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Abstract
Rank correlation is invariant to bijective marginal transformations, but it is not immune
to confounding. Assuming a categorical confounding variable is observed, the author
proposes weighted coefficients of correlation for continuous variables developed
within a larger framework based on copulas. While the weighting is clear under the
assumption that the dependence is the same within each group implied by the
confounder, the author extends the Minimum Averaged Mean Squared Error (MAMSE)
weights to borrow strength between groups when the dependence may vary across
them. Asymptotic properties of the proposed coefficients are derived and simulations
are used to assess their finite sample properties.
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1 Introduction
Correlation may be used to determine the strength of the link between two continuous
variables. Rank correlation is often preferred as it makes no assumption on the marginal
distributions of the variables and estimate their dependence structure directly. Those rank
statistics are however not immune to the effect of confounding variables, and data with
an underlying categorical variable may display a false correlation that is somewhat akin to
an ecological fallacy when the marginal distributions differ between the groups implied
by this confounder.
To illustrate, let us generate random data that show a spurious correlation between

height and salary. Figure 1 displays a sample of 150 men and 150 women where the
height and salary are generated independently, but their distributions depend on the
gender. While the distribution of the height is based on the tables from Mc Dowell
et al. (2008), the salary is generated to match statistics for weekly earnings from the
Bureau of Labor Statistics. We make no attempt here at determining whether wages are
equitable, we merely use factual distributions within a simplified simulation. Although
Spearman correlations are -0.004 and 0.027 for the men and women respectively, the cor-
relation calculated from the pooled samples amounts to 0.137 (p-value 0.018) due to the
differences in the marginal distributions. Failing to take gender into consideration thus
leads to wrongly concluding that salary and height are positively linked.
Differences in the marginal distributions across the groups defined by the confounding

variable can be accounted for by calculating the ranks in these groups rather than globally.
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Fig. 1 Scatter plot of height vs salary for 150 men and 150 women that are simulated as independent
variables conditional on gender. A Spearman correlation of 0.137 (p-value = 0.018) provides (false) evidence
against independence

As a consequence, the sample is split in m smaller samples, and coefficients from each
of these groups may be combined with appropriate weights. Under the assumption that
the groups share the same dependence structure, any weighting will yield an unbiased
estimate, but we also consider the case where the dependence in each group could differ.
Whenever the dependence structure in the groups are likely to be similar, using data from
all the groups wisely could provide a favorable tradeoff between bias and variance. Rather
than keeping only the much smaller sample from each group of interest, we then suggest
to use an extension of the Minimum Averaged Mean Squared Error (MAMSE) weights of
Plante (2008, 2009a, b) to borrow strength adaptively from the other groups.
The dependence between two variables is best represented through the copula of their

joint distribution. For continuous variables, the population value of rank correlation is
a functional of that copula (see Genest and Nešlehová (2007) and Genest et al. (2014)
for a descriptions of the challenges in the discrete case). While their original definitions
are typically expressed as sums of ranks, coefficients of correlation based on ranks can
also be rewritten as a functionnal of the empirical copula. We define MAMSE-weighted
coefficients of correlation by replacing the empirical copulas in those alternative defini-
tions with their MAMSE-weighted equivalent. In most cases, this is however equivalent
to calcaulting a weighted sum of the coefficients of correlation.
Previous work on copula estimation in the presence of confounding variables includes

Gijbels et al. (2011) andVeraverbeke et al. (2011) who use a form of kernel weighting based
on a continuous confounder to estimate the marginal distributions as well as the copula
underlying the data. Their approach is therefore based on similarities between the con-
founders, which is harder to define for a discrete variable. By comparison, the MAMSE



Plante Journal of Statistical Distributions and Applications  (2017) 4:20 Page 3 of 19

weights are based on the similarities in the variables of interest between groups, which is
possible because a discrete confounder provides a certain number of data for each level
of the confounder. In this paper, we also have the notion of possibly homogeneous cop-
ulas with heterogeneous marginals which would not seem appropriate in the continuous
setting treated by Gijbels et al. (2011) and Veraverbeke et al. (2011). The problem that we
address requires a different approach than those proposed therein.
Background definitions and notation are provided in Section 2. Weights for empiri-

cal copulas are introduced in Section 3 as well as their theoretical properties. The same
weights are used for coefficients of correlations based on ranks in Section 4 and conver-
gence results are provided. Finally, Section 5 presents simulation results and a case study
to illustrate the use of these weighted methods and explore their performance on finite
samples. Technical proofs appear in the Appendix.

2 Background and notation
We assume that a discrete finite confounding variable is observed along with p-
dimensional continuous data of interest. For infinite variables, merging some values could
offer a workaround, and if multiple discrete confounders are observed, they can be com-
bined into one categorical variable through a cross-product. The complete sample is
formed of independent variables, and is split in m different groups by the confounding
variable. We use an index k to keep track of the simultaneously increasing sample sizes
in the groups when studying asymptotic results. For any fixed k ∈ IN, we observe inde-
pendent and identically distributed Xi1, . . . ,Xinik ∼ Fi from Group i ∈ {1, . . . ,m}, for
a total of Nk = ∑m

i=1 nik data. The observation Xij =[Xij1, . . . ,Xijp]T is a vector in p
dimensions and Fi are continuous. By the theorem of Sklar (1959), there exists a unique
copulaCi underlying the distribution Fi such that Fi(x) = Ci

{
Gi1(x1), . . . ,Gip(xp)

}
where

Gi1, . . . ,Gip are the continuous marginal distributions of Fi.

Let Rk
ij =

[
Rk
ij1, . . . ,R

k
ijp

]T
be the ranks associated with the vectors Xij, j = 1, . . . , nik .

