δ on the probabilities then implies
the approximate bounds 0 ≤ ∑m

i=1 KL(θi, pi)/m < δ. Conversely,
∑m

i=1 KL(θi, pi)/m < δ

implies that the average relative error in the probabilities is bounded by δ. This gives the
discretization for the prior and posterior distributions for dH0(θ(X)) in this case. Again
a discretization parameter δ∗ < δ can be used for dH0(θ(X)) if a bound on the average
relative error on the individual probabilities is not felt to be rigorous enough.

It is emphasized that the choice of the distance measure and the discretization param-
eter are application dependent. Given that the concern is with model checking, and there
are often many ways in which a model can be checked, the choice of the distance mea-
sure is perhaps not important. On the other hand, when choosing between the distance
measures suggested here, this could be determined by the choice of absolute or relative
error as the criterion of accuracy. When the probabilities in question are not too small or

Table 1 The values of RB together with the (strength) of the evidence in Example 5 whenm = 3
using squared Euclidean distance. The effective range of the prior is [ 0, 4.0)

δ n = 1 n = 5 n = 10

0.001 1.05(0.46) 1.99(0.89) 1.43(0.46)

0.010 1.05(0.52) 1.98(1.00) 1.43(0.46)

0.050 1.07(0.92) 1.91(1.00) 1.46(0.73)

0.100 1.07(0.92) 1.85(1.00) 1.46(0.73)
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Table 2 The values of RB together with the (strength) of the evidence in Example 5 whenm = 3
using KL distance. The effective range of the prior is [ 0, 0.4)

δ n = 1 n = 5 n = 10

0.001 1.07(0.73) 1.71(0.96) 1.29(0.42)

0.010 1.06(1.00) 1.67(1.00) 1.32(1.00)

0.050 1.06(1.00) 1.45(1.00) 1.36(1.00)

0.100 1.05(1.00) 1.27(1.00) 1.26(1.00)

too large, then absolute error seems like the appropriate error criterion to use, and hence
use squared Euclidean distance, while when probabilities are felt to be close to 0 or 1,
then relative error seems like the appropriate error criterion and so use Kullback-Liebler
distance.
Some may object to the need to discretize. In our view the choice of a δ to specify

practically relevant deviations is a necessary aspect of any meaningful inference problem.
It seems realistic to say that a logistic regression model is never strictly correct as there is
no reason to suppose that the probabilities are exactly given by (1) for any x. What is more
relevant is whether or not the logistic regression model is approximately correct and to
make the notion of approximation precise one has to specify a δ. For example, if a logistic
regression model provided two or three decimal accuracy for the relevant probabilities,
then it could be that this is sufficient accuracy but this depends on the application as
sometimes greater accuracy may be required. Examples 3 and 4 provide prescriptions for
how δ can be chosen to reflect the accuracy desired in a problem. It would seem very
odd that an individual familiar with the application couldn’t specify such an accuracy
as it cannot be true that any deviation whatsoever is significant as this contradicts the
approximate nature of the logistic regression model. Provided the prior distribution is
relatively smooth, as is the case here, the results will not change much by making small
changes in δ, as changes in the prior and posterior probabilities will also be small. Also,
as is well known, p-values can detect deviations from hypotheses that are not practically
meaningful when sample sizes are large. The way to avoid this behavior is to build the
relevant deviation directly into the inference methodology and that is what is done here.

4 Examples
Implementation of the computations is relatively straight-forward via simulation once dH0

and δ have been selected, although clearly using squared Euclidean distance is somewhat
easier. For the optimization with KL distance, the R routine optim was used. In all the
examples the prior and posterior distributions of dH0 were approximated using a Monte
Carlo sample of size of 105 and these distributions were then discretized as previously
discussed.

