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Abstract

In this paper, the class of T-R {generalized lambda} families of distributions based on
the quantile of generalized lambda distribution has been proposed using the T-R{Y}
framework. In the development of the T-R{Y} framework, the support of Y and T must
be the same. It is typical that the random variable Y has one type of support and T is
restricted to the same support. Taking Y to be a generalized lambda random variable
leads to three different types of supports, thus, making the choice of the generator T
to be much more broad and flexible. This is interesting and unique. By allowing T
with different supports makes the T-R{generalized lambda} a desirable method for
generating new versatile and broad families of generalized distributions for any
given random variable R. Some general properties of these families of distributions
are studied. Four members of the T-R{generalized lambda} families of distributions are
derived. The shapes of these distributions can be symmetric, skewed to the left,
skewed to the right, or bimodal. Two real life data sets are applied to illustrate the
flexibility of the distributions.
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Introduction
Statistical distributions play an important role in theory and applications, which are

used to fit model and describe real world phenomena. For this reason, statistical distri-

butions and their properties are of great importance especially in the social sciences

(such as economics, political science) and engineering disciplines such as computer

science, as well as in the natural sciences (such as biology, chemistry, physics).

Although a large number of distributions have been defined and studied over the years,

seeking for more flexibility in fitting data remains a strong reason for researchers to

develop and study new distributions.

In the last two decades, there has been a growing body of research concerned with

developing new and more flexible univariate statistical distributions. For example,

Eugene et al. (2002) introduced a new method to develop the beta-generated family of

distributions. Using this methodology, a significant number of new families of distribu-

tions have been defined and studied. Examples of the beta-generated family of distribu-

tions include the beta-normal distribution introduced by Eugene et al. (2002), the beta-

exponential distribution (Nadarajah and Kotz, 2006), the beta-Weibull distribution

(Famoye, Lee and Olumolade, 2005), the beta-Pareto distribution (Akinsete, Famoye

and Lee, 2008), and others.
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An extension of the beta-generated family of distributions was proposed in Jones

(2009) and Cordeiro and de Castro (2011) by replacing the beta distribution with the

Kumaraswamy distribution (Kumaraswamy, 1980). Many statistical properties of

Kumaraswamy-generated (Kw-G) family have been studied in the literature. Examples

of this family include Kw-Weibull distribution (Cordeiro et al., 2010), Kw-Pareto distri-

bution (Pereira et al., 2012), Kw-Burr XII distribution (Paranaíba et al., 2013) and Kw-

log-logistic distribution (de Santana et al., 2012).

In the beta- and Kw-generated families, the use of distributions with support between

0 and 1 was a limitation in generating different classes of distributions. A more general

family, called the T-X(W) family, was introduced by Alzaatreh et al. (2013) to derive

new families of distributions by using continuous random variable as a generator.

Let r(t) and R(t) be the probability density function (PDF) and the cumulative distri-

bution function (CDF) of a random variable T ∈ [a, b], for − ∞ ≤ a < b ≤ ∞, and let F(x)

be the CDF of a random variable X such that the link function W(.) : [0, 1]→ [a, b] is

monotonic and absolutely continuous with W(0)→ a and W(1)→ b. If the interval [a,

b] is open or half-open, we replace W(0)→ a and/or W(1)→ b with lim
λ→0þ W λð Þ ¼ a

and/or lim
λ→1− W λð Þ ¼ b. The CDF and the PDF of the T-X(W) family of distributions

are defined, respectively, as

G xð Þ ¼
Z W F xð Þð Þ

a
r tð Þdt ¼ R W F xð Þð Þf g and g xð Þ ¼ d

dx
W F xð Þð Þ

� �
r W F xð Þð Þf g:

Based on this method, the use of different W(.) functions generates a large number of

distributions. For example, Alzaatreh et al. (2012) used W(F(x)) = − log {1 − F(x)} to de-

fine and study the gamma-Pareto distribution. In a similar way, Al-Aqtash et al. (2015)

used the logit of the CDF F(x), which is defined as W(F(x)) = log {F(x)/(1 − F(x)}, to gen-

erate the Gumbel-Weibull distribution.

Aljarrah et al. (2014) proposed quantile based approach to refine the T-X(W) family

by replacing the function W(.) with QY(.), where QY is the quantile function of a ran-

dom variable Y. This family was first named as the T-X{Y} family. The methodology is

called the T-R{Y} framework after the following unified notation given in Alzaatreh et

al. (2014):