For fixed i and �, the list of values Xi1�, . . . ,Xinik� is sorted and Rk
ij� is the rank of Xij� in

that list. Since Fi are continuous, ties cannot occur with probability 1.
The empirical copula, Ĉik(u) = (1/nik)

∑nik
j=1
∏p

�=1 1(Rk
ij�/nik ≤ u�) with u =

[u1, . . . ,up]T, uses ranks to estimate Ci. The indicator variable 1(•) is equal to one if its
argument is true and equal to 0 otherwise. The empirical copula puts a weight of 1/nik
on some points of an evenly spaced grid over [ 0, 1]p with exactly one such point in every
(p − 1)-dimensional slice of the grid (rows and columns in 2 dimensions).
For bivariate data, coefficients of correlation based on ranks measure concordance

of the data. The population values of the well-known Spearman’s ρ and Kendall’s τ

are ρ = 12
∫
uvdC(u, v) − 3 and τ = 4

∫
C(u, v)dC(u, v) − 1 respectively, where C

stands for the copula underlying the data. Substituting the empirical copula in these
expressions leads to estimates that are asymptotically equivalent to the usual formu-
las (with n data having ranks (Ri, Si) to adopt a simpler more common notation)
ρ̂n = −3(n + 1)/(n − 1) + 12{n(n + 1)(n − 1)}−1∑n

j=1 RiSi and τ̂n = (2{n(n −
1)}−1∑

1≤i<j≤n sign(Ri − Rj) sign(Si − Sj). Both empirical coefficients are known to
be asymptotically normal. Other measures of dependence such as Gini’s γ (Nelsen
1999) or Blest’s coefficients (Blest 2000; Genest and Plante 2003; Pinto da Costa and
Soares 2005) are akin to Spearman’s ρ as they adopt the form of the expectation of a
polynomial.
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3 Weights for mixtures of empirical copulas
Let λk = [λ1k , . . . , λmk]T be nonnegative weights such that

∑m
i=1 λik = 1 for all k ∈ N

and let

Ĉλk (u) =
m∑

i=1
λikĈik(u)

be a mixture of the empirical copulas based on them available samples.
In this paper, inference must be made on the dependence between two or more vari-

ables (Ci or a functional thereof), conditional on the discrete confounding variable. The
marginal distributions are therefore nuisance parameters. We look at two different situa-
tions where the dependence accross the groups is homogeneous or not. While it could be
tempting to express equality of the dependence structure through coefficients of correla-
tions, especially when it is the measure of interest, one has to remember that correlation
does not fully determine dependence. Indeed, two sample can yield an equal correlation,
say an equal Spearman’s ρ, but come from different copulas. Even with equal sample sizes,
the variance of the estimates in these two samples will differ since their theoretical value
depends on the true underlying copula (see e.g. Ruymgaart et al. 1972), not on the value
of ρ alone. We consider the situation where all groups have a common dependence struc-
ture, and as such, it makes sense to assume equal copulas, i.e. C1 = · · · = Cm, rather
than a weaker equality of the coefficients. The assumption of homogeneous dependence
should be tested when required. We use a resampling procedure for that purpose in the
case study. The second situation is whenCi differ between groups. Inference must then be
made on each group individually since they do not have a common dependence structure.
However, it is likely that although not equal, the dependence could be similar between
many groups and we thus propose to use the MAMSE weights to borrow strength from
other groups.

3.1 Homogeneous copulas: scalar weights

We first consider the paradigm where the m groups are assumed to share a common
dependence structure, i.e. C1 = · · · = Cm = C. We allow for general scalar weights, but
need Assumption 1 to ensure that each datum’s contribution tends to 0 as k → ∞.

Assumption 1 We assume that lim supk Nk/nik < ∞ for i = 1, . . . ,m to ensure that
all sample sizes increase at a similar rate. This also implies that Ak = ∑m

i=1 λ2ikNk/nik is
finite for all k.

Deheuvels (1979) shows that supu∈[0,1]p |Ĉik(u) − Ci(u)| → 0 almost surely as k → ∞
(since nik → ∞ then). Similarly, the estimate Ĉλk (u) converges uniformly.

Theorem 1 supu∈[0,1]p |Ĉλk (u) − C(u)| → 0 almost surely as k → ∞.

Let Ui(u) be a p-dimensional centered Gaussian random field with covariance function
Ci(u∧ v) −Ci(u)Ci(v), where ∧ is the component-wise minimum. Such a random field is
called a p-dimensional pinned Ci-Brownian sheet. Early results by Fermanian et al. (2004)
and Tsukahara (2005) revisited by Segers (2012) (with weaker assumptions) show that√nik{Ĉik(u)−Ci(u)} converges weakly to such a Brownian sheet whose variance depends
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on Ci and its partial first-order derivatives. Since each of the Ĉik(u) are defined on inde-
pendent samples and are asymptotically normal, the asymptotic distribution of Ĉλk (u)

directly follows.

Theorem 2 The random variable
√
Nk/Ak{Ĉλk (u)−C(u)} converges weakly to the ran-

dom field U(u) −∑p
�=1{(∂/∂u�)C(u)}U ([ 1,u�, 1]T

)
as k → ∞ where U(u) is a random

field with covariance structure C(u ∧ v) − C(u)C(v).

Remark 1 The choice of weights has an effect on the asymptotic distribution of the
empirical copula. Simple calculus may be used to show that λik = nik/Nk minimizes Ak,
hence yielding the least variable estimate Ĉλk (u). This choice corresponds to allocating an
equal weight to each datum and yields Ak = 1. Since λik = nik/Nk are optimal weights,
all numerical examples involving scalar weights hereafter will be based on that choice of
weights.

Note that our asymptotic paradigm involves a fixed number of groups whose sam-
ple sizes increase to infinity. The convergence would not hold for an infinite number of
small groups. For instance, a mixture based on infinitely many samples of size 10 will still
have Ĉ(1/20, 1/20) = 0. Therefore, the convergence could fail if we were to increase the
number of categories defined by confounding variables as the sample size increases.
Unless there are practical reasons to assume homogeneity of the copulas across groups,

testing that assumption would seem advisable. Rémillard and Scaillet (2009) propose a
test of equality between two copulas, but we need a test for a general number of groups
m. Bouzebda et al. (2011) develop mathematical results for the m-sample empirical cop-
ula process, but while their results could lead to tests of equality form samples, we could
not locate a numerical implementation of such tests nor any results showing their finite
sample properties. In the case study, we rather use resampling techniques to test the
homogeneity of the copulas. Some basic properties of the proposed resampling algorithm
are explored, but the future development of tests for the equality of the copulas in m
samples will certainly provide better alternatives as they become available.