Table 3 The values of RB together with the (strength) of the evidence in Example 5 whenm = 20
using squared Euclidean distance. The effective range of the prior is [ 0, 12.0)

δ n = 1 n = 5 n = 10

0.001 2.43(1.00) 69.63(1.00) 38.47(1.00)

0.010 1.86(1.00) 28.77(1.00) 24.51(1.00)

0.050 1.61(1.00) 12.07(0.40) 12.03(0.39)

0.100 1.50(0.92) 7.61(0.40) 7.66(0.39)
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Table 4 The values of RB together with the (strength) of the evidence in Example 5 whenm = 20
using KL distance. The effective range of the prior is [ 0, 0.35)

δ n = 1 n = 5 n = 10

0.001 2.20(1.00) 53.00(1.00) 39.90(1.00)

0.010 2.15(1.00) 31.50(1.00) 30.10(1.00)

0.050 1.88(1.00) 13.50(0.32) 13.98(0.30)

0.100 1.76(0.91) 8.16(0.32) 8.55(0.30)

Some simulated examples are now considered where each distance is applied when the
logistic regression model holds and when it doesn’t.

Example 5 Simulated examples when logistic regression is correct. Consider the sit-
uation where k = 2 with X1 ≡ 1 and X2 is a nonconstant quantitative predictor,
so p(x′β) = exp{β1 + β2x2}/ (1 + exp{β1 + β2x2}) . Various choices are considered for
n = n(x1) = · · · = n(xm) and for δ, the squared absolute error in the respective proba-
bilities when using Euclidean distance and the relative error in the respective probabilities
when using KL distance. Note that in practice δ and the n(xi) are fixed in an application.
Here m = 3with x2 ∈ {0, 1, 2} and β1 = 0.5,β2 = −1.0 so p(X) = (0.62, 0.38, 0.18) gives
the true probabilities for the corresponding Bernoulli distributions.
Table 1 gives the results of some simulations when using squared Euclidean distance as

the basis for the measure of concentration. When n = 1 the data s(X) = (1, 0, 0) was
obtained, when n = 5 the data s(X) = (4, 2, 1) was obtained and when n = 10 the data
s(X) = (7, 6, 1) was obtained. Notice that the relative belief ratio is always greater than
1 which says there is evidence in favour of the logistic regression model being true. The
strength of this evidence depends on δ but not greatly and it is to be noted that this is
determined by how much squared error is acceptable in the probabilities provided by the
model. The p-value based on the deviance gave the values 1.0, 0.74, 0.22 when n = 1, 5, 10
respectively, and so this test would also not reject the logistic regression model in these
simulations. It is to be noted, however, that the p-value is asymptotic and it is not clear
how large n has to be for this approximation to be accurate. Also, in contrast to the relative
belief ratio, a large p-value does not provide evidence in favor of H0. It is of interest that,
while it is expected that both the relative belief ratio and its strength will increase as n
increases, this did not happen when comparing n = 5 with n = 10. This is undoubtedly
due to sampling variability as there is no guarantee that increasing sample size increases
accuracy.
Table 2 gives the results of the analysis of the data when using KL distance as the basis for

the measure of concentration. Again the relative belief ratio is always greater than 1 and so
gives the correct inference. The strength of the evidence in favor is always at least as great
as when using squared Euclidean distance. This underscores a reasonable conjecture that

Table 5 The values of RB together with the (strength) of the evidence in Example 6 whenm = 5
using squared Euclidean distance. The effective range of the prior is [ 0, 3.0)

δ n = 1 n = 5 n = 10

0.001 0.00(0.00) 0.00(0.00) 0.00(0.00)

0.010 0.38(0.00) 0.00(0.00) 0.00(0.00)

0.050 0.66(0.00) 0.00(0.00) 0.00(0.00)

0.100 0.68(0.01) 0.00(0.00) 0.00(0.00)
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Table 6 The values of RB together with the (strength) of the evidence in Example 6 whenm = 5
using KL distance. The effective range of the prior is [ 0, 0.3)

δ n = 1 n = 5 n = 10

0.001 0.55(0.00) 0.00(0.00) 0.00(0.00)

0.010 0.61(0.01) 0.00(0.00) 0.00(0.00)

0.050 0.69(0.14) 0.02(0.00) 0.01(0.00)

0.100 0.78(0.36) 0.09(0.04) 0.08(0.04)

KL distance is a more appropriate measure of concentration in this problem than squared
Euclidean distance.
To investigate the effect of increasing the number of values of the predictor, consider a

simulated example where k = 2,m = 20 with

x2 ∈ {−1.35,−1.32,−0.87,−0.77,−0.59,−0.56,−0.44,−0.34,−0.23,

− 0.15,−0.02, 0.016, 0.05, 0.17, 0.42, 0.68, 1.10, 1.15, 1.80, 2.01}.
Setting β1 = 0.5,β2 = 1.0 leads to the following probabilities for the corresponding
Bernoulli distributions

p(X) = (0.206, 0.210, 0.296, 0.316, 0.356, 0.364, 0.392, 0.417, 0.443, 0.463,

0.494, 0.504, 0.513, 0.543, 0.604, 0.663, 0.750, 0.760, 0.858, 0.882).