Let FT(x) = P(T ≤ x), FR(x) = P(R ≤ x), and FY(x) = P(Y ≤ x) be the CDFs of the random

variables T, R, and Y, respectively, with corresponding quantile functions QT(u), QR(u),

and QY(u), where QZ(u) = inf {z : FZ(z) ≥ u}, u ∈ (0, 1). The PDFs (if they exist) will be de-

noted by fT(x), fR(x), and fY(x), respectively. The CDF of the random variable X is de-

fined as

FX xð Þ ¼
Z QY FR xð Þð Þ

a
f T tð Þdt ¼ FT QY FR xð Þð Þf g; T ;Y∈ a; bð Þ; for −∞≤a < b≤∞; ð1:1Þ

and accordingly the corresponding PDF associated with (1.1) is

f X xð Þ ¼ f R xð Þ � f T QY FR xð Þð Þf g � Q′
Y FR xð Þð Þ ¼ f R xð Þ � f T QY FR xð Þð Þf g

f Y QY FR xð Þð Þf g : ð1:2Þ

If Y follows the standard uniform distribution and T follows the beta distribution (or

Kumaraswamy distribution), then the T-R{Y} family reduces to beta-generated family

(or Kw-G family). Different choices of the random variables T and Y lead to different
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families of generalized R-distributions. Some research articles in the literature have pro-

posed several generalizations of some R-distributions based on the T-R{Y} framework. Ex-

amples include T-normal{Y} by Alzaatreh et al. (2014) and T-Weibull{Y} by Almheidat et

al. (2015). In this paper, we use the quantile function of generalized lambda distribution

(GLD) proposed by Ramberg and Schmeiser (1974) to develop new generalization of dif-

ferent R distributions, by using the T-R{Y} framework. For a review of the recent develop-

ment of generalized distributions, one may refer to Lee et al. (2013).

The rest of this paper is organized as follows. In Section 2, we briefly review the de-

velopment of the GLDs, and define the T-R{generalized lambda} (T-R{GL}) families of

distributions based on the quantile function of GLD. Some general properties of the

proposed families are investigated in Section 3. In Section 4, four members of the T-

R{GL} families of distributions are derived, and some of their properties are studied. In

Section 5, we address parameter estimation and simulation for the uniform-

exponential{generalized lambda} distribution. In Section 6, we present two applications

illustrating the usefulness of the uniform-exponential{generalized lambda} distribution

in fitting real data and compare the results with other existing distributions. Section 7

summarizes the main findings and concludes the article.

The T-R{generalized lambda} families of distributions
A brief review of generalized lambda distribution

The family of generalized lambda distributions (GLDs) is known for its high flexibility.

It produces distributions with a wide range of various shapes, and provides good ap-

proximations to many of the commonly used distributions such as the uniform, nor-

mal, exponential, Weibull, and logistic. For these reasons, there is an extensive amount

of literature that presented and discussed different techniques for estimating the pa-

rameters of the GLDs, as well as fitting its quantile regression model to empirical data.

Ramberg and Schmeiser (1974) proposed the four-parameter generalized lambda distribu-

tion (GLD), which is the most discussed member of the different GLDs. The GLD is defined

in terms of the quantile function QðuÞ ¼ Qðu; λ1; λ2; λ3; λ4Þ ¼ λ1 þ uλ3−ð1−uÞλ4
λ2

; u∈ð0; 1Þ .
The parameters λ1 and λ2 are, respectively, the location and the scale parameters, whereas λ3
and λ4 are shape parameters and determine the skewness and kurtosis of the GLD. When λ1
= 0 and λ2 = λ3 = λ4, we obtain the Tukey lambda distribution (Tukey, 1960). The GLD is

asymmetric when λ3≠ λ4, and has different shapes (unimodal, monotone, U-shaped, and S-

shaped).

The corresponding PDF from the quantile function of the GLD is given by

f xð Þ ¼ f Q uð Þð Þ ¼ λ2 λ3u
λ3−1 þ λ4 1−uð Þλ4−1

h i−1
; at x ¼ Q uð Þ;

and accordingly the quantile density function is

q uð Þ ¼ λ2
−1 λ3u

λ3−1 þ λ4 1−uð Þλ4−1
h i

:

In order to have a valid distribution, the PDF of GLD must satisfy the following

conditions:

(i) For all x over the allowed domain, f(x) ≥ 0, and (ii)
RQ 1ð Þ
Q 0ð Þ f xð Þdx ¼ 1:
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As originally indicated by Ramberg and Schmeiser (1974) and Karian and Dudewicz

(2000), there are six regions of parameter values where GLD is valid, see Fig. 1. The condi-

tions on the parameters and the support regions for the PDF of GLD are listed in Table 1.

Definition of T-R{generalized lambda} families of distributions

In this sub-section we define the class of T-R{GL} families of distributions based on the

quantile function of GLD.