3.2 Heterogeneous copulas: adaptive weights

The assumption of identical dependence structures across groups may not always be
appropriate. The problem to solve then becomes the inference of one or many of the
Ci. For simplicity, we will assume that only Group 1 is of interest, but the methodology
developed could be applied sequentially to other groups of interest.
By identifying one group of interest, we adopt a paradigm similar to Wang and

Zidek (2005) for the weighted likelihood. In this context, adaptive weights can trade
potential bias for reduced variance. We therefore extend the MAMSE weights of Plante
(2008, 2009a, b) by replacing the empirical distribution functions in their definition with
empirical copulas.
Looking for a tradeoff between bias and variance means that the variance must play a

role in the objective function that will determine the weights. Let us define

Pk(λ) =
∫

[0,1]p

[
∣
∣
∣Ĉ1k(u) − Ĉλk (u)

∣
∣
∣
2 +

m∑

i=1
λ2i v̂ar

{
Ĉik(u)

}
]

du. (1)
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While the first term in Pk(λ) measures bias, the summation plays the role of a penalty
for the variance that fosters using data from all the groups rather than limiting the infer-
ence to the group of interest. Since the asymptotic variance of the empirical copula
depends on the true copula Ci(u) and its derivatives, we consider a very rough estimate
thereof given by

v̂ar{Ĉik(u)} ≈ ṽar{Ĉik(u)} = 1
nik

Ĉik(u){1 − Ĉik(u)}, (2)

which corresponds to the only term of the asymptotic variance of an empirical copula
that does not involve a derivative of Ci. The value of λ minimizing the objective function
Pk(λ) defined in (1) with the substitution (2) is called the MAMSE weights and is denoted
μk . The algorithm for the MAMSE weights proposed by Plante (2008) implemented in
the MAMSE R package can be used in the current context with copulas. Numerically, the
integral is calculated on an evenly spaced grid with np1k points, or through Monte Carlo
integration. Additional details specific to copulas may be found in Plante (2007).
The MAMSE weights have the property that

∫
[0,1]p

{
Ĉ1k(u) − Ĉμk (u)

}2
du → 0 almost

surely as k → ∞. Indeed, let λ =[ 1, 0, . . . , 0]T be a possibly suboptimal choice of weights
for Pk , and let μk denote the MAMSE weights, then

∫

[0,1]p

{
Ĉ1k(u) − Ĉμk (u)

}2
du ≤ Pk{μk} ≤ Pk(λ) =

∫

[0,1]p
ṽar

{
Ĉ1k(u)

}
du ≤ 1

4n1k
.

(3)

This property is key in proving Theorem 3, which would hold for other adaptive weights
that respect the same condition.

Theorem 3 We have uniform convergence of the MAMSE-weighted empirical copula:

sup
u∈[0,1]p

∣
∣
∣Ĉμk (u) − C1(u)

∣
∣
∣ → 0

almost surely as k → ∞.

Note that the MAMSE weights display an irregular behaviour as k → ∞. Although Ĉμk

converges uniformly to the desired target, the rate of that convergence cannot be traced
easily and the weights μk may remain random for an arbitrarily large k if a mixture of the
true C2, . . . ,Cm is identical to C1. This behaviour is observed and discussed with other
versions of the MAMSE weights in Plante (2008, 2009a). The study of the asymptotic
distribution of

√
Nk
(
Ĉμk − C1

)
would require a description of the similarities between

the Ci, an endeavour that will not be undertaken in this paper. Simulations and bootstrap
can be used instead to determine the critical values for a test of hypothesis.

4 Weighted coefficients of correlation
Many coefficients of correlation based on ranks including Spearman’s ρ (but not Kendall’s
τ ) take the form

κ̂ik = ank
∫

g(u)dĈik(u) + bnk (4)

to estimate κi = a
∫
g(u)dCi(u) + b where g(u) is a continuous bounded function on

[ 0, 1]2. The coefficients ank → a and bnk → b as nk → ∞ are chosen to ensure that κ̂ik ∈
[−1, 1] for all sample sizes nik with the values ±1 occurring only for perfect concordance
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or discordance. Coefficients of the form κ̂ik are asymptotically normal based on the results
of Ruymgaart et al. (1972) and Ruymgaart (1974) (see also Genest and Plante (2003) for
illustrations). Their variance can be derived from an expression that depends on the true
copula underlying the data.

4.1 Homogeneous copulas

Assuming that Ci = C, each κ̂ik is normally distributed and it is clear that the random
variable

√
Nk/Ak

(
κ̂λk − κ

)
converges weakly to a Normal variate with mean 0 and the

same asymptotic variance as √nik
(
κ̂ik − κ

)
when k → ∞.

Coefficients of correlation are often used as a test of independence. Suppose that the
alternative hypothesis is expressed through a parameter θ for which θ = 0 yields indepen-
dence. The theoretical value of κ is a function of θ and κ(0) = 0. The asymptotic relative
efficiency (ARE) of the two tests represent the ratio of the sample sizes needed by both
tests to achieve the same power. To illustrate, suppose that we compare a test of indepen-
dence based on κ̂ with one based on Spearman’s ρ̂. We find from Lehmann (1998), page
375, that ARE

(
Tκ̂ ,Tρ̂

) =
(
σ 2

ρ̂
/σ 2

κ̂

) (
κ ′
0/ρ0

′)2 where Tκ̂ is the independence test based on
κ̂ , κ ′

0 = (∂/∂θ)κ(θ)|θ=0, σ 2
κ̂
is the asymptotic variance of κ̂ , and similarly for ρ̂.

Remark 2 If the marginal distributions were not affected by the confounder, we could
pool the Nk data together to yield a test based on the usual estimate κ̂ calculated on the
whole dataset. In that case, ARE

(
Tκ̂ ,Tκ̂λk

)
= limk→∞ Ak. Recall that Ak = 1 when λi =

nik/Nk, which means that there is no loss of power asymptotically for using a weighted
coefficient.

Let us also consider the estimate τ̂λk =∑m
i=1 λiτ̂ik . Since τ̂ik is a U-statistics, √nik(τ̂ik−

τ) is asymptotically distributed as a centered Normal variable, hence
√
Nk/Ak(τ̂λk − τ)

converges weakly to a Normal distribution under the assumption that the copulas of the
m groups are equal.

4.2 Heterogeneous copulas

When copulas are not assumed equal across groups, the MAMSE weights may be used
to define consistent coefficients of correlation. Recall that within this paradigm, the
dependence of each group is assessed individually while borrowing strength from the
other groups. To simplify presentation, only Group 1 is deemed of interest, but the same
methodology could be applied sequentially to every group if needed.