When n = 1, s(X) = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1), when n = 5, s(X) =
(0, 0, 3, 2, 3, 2, 3, 1, 3, 2, 1, 3, 1, 1, 4, 3, 2, 3, 3, 5) and when n = 10, s(X) = (1, 3, 4, 3, 2, 6, 4, 5,
3, 0, 7, 7, 8, 7, 6, 3, 8, 8, 8, 7) are the corresponding generated data sets. Table 3 gives the
results when using squared Euclidean distance and Table 4 gives the results when using
KL distance, respectively, as the basis for the measure of concentration. Notice that the
relative belief ratio is always greater than 1 which says correctly that there is evidence in
favour of the logistic regression model being true. The strength of this evidence depends on
δ and it is to be noted that this is determined by how much squared error is acceptable
in the probabilities provided by the model. Of some interest is the fact that the strength
drops in this example as δ increases and this is undoubtedly due to the relative belief
ratio RBdH0 ([ 0, δ) | s(X)) decreasing as greater tolerance is permitted for the approxima-
tion given by the logistic regression model. The posterior probability of the interval [ 0, δ)
increases with δ but for this dataset, it does not increase as fast as the prior probability so
the evidence, as measured by change in belief, is not as great for larger values of δ. This
underlines the importance of choosing δ to reflect desired accuracy. The p-value based on
the deviance gave the values 0.40, 0.22, 0.01 when n = 1, 5, 10 respectively. So in fact the
deviance test leads to a p-value that would indicate that the model is not true when n = 10
and this is incorrect.

Table 7 The values of RB together with the (strength) of the evidence in Example 6 whenm = 20
using squared Euclidean distance. The effective range of the prior is [ 0, 15.0)

δ n = 1 n = 5 n = 10

0.001 0.68(0.00) 0.11(0.00) 0.00(0.00)

0.010 0.77(0.00) 0.22(0.00) 0.01(0.00)

0.050 0.87(0.04) 0.42(0.00) 0.06(0.00)

0.100 0.87(0.04) 0.54(0.02) 0.13(0.00)
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Table 8 The values of RB together with the (strength) of the evidence in Example 6 whenm = 20
using KL distance. The effective range of the prior is [ 0, 0.3)

δ n = 1 n = 5 n = 10

0.001 0.60(0.00) 0.20(0.00) 0.00(0.00)

0.010 0.54(0.00) 0.24(0.00) 0.01(0.00)

0.050 0.78(0.04) 0.44(0.04) 0.06(0.00)

0.100 0.81(0.04) 0.50(0.04) 0.14(0.00)

Example 6 Simulated examples when logistic regression is not correct. Simulated
examples are now considered when the logistic regression model with x = (1, x2)′ is wrong.
Here m = 5 and the values x2 ∈ {1, 3, 5, 7, 9} were chosen with the true probabilities
given by θ(X) = (0.875, 0.327, 0.107, 0.198, 0.908). The average squared Euclidean dis-
tance between these product-Bernoulli probabilities and the best fitting logistic regression
with the corresponding values for x2 is 0.117, so the logistic regression model is definitely
false. The following data sets were generated from the true model: when n = 1, then
s(X) = (1, 0, 0, 0, 1), when n = 5 then s(X) = (5, 2, 0, 1, 5) and when n = 10 then
s(X) = (9, 3, 1, 2, 9).
Table 5 records the results of the goodness of fit test based on squared Euclidean distance.