Theorem 4 Coefficients κ̂μk defined with a function g(u) bounded on [ 0, 1]p are strongly
consistent, i.e. κ̂μk → κ1 almost surely as k → ∞.

One strength of the MAMSE weights is that almost no assumptions are made about the
underlying distributions in them groups, yet consistency is secured. Determining rates of
convergence and the asymptotic distribution of MAMSE based statistics would however
require much stronger assumptions about the relative shape of the distributions in them
groups. For testing and inference, we prefer to rely on resampling methods.
Let us now consider τ̂μk = ∑m

i=1 μiτ̂ik .With heterogeneous copulas, the lack of linearity
of τ may cause τ̂μk to be inconsistent.
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Remark 3 Consider the Fréchet family of copula from Example 5.3 in Nelsen (1999),
page 129. C1 = Cα,β = αM + (1 − α − β)
 + βW where M = C2, 
 = C3 and W = C4
represent respectively the Fréchet bounds of perfect concordance, independence and perfect
discordance. In this situation, the adaptive weights will find μk such that Cμk → C1,
but the share of C1 compared to C2, C3 and C4 may remain random even for large k.
Unfortunately, τ1 = (α−β)(α+β+2)/3 is not equal to ατM+(1−α−β)τ
+βτW = α−β ,
meaning that τ̂μk will not be consistent, and may in fact not even converge to a single value.

The empirical version of Kendall’s τ can be written as τ̂ik = 4n(n − 1)−1
∫
Ĉik(u)dĈik(u)−{1 + 4(n − 1)−1}, which shows that Kendall’s τ is asymptotically equiv-

alent to replacing the copula by its empirical counterpart in the population value of τ . We
thus define a new statistic based on 4

∫
Ĉμk (u)dĈμk (u)−1 = μT

k T̂kμk where T̂k is am×m
matrix with [ T̂k]ij = 4

∫
Ĉik(u)dĈjk(u) − 1. To facilitate their interpretation, coefficients

of correlation are usually built to have a null expectation under independence. In addi-
tion, under perfect negative or positive dependence, the coefficients take values -1 and 1
respectively. We define the asymptotically equivalent expression

τ̃μk = μT
k T̃kμk where

[
T̃k
]

ij
= 1

Nijk

nik∑

s=1

njk∑

t=1
sign

(
Rk
is

nik
− Rk

jt

njk

)

sign
(
Skis
nik

− Skjt
njk

)

and Nijk = ∑nik
s=1

∑njk
t=1 1

(
Rk
is/nik �= Rk

jt/njk
)
1
(
Skis/nik �= Skjt/njk

)
is such that

[
T̃k
]

ii
=

τ̂ik . Although
[
T̃k
]

ij
= 1 under perfect positive dependence, we rather get E


([
T̃k
]

ij

)

=
(
niknjk/Nijk

) (
1/njk − 1/nik

)2 under the assumption of independence and an unwieldy

expression for negative dependence. In general, E


([
T̃k
]

ij

)

is not the mid-point of the

values of T̃k under perfect positive and negative dependence, except if nik = njk . As a
consequence, even a linear transformation cannot make τ̃μk = μT

k T̃kμk fit the magical
values of -1, 0 and 1 appropriately for finite samples, contrarily to the inconsistent τ̂μk

who preserves this property.

Theorem 5 τ̃μk → τ1 almost surely as k → ∞.

The asymptotic normality of τ̂ can be derived from the theory on U-statistics, but
τ̃μk does not fall within this paradigm. Resampling methods may be used for testing or
establishing confidence intervals.

5 Simulations and case study
Simulations are used to explore the finite-sample performances of the proposed weighted
methods under different scenarios. Scalar weights that are proportional to the sample
sizes (λ) are considered as well as the adaptive MAMSE weights (μ). Note that the index
k is dropped in this section where sample sizes are fixed. The R package MAMSE from
the Comprehensive R Archive Network offers functions to compute the MAMSE weights
as well as weighted coefficients of correlation.
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5.1 Salary vs height

We first revisit the example presented in the introduction where salary and height are
simulated as independent variables, but with different marginal parameters for men and
women. Height is simulated as a Normal variable with mean 176.3 cm and standard devi-
ation 11.38 cm for men, but mean 162.2 cm and standard deviation 11.15 for women.
Those parameters are based on the tables from Mc Dowell et al. (2008). Salary is simu-
lated based on quantiles or order 10, 25, 50, 75 and 90% (average value over quarters of
2009 for each quantile) for the usual weekly earnings of men and women as calculated
by the Bureau of Labor Statistics (accessed online at http://www.bls.gov/webapps/legacy/
cpswktab5.htm). The salary are assumed to be uniformly distributed between the given
quantiles. For the purpose of the simulation, it is assumed that the minimum salary is 0
and that the maximum salary equals twice the 90th quantile. No attempt is made here to
study the possibility of wage inequity: we barely use the distributions of height and salary
to illustrate the potential effect of a discrete confounder when marginal distributions are
nuisance parameters. The simulation described is repeated 10,000 times.
Figure 2 shows the p-values of tests of independence based on Spearman’s rho. If we

consider a 5% level for a test, ignoring potential differences between men and women
leads to a 31.4% rejection rate. The weighted coefficient ρ̂λ, however, provides and unbi-
ased test with an observed 5.3% rejection rate and an histogram that approaches a uniform
distribution as expected.

5.2 Case study: the Iris dataset

Consider now the famous Iris dataset from Fisher (1936). The variables are respectively
sepal length, sepal width, petal length and petal width, all measured in centimeters, for
50 Iris Setosa, 50 Iris Versicolor and 50 Iris Virginica. Although a trained eye would
not mistake them for one another, these three species of flowers are relatively similar in
color and shape. Looking at the correlation between the measurements may give an idea
of the geometry of the flowers. For instance, do the petals of larger specimen keep the
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Fig. 2 Histograms of 10,000 p-values of a test of independence. Salary and Height are simulated as
independent random variables with gender-specific marginal distributions. On the left panel, the tests of
independence are based on Spearman’s rho calculated on the pooled data. On the right panel, a weighted
version of the coefficient of correlation leads to an apparently unbiased test

http://www.bls.gov/webapps/legacy/cpswktab5.htm
http://www.bls.gov/webapps/legacy/cpswktab5.htm
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same shape, which would translate in a highly positive correlation between their length
and width.
The descriptive analysis of the marginal distributions found in Fig. 3 shows that the

species have different marginal characteristics. A correlation that does not take into con-
sideration this confounding variable therefore presents a biased picture of reality. To fix
ideas, Table 1 displays estimates of the Spearman correlation matrix for the whole data set
(ρ̂) on the left, then the same matrix based only on the data of each group (ρ̂i). While the
three groups have generally similar types of correlations structures, ρ̂ offers a spurious
picture that includes negative correlations. Beyond the general picture, the correlations
matrices of the three groups display clear discrepancies: it is unlikely that the assumption
of homogeneous copulas could hold and support a preference for ρ̂λ. As a matter of fact,
a resampling test based on 10,000 bootstrap samples gave a p-value of 0. Details of the
resamlping methods can be found in the next subsection. Since ρ̂λ would offer a biased
view, we are left with the MAMSE-weighted coefficients of correlation to estimate each
ρi separately, or to rely only on data from Group i to estimate ρi.
To estimate the correlations for, say Iris Versicolor, one could calculate the MAMSE

weights on the four dimensional data and combine the ρ̂i matrices accordingly. These
weights are determined based on the similarities of four-dimensional empirical copulas
across the three groups and must therefore strike a global compromise. If for instance
the dependence of petal width and length is very similar across groups, but correla-
tions involving the sepals are much less akin, they will still all be combined with the
same weights. An alternative approach is to consider every pair of variables, and to com-
pute bivariate MAMSE weights for them. The adaptation to similarities is improved, but
there is no guarantee that the resulting matrix is positive definite. If interest lays in the
correlations rather than the correlation matrix, this may be a better option.
In order to evaluate the performance of the different methods, we now run a simula-

tion where parameters obtained from the Iris dataset are assumed to be the “true model”.

Fig. 3 Side-by-side boxplots for the marginal data of the Iris data set by species
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Table 1 Spearman’s correlation matrices for sepal length, sepal width, petal length and petal width

ρ̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

−0.16 1

0.88 −0.30 1

0.83 −0.28 0.94 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

ρ̂1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

0.77 1

0.27 0.18 1

0.30 0.37 0.23 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

ρ̂2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

0.52 1

0.74 0.57 1

0.55 0.66 0.79 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

ρ̂3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

0.43 1

0.82 0.39 1

0.32 0.54 0.36 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

While ρ̂ i contain Spearman’s coefficients for each each of the three species of iris, namely Setosa (ρ̂1), Versicolor (ρ̂2) and Virginica
(ρ̂3), the matrix ρ̂ contains Spearman’s correlation for the 150 iris taken as a single dataset, hence ignoring marginal discrepancies

Using the R package MVN, we find that Mardia’s test does not reject multivariate nor-
mality of the three datasets from each species of iris. We will therefore draw simulated
iris from a multivariate normal distribution with parameters equal to the estimated mean
and covariance obtained from the original Iris dataset. Knowing the “real” distribution of
the data will allow to evaluate the Mean Squared Error (MSE) of each estimate.
We generate 10,000 samples of 150 iris, 50 of each species, and we compute Spear-

man’s correlation based on the two types of MAMSE weights. While the “global” weights
are based on the four-dimensional data, the “pairwise” weights are determined sepa-
rately for each group of two variables, allowing for increased flexibility. Each of the
three species of iris are considered, in turn, as the target distribution. Table 2 shows
100MSE(ρ̂i)/MSE(ρ̂μ), the relative MSE comparing a version of MAMSE to its competi-
tor based solely on the group of interest. The relative MSE is reported for each pairwise
correlation for both global and pairwise weights. For the global weights, the MSE of the
correlation matrices corresponds to the average MSE for each coefficient of that matrix
and is also reported as a relative measure.
We first note that the MAMSE weights provide improved performance in most cases.

The estimation of the correlation for Iris Versicolor, for instance, is always better with a
MAMSE-weighted correlation, and the pairwise approach is systematically best. For Iris
Virginica, bothMAMSE approaches seem acceptable since they provide improved perfor-
mance everywhere, except for the correlation between petal length and petal width. At the
other end of the spectrum, the MAMSE-weighted correlations sometimes show weaker
performances as it is the case for Iris Setosa. Looking at Table 1 we may notice that ρ̂1 is
the correlation matrix that seems the most dissimilar to the other ones. While an infinite
sample size would still guarantee an efficient estimate, there are cases where a loss of effi-
ciency is observed for finite samples. Such observations are also made by Plante (2008)

Table 2 Relative MSE of Spearman’s correlation matrices for sepal length (SL), sepal width (SW), petal
length (PL) and petal width (PW)

SL SW PL

Species of interest MAMSE Matrix SW PL PW PL PW PW

Setosa Global 76 34 38 170 103 92 132

Pairwise 25 38 174 77 68 104

Versicolor Global 170 139 120 250 175 169 272

Pairwise 154 139 350 225 217 284

Virginica Global 181 208 207 159 140 149 79

Pairwise 198 169 169 136 141 95

The values listed are 100MSE(ρ̂i)/MSE(ρ̂μ) and are based on 10,000 repetitions. Each species of iris is in turn the target group.
The MAMSE weights are calculated based on a global or pairwise strategy. Relative MSE are reported for each pairwise correlation,
as well as for the correlation matrix in the case of global weights
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who describes in the univariate case how the MAMSE weights initially boost the perfor-
mance for small samples, and provides equivalent performance for very large samples. In
between, there is often a certain range for which the MAMSE approach does not offer
an improved performance. Note also that although estimation for Iris Setosa was not
improved by the contribution of the other two kinds of iris, using Iris Setosa to estimate
the parameters of the other two types of iris did yield better performances. In theMAMSE
objective function, any bias must be compensated by an equally reduced variance, but
transformation of the copulas into other statistics may change the geometry of bias and
variance. The MAMSE weights do not provide a uniformly more efficient approach, but
overall, it seems to offer an appreciable gain.
In this example, we ran a simulation inspired from a real dataset. That approach could

be considered by somebody who wonders how much improvement they could expect
from the MAMSE approach: They could run a simulation on a model that mimics their
own data.