In every case the relative belief ratio is less than 1, so there is evidence against H0, and
the strength of this evidence is strong. The p-values based on the deviance statistic are
respectively 0.08,0.00,0.00. So, excepting the n = 1 case, this approach also clearly rejects
H0. Table 6 records the results of the goodness of fit test based on KL distance. In every case
the relative belief ratio is less than 1 and the strength of this evidence is definitive with the
possible exception of two cases when n = 1.
Again the case m = 20 is considered with x2 taking values as in Example 5 and the true

probabilities, obtained using a logistic regression containing a quadratic term, given by

θ(X) = (0.0003, 0.0004, 0.0582, 0.1230, 0.3229, 0.3617, 0.5080, 0.6040, 0.6760,

0.7084, 0.7307, 0.7308, 0.7286, 0.7017, 0.5295, 0.2122, 0.0064, 0.0036,

0.0000, 0.0000).

The average squared Euclidean distance between these product-Bernoulli probabilities
and the best fitting linear logistic regression with the corresponding values for x2 is 0.231,
so the linear logistic regression model is definitely false. The following data sets were
generated from the true model: when n = 1 then s(X) = (1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,
0, 1, 1, 1, 0, 1, 1), when n = 5 then s(X) = (5, 4, 5, 1, 1, 3, 0, 1, 2, 1, 1, 0, 2, 4, 5, 3, 4, 4, 5, 4)
and when n = 10 then s(X) = (8, 7, 10, 1, 2, 2, 4, 5, 1, 1, 1, 0, 6, 8, 7, 7, 6, 10, 10, 10) were
obtained. Table 7 records the results when using squared Euclidean distance and Table 8
gives the results when using KL distance. It is to be noted that in every case there is strong
evidence against the (linear) logistic model holding and the results are robust to the choice

Table 9 Data in Example 7

x2 No. of animals No. of deaths

−0.86 5 0

−0.30 5 1

−0.05 5 3

0.73 5 5
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Table 10 The values of RB together with the (strength) of the evidence in Example 7 using squared
Euclidean distance (effective range of the prior of dH0 is [ 0, 3.0)) and KL distance (the effective range
of the prior of dH0 is [ 0, 0.3))

δ Squared Euclidean distance KL distance

0.001 2.67(0.90) 3.53(1.00)

0.010 2.67(0.97) 3.13(1.00)

0.050 2.55(0.99) 2.20(1.00)

0.100 2.47(0.99) 1.61(1.00)

of δ. The p-values based on the deviance statistic are respectively 0.08, 0.00, 0.00 so, as
might be expected, the test does not do as well when n = 1.

The following example presents an application to a real data set.

Example 7 Bioassay experiment. In studying drugs and other chemical compounds,
acute toxicity tests or bioassay experiments are commonly implemented on animals. Such
experiments proceed by controlling various dose levels of the compound to groups of ani-
mals. The animals responses are typically characterized as alive or dead, tumor or no
tumor, etc. The logistic regression model with x = (1, x2)′ is considered where x2 is the log
of the dosage in g/ml of a toxin. The data is provided in Table 9 and comes from a real data
set analyzed in Racine et al. (1986) where m = 4, n(x1) = · · · = n(x4) = 5 and s(xi) is the
number of deaths at the i-th dosage.
Since the authors were not part of this application the value of δ cannot be strictly deter-

mined by what the goals of the study are. As such, the results are considered for a fairly
wide range of possible values for δ in Table 10 and it is seen that the results are robust
to this choice. In all cases the relative belief ratios show that there is evidence in favor of
the logistic regression model holding and the strength of this evidence is universally very
strong especially when using KL distance. The p-value based on deviance is 0.97 so the
logistic regression model is not rejected but again it is to be noted that, following the logic
of p-values, this is not to be interpreted as support for this model.

5 Conclusions
A Bayesian goodness of fit test has been developed for logistic regression models based
on a measure of evidence. A definite advantage of this approach is that evidence can be
obtained in favor of the model holding. Also, there is no need to appeal to asymptotics in
the interpretation of the results as in the case of classical goodness of fit tests. Since every
product-Bernoulli distribution is treated equally in the priors there is no bias towards
accepting or rejecting the logistic regressionmodel. The choice of which distancemeasure
to use is dependent on whether relative or absolute error is the appropriate criterion to
apply when considering the approximation a logistic regressionmodel supplies to the true
probabilities. The approach developed in this paper can also be used for goodness of fit
tests for other models such as probit regression with only minor changes.
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