5.3 Resampling technique for testing the homogeneity of copulas

To test homogeneity of the copulas, we need a nonparametric test for the equality of
copulas in m groups. As mentioned in Section 3.1, Rémillard and Scaillet (2009) have
developped a solution for m = 2 and the results from Bouzebda et al. (2011) for more
groups have not been implemented numerically nor tested on finite samples. While fur-
ther developments of such tests will certainly offer better options in the near future, we
choose here to use a resampling method that we present next.
The test is based on a Cramér-Von-Misses type statistic, namely

T = (1/m)

m∑

i=1

∫

[0,1]p

{
Ĉik(u) − Ĉ−ik(u)

}2
du

where Ĉ−ik(u) = ∑
j �=i{nj/(N − ni)}Ĉjk(u) is a mixture based on all groups except for i.

In our implementation for this paper, Monte Carlo integration (with 2000 random points)
is used to evaluate the integrals in the Cramér-Von-Misses statistic. The resampling test
follows these steps:

1. Calculate the ranks Rk
ij on the raw data (the ranks are taken within each groups)

and rescale them by dividing by ni. This step gets rid of the (nuisance) marginal
distributions.

2. Pool the rescaled ranks
(
Rk
ij/ni

)
into a single set. Under the null hypothesis of

homogeneity of dependence, those groups of rescaled ranks all follow
(approximately) the same copula common to the groups.

3. Generate bootstrap samples of size n1k , . . . , nmk by drawing witout replacement
from the pooled list of ranks.

4. Calculate the ranks in each bootstrap sample, then compute the
Cramér-Von-Misses type statistic presented above.

5. Calculate the same Cramér-Von-Misses type statistic on the original data. If it is
bigger than the 95% bootstrap quantile, then homogeneity is rejected. Alternatively,
a p-value is obtained by taking the proportion of bootstrap samples yielding a
statistic greater than or equal to the statistic computed on the original data.
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To confirm that this test has reasonnable finite sample properties, we ran a small simu-
lation for scenarios inspired from the Iris dataset. We simulated 3 groups of 50 data from
the normal distributions described in the previous section. To represent homogeneity of
the copulas, the parameters of Iris Setosa were used for the three groups in a first scenario.
A second scenario used the parameters from the original dataset, thus different covari-
ances in each group. In both cases, 1000 samples (of three times 50 iris) were generated
and for each, 1000 bootstrap samples were used in the resampling method to determine
a p-value for the test of homogeneity. Figure 4 shows the histograms of those p-values.
Under the null hypothesis, the test appears to be conservative with a histogram that

displays too many small values. As a matter of fact, a 5% level test would have rejected the
null with probability 0.120. Resampling from ranks creates ties which could explain that
bias. The right panel of Fig. 4 shows that the test has reasonnable power in the context
of the Iris dataset. The same 5% level test has a power of 0.757 under that heterogeneous
scenario.

5.4 Homogeneous copula

This simulation is designed to measure the loss of efficiency that is suffered when using
the proposed weighted methods. Throughout this section, the benchmark method is to
pool all the data in a single set, an impossible endeavour with real data because of the
confounding.
Theoretical results showed that the scalar-weighted rank statistics considered are unbi-

ased and that their asymptotic variance is not affected by the splitting of the sample inm
groups when optimal scalar weights are used, but is there a measurable loss on finite sam-
ples? The MAMSE-weighted statistics are consistent, but they could be biased on finite
samples. How much do we lose for not assuming homogeneity of the dependence when
that assumption is in fact true?
We generate data with homogeneous copulas from a Clayton distribution (Clayton

1978; Nelsen 1999) whose parameter is set to yield a Spearman’s correlation of ρ ∈
{0.1, 0.5, 0.9}. A total of 5n data points are available as samples of equal sizes from
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Fig. 4 Histograms of 1000 p-values of a resampling test for the homogeneity of the copulas. Simulated iris
datasets are generated from two scenarios. While on the left panel, the three species of iris share a same
copula, on the right panel, the three species are generated as a multivariate normal with parameters
estimated from the three species of iris in the original dataset
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5 groups. For each value of ρ and n ∈ {10, 20, 50}, 10,000 sets of samples are simulated
and homogeneity of the copulas is assumed without being tested. Although it would not
be possible to pool the data into a single set in a real case because of the nuisance marginal
distributions, we use that situation as an unreachable benchmark. The estimates based on
pooled data can be recognized by their lack of index (they are noted Ĉ, ρ̂ and τ̂ ).
To evaluate the precision of the weighted empirical copula Ĉλ, the upper section of

Table 3 shows the ratio 100
∫ |Ĉ(u)−C(u)|du/

∫ |Ĉλ(u)−C(u)|du, and similarly for Ĉμ.
The theoretical results about Ĉλ mention that it is unbiased and has the same asymptotic
variance as Ĉ. Surprisingly, this conservation of the efficiency is visible even for a samples
as small as n = 10, and for all strengths of correlation. Estimating the MAMSE weights
has a cost, so a smaller efficiency is expected for Ĉμ, but the loss is fairly small.
Weighted coefficients of correlation are also calculated on the samples described above.

Their performance measured by ratios such as 100MSE(ρ̂)/MSE(ρ̂λ) appear in the lower
part of Table 3. Note that without the proposed methodology, the alternative would be
to use only Group 1 for inference, which would yield a ratio of 20. Compared to that
achievable benchmark, the weighted methods always provide an improvement. While
ρ̂λ is asymptotically efficient, its efficiency is not attained on small samples, but clearly
increases as n increases. Remember that in a real life setting, the confounding makes it
impossible to compute ρ̂ directly, so the loss of efficiency observed may be unavoidable.
Although we did not compute its ARE explicitly, τ̂λ shows a behaviour similar to ρ̂λ. This
good behaviour is not surprising under homogeneous copulas since τ̂λ is then unbiased
with a variance equal to that of τ̂ . The performance of the weighted coefficients of cor-
relation seem to decrease as the correlation gains in strength. Splitting the dataset in
multiple smaller samples reduced the variety of values that an empirical coefficient may
achieve and this becomes more acute with larger correlations as most combinations of
ranks become improbable. In general, using the MAMSE weights when the copulas are
homogeneous decreases the performance, but we can observe that the loss is reasonable.
The MAMSE weights are clearly offering a better performance while protecting against
heterogeneity.
When considering Kendall’s τ , the weighted avaverage τ̂λ performs best. In the homo-

geneous case, this coefficient could be considered. Even if τ̂μ shows better performances
than τ̃μ, we would still recommend the latter in the heterogeneous case given that τ̂μ may
not be consistent.

Table 3 Performance of different weighted measures of dependence reported as 100
∫ |Ĉ(u)−

C(u)|du/
∫ |Ĉλ(u) − C(u)|du or by a ratio of the kind 100MSE(ρ̂)/MSE(ρ̂λ)

ρ = 0.1 ρ = 0.5 ρ = 0.9

n = 10 20 50 n = 10 20 50 n = 10 20 50

Ĉλ 100 100 100 100 100 100 100 100 100

Ĉμ 93 93 93 94 95 95 99 99 99

ρ̂λ 93 94 98 78 87 95 35 48 69

ρ̂μ 60 64 67 53 63 72 33 46 68

τ̂λ 79 86 95 76 86 95 66 77 91

τ̂μ 52 59 65 54 64 72 61 73 88

τ̃μ 45 56 63 46 59 70 39 50 72

In a practical situation, the confounding would make it impossible to calculate Ĉ, ρ̂ and τ̂ on the whole dataset, but they are used
here as unattainable ideal benchmarks. Five samples of size n are simulated from a Clayton distribution with Spearman’s
correlation ρ . Each scenario is repeated 10,000 times
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5.5 Tests of independence

Remark 2 mentions that there is no asymptotic loss of power in testing independence
using a scalar-weighted version of Spearman’s ρ. To obtain a more complete picture, we
study the power of tests of independence based on different coefficients of correlation,
including weighted coefficients with scalar andMAMSEweights. Five groups of equal size
n = 20 are simulated from a Clayton copula under three scenarios where the parameter
of the Clayton is matched to Spearman’s ρ and expressed as such (even for simulations
about τ ). The true correlation in Group i is therefore noted ρi. Power graphs are plotted
as a smoothed line based on 51 different values of ρ1, and for each of these values of
the graph, 1000 repetitions of a test of independence are generated. The first scenario
has homogeneous copulas (ρ1 = ρ2 = ρ3 = ρ4 = ρ5) hence the scalar weights should be
performing optimally. In the other scenarios, groups 2 to 5 have a fixed correlation while
only ρ1 varies according to the x-axis. In Scenario 2 ρ2 = ρ3 = ρ4 = ρ5 = 0.1, but in
Scenario 3, ρ2 = −0.4, ρ3 = −0.2, ρ4 = 0.2, ρ5 = 0.4.
To test independence with a sample of size n, Spearman’s ρ is compared to a centered

Normal with variance 1/(n − 1) and Kendall’s τ to a centered Normal with variance
(4n+ 10)/{9n(n− 1)} (see e.g. Capéraà and Van Cutsem 1988). For weighted coefficients
based on five groups with equal scalar weights, the same formulas are used with the total
sample size. Tests based on the MAMSE-weighted coefficients are trickier as the weights
depend not only on Group 1, but also on data from the other groups. In particular, it
depends on data that are not covered by the tested hypothesis H0 : ρ1 = 0. To determine
if one should reject the null or not, we therefore proceed with resampling techniques
where a new sample is generated for Group 1 from the independence copula while sam-
pling with replacement is applied to each of the other groups. To keep the computations
manageable, each test is based on 400 bootstrap samples that are use to determine the
standard error of the MAMSE-weighted coefficients of correlation. AWald-type statistic
is then used to test independence.
Figure 5 shows the power of a test of independence based on different coefficients of

correlation. The dashed lines show the power of the test based only on one group of size n.
Even though confounding would make such an operation impossible in practice, the coef-
ficients are also calculated on the whole dataset and the power of the corresponding tests
are drawn as dotted lines for reference. The mixed (dashes and dots) lines show the power
of a test based on a coefficient with scalar weights. The plain lines give the power of tests
based on the MAMSE-weighted sum of coefficients. The display for Kendall’s τ includes
an additional curve with longer dashes for τ̃μ.
Under the homogeneous copulas scenario, the tests based on scalar weights offer almost

the same power as those using the whole dataset directly, thus illustrating Remark 2 on
finite samples. With heterogeneous copulas, ρ̂λ and τ̂λ are biased and inapplicable, but
the MAMSE-based strategies offer good performances. In fact, the MAMSE-weighted
coefficients seem to offer the best compromise. Under homogeneity of the copulas, they
provide a test that is slightly less efficient than ρ̂λ or τ̂λ, butmore efficient than the alterna-
tives ρ̂1 or τ̂1. If the copulas are heterogeneous across groups, then theMAMSE-weighted
coefficients offer a power on par with the next best alternative: the coefficient based only
on the group of interest. By adapting to the data, theMAMSE weights offer a robust alter-
native that gets close to the best available option without needing to know the nature of
the discrepancies between groups or lack thereof.
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Fig. 5 Power of a test of independence based on different coefficient of correlations. The two columns of
plots are respectively for estimates of Spearman’s ρ and Kendall’s τ , the rows correspond to different scenarios
described with equations on the right. Equal samples of size n = 20 are drawn from five groups from a
Clayton distribution with correlation ρi . The null hypothesis is H0 : ρ1 = 0. The power is simulated with 1000
repetitions on 51 different values of ρ1 to yield a curve that is then smoothed

6 Conclusion
Rank statistics are used to infer the dependence structure (copula or correlation) of a
distribution without estimating its marginal distributions. The presence of a discrete con-
founding variable may yield spurious correlations if the marginal distributions vary across
the groups implied by the confounder. If the dependence structure is homogeneous across
those groups, a weighted sum of the empirical copulas (or coefficients of correlation)
computed from each groups provides an unbiased and asymptotically efficient solution.
For heterogeneous dependence structures, we propose an adapted version of theMAMSE
weights that preserves consistency while letting the groups borrow strength from each
others based on the similarities of their empirical copulas. Simulations and a case study
have shown that the proposed weighting schemes for rank statistics allow to account for
the confounding and that although they are not uniformly more performant, theMAMSE
weights provide sizable improvement in the MSE for many cases.
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Appendix
Mathematical proofs of theorems are presented below in order of appearance along with
a lemma whose result is used multiple times. Proofs of trivial results are not provided.

Lemma 1 Let u, v ∈[ 0, 1]p be such that v� ≤ u� for � = 1, . . . , p. Then

0 ≤ Ĉik(u) − Ĉik(v) ≤
p∑

�=1

�nik(u� − v�)

nik

where �x
 denotes the smallest integer greater or equal to x.

Proof of Lemma 1 The lower bound is a consequence of the monotone properties of
distribution functions and the relative position of u and v. For a fixed i, let Ak

� be the set
of points for which Rk

ij� ∈ (v�,u�]. The upper bound can be derived from the probability

represented by Ĉik(u) − Ĉik(v), namely P
(
∪m

�=1A
k
�

)
≤ ∑m

�=1 P
(
Ak

�

)
following a well-

known inequality. The margins being uniform on the points of the form {a/nik : a =
1, . . . , nik}, we also get P

(
Ak

�

)
≤ �nik(u� − v�)
/nik .

Proof of Theorem 3 Consider the decomposition

sup
u∈[0,1]p

∣
∣
∣Ĉμk (u) − C1(u)

∣
∣
∣ ≤ sup

u∈[0,1]p

∣
∣
∣Ĉμk (u) − Ĉ1k(u)

∣
∣
∣+ sup

u∈[0,1]p

∣
∣
∣Ĉ1k(u) − C1(u)

∣
∣
∣ .

The second term of the decomposition goes to 0 almost surely by the results of
Deheuvels (1979), so we only need to prove that the first term does likewise. Let ε > 0. For
any given k ∈ IN, let uk =[uk1, . . . ,ukp]T be the point in [ 0, 1]p where |Ĉμk (u) − Ĉ1k(u)|
is maximized. Consider the events

Ak =
{
Ĉ1k(uk) − Ĉμk (uk) > ε

}
,Bk =

{
Ĉμk (uk) − Ĉ1k(uk) > ε

}
,Ck =

{
uk ∈

[ε

2
, 1
]p}

.

We present a proof by contradiction. If supu∈[0,1]p |Ĉμk (u) − Ĉ1k(u)| does
not converge to 0, then {Ak ∪ Bk} i.o. which will happen if and only if
{(
Ak ∪ Bk ∩ CC

k
) ∪ (Ak ∪ Bk ∩ Ck)

}
i.o.. We will show that neither of the two events in

this decomposition can occur infinitely often.
Case 1 : Ak ∪ Bk ∩ CC

k .
We have

∣
∣
∣Ĉ1k(uk) − Ĉμk (uk)

∣
∣
∣ ≤ Ĉ1k(uk) +

m∑

i=1
μikĈik(uk) ≤ 2 min

�∈{1,...,p}uk� ≤ ε

because Ĉik(uk) > min�∈{1,...,p} uk� is incompatible with uniform univariate margins and
the MAMSE weights sum to 1. Consequently, Ak ∪ Bk ∩ CC

k = ∅ for all k.
Case 2 : Ak ∪ Bk ∩ Ck .
Consider any vector w = [

w1, . . . ,wp
]T ∈ [

0, ε/(3p)
]p. Then uk − w ∈[ 0, 1]p since

uk ∈[ ε/2, 1]p. Next, we show that
∣
∣
∣Ĉμk (uk − w) − Ĉ1k (uk − w)

∣
∣
∣ ≥ ε

2
−

p∑

�=1
w� ≥ 0

by treating two subcases. Note that the last inequality holds since w� ≤ ε/(3p).
Subcase A : Ak ∩ Ck .
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The monotonicity of Cμk and Lemma 1 allow to write

Ĉ1k (uk − w) − Ĉμk (uk − w) ≥ Ĉ1k(uk) − Ĉμk (uk) −
p∑

�=1

�n1kw�

n1k

≥ ε

2
−

p∑

�=1
w� ≥ 0.

as long as k is large enough to ensure that p/n1k < ε/2, and then
p∑

�=1

�n1kw�

n1k

≤
p∑

�=1
w� + p

n1k
≤ ε

2
+

p∑

�=1
w�.

Subcase B : Bk ∩ Ck .
By Lemma 1, we have

Ĉμk (uk) − Ĉμk (uk − w) =
m∑

i=1
μik

{
Ĉik (uk) − Ĉik (uk − w)

}

≤
m∑

i=1

p∑

�=1

�nikw�

nik

≤
p∑

�=1
w� +

m∑

i=1

p
nik

.

For large enough values of k,
∑m

i=1 p/nik < ε/2. From the previous inequality and the
monotonicity of Ĉ1k(u), we obtain

Ĉμk (uk−w) − Ĉ1k (uk − w) ≥ Ĉμk (uk) − Ĉ1k(uk) −
p∑

�=1
w� −

m∑

i=1

p
nik

≥ ε

2
−

p∑

�=1
w� ≥ 0.

Combining subcases A and B yields

Pk(μk) ≥
∫

[0,1]p

{
Ĉμk (u) − Ĉ1k(u)

}2
du ≥

∫

[uk−ε/(3p),uk]p
{
Ĉμk (u) − Ĉ1k(u)

}2
du

≥
∫ ε

3p

0
· · ·
∫ ε

3p

0

(
ε

2
−

p∑

�=1
w�

)2

dw1 · · · dwp = Kp.

The number Kp is a fixed positive constant for any fixed p. As a consequence, there exists
a k0 such that for all k ≥ k0, Pk(μk) > Kp/2 > 0, a contradiction with Eq. 3. We must
thus conclude that Ak ∪ Bk ∩ Ck occurs at most a finite number of times.
Hence, Ak ∪ Bk occurs at most a finite number of times and sup[0,1]p

∣
∣
∣Ĉμk(u)−Ĉ1k(u)

∣
∣
∣

→0 almost surely as k → ∞.

Proof of Theorem 5 It is sufficient to show that | ∫ Ĉμk (u)dĈμk (u) − ∫
C(u)dC(u)| →

0 almost surely as k → ∞. This expression is bounded by | ∫ Ĉμk (u)dĈμk (u) −
∫
C(u)dĈμk (u)| + | ∫ C(u)dĈμk (u) − ∫

C(u)dC(u)|.
The first term is bounded by supu∈[0,1]p |Ĉμk (u) − C(u)| which converges to 0 almost

surely by Theorem 3. For the second term, the uniform convergence in Theorem 1 implies
that a sequence of random vectors with distributions Ĉμk (u) will converge weakly to
a random vector with distribution C(u). As a consequence, expectations of continuous
bounded functions of these variables converge almost surely.
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