Let Y be a random variable that follows the GLD, then the definition in (1.1) gives

the CDF (in general) of the random variable X in T-R{GL} families of distributions as

FX xð Þ ¼ FT QY FR xð Þð Þð Þ ¼ FT λ1 þ FR
λ3 xð Þ− 1−FR xð Þð Þλ4

λ2

 !
: ð2:1Þ

The corresponding PDF associated with (2.1) is

f X xð Þ ¼ f R xð Þ λ3FR
λ3−1 xð Þ þ λ4 1−FR xð Þð Þλ4−1

λ2

 !
f T λ1 þ FR

λ3 xð Þ− 1−FR xð Þð Þλ4
λ2

 !
: ð2:2Þ

The hazard function of the T-R{GL} families of distributions can be obtained from

the definition hX(x) = fX(x)/(1 − FX(x)).

Based on the T-R{Y} framework, the link function QY : [0, 1]→ [a, b], for −∞ ≤ a <
b ≤ ∞ , is absolutely continuous and monotonic with lim

u→0þ
QY uð Þ ¼ a and lim

u→1−
QY uð Þ ¼ b,

where [a, b] is the support of the random variable T. In other words, the choice of the ran-

dom variable T is not arbitrary and it depends on the choice of the random variable Y in

order to have a valid distribution. Figure 1 and Table 1 show that valid GLDs are defined

in different domains. Accordingly, the valid PDF of T-R{GL} in (2.2) is associated with dif-

ferent domains of the GLDs. The valid PDF’s and the associated restrictions on the pa-

rameters are summarized as cases (i)-(vi) and given in Table 2.

There are good reasons to let the random variable Y in the T-R{Y} framework be the

quantile function of GLD. First, adding one or more shape parameters may allow the

derived distribution to have different shapes as well as being flexible enough to fit a

Fig. 1 The support Regions 1, 2, 3, 4, 5, and 6 of the (λ3, λ4)− plane where the GLD is valid (p. 30, Karian
and Dudewicz (2010)).
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wide variety of data sets. Second, the support of GLD covers the three types of

intervals: bounded, semi-infinite and whole real line, which places no restrictions

in the process of choosing the random variable T other than those with only

bounded, semi-infinite, or whole real line support. In the development of the T-

R{Y} framework so far, the random variable Y has one type of support. Taking Y

to be a generalized lambda random variable leads to three different types of sup-

ports for the generator random variable T. By allowing one to apply different

generators, T, with different supports makes the T-R{generalized lambda} a desir-

able method for generating new versatile and broad generalized families of distri-

butions for any given random variable R. This unique and quite attractive

property of the T-R{GL} family motivates us to study this family of distributions.

Similar to existing distributions, the interpretations of parameters are often appli-

cation dependent. We hope that researchers in different disciplines will apply this

family of distributions in their respective disciplines with specific interpretations

for the parameters of the T-R{GL} distributions.

Some general properties of T-R{generalized lambda} families of distributions
In this section, we highlight some of the general properties of the T-R{GL} families of

distributions.

The following lemma shows the relationship between the random variable X that fol-

lows the T-R{GL} distributions and the random variable T.

Table 1 The conditions on the parameters and the support regions of GLD (p. 39, Karian and
Dudewicz (2010))
Region λ1 λ2 λ3 λ4 Q(0) Q(1)

1 all <0 < − 1 >1 −∞ λ1 + (1/λ2)

5 all <0 −1 < λ3 < 0; λ4 > 1

1−λ3ð Þ1−λ3 λ4−1ð Þλ4−1
λ4−λ3ð Þλ4−λ3 <

−λ3
λ4

8>><
>>:

−∞ λ1 + (1/λ2)

2 all <0 >1 < − 1 λ1 − (1/λ2) ∞

6 all <0 λ3 > 1; −1 < λ4 < 0

1−λ4ð Þ1−λ4 λ3−1ð Þλ3−1
λ3−λ4ð Þλ3−λ4 <

−λ4
λ3

8>><
>>: λ1 − (1/λ2) ∞

3 all >0 >0 >0 λ1 − (1/λ2) λ1 + (1/λ2)

=0 >0 λ1 λ1 + (1/λ2)

>0 =0 λ1 − (1/λ2) λ1

4 all <0 <0 <0 −∞ ∞

=0 <0 λ1 ∞

<0 =0 −∞ λ1

Table 2 The support of the random variable T corresponding to the cases (i)-(vi)

Case λ1 λ2 λ3 λ4 QY(u) FY(x) Support of T

(i) free >0 >0 >0 λ1 þ uλ3− 1−uð Þλ4
λ2

Computed numerically. No closed form. λ1−λ−12 ; λ1 þ λ−12
� �

(ii) 1/2 2 >0 >0 1þuλ3− 1−uð Þλ4
2 Computed numerically. No closed form. [0, 1]

(iii) free <0 <0 <0 λ1 þ uλ3− 1−uð Þλ4
λ2

Computed numerically. No closed form. (−∞,∞)

(iv) free <0 =0 <0 λ1 þ 1− 1−uð Þλ4
λ2

1− 1−λ2 x−λ1ð Þð Þ1=λ4 [λ1,∞)

(v) =0 <0 =0 <0 1− 1−uð Þλ4
� �

=λ2 1− 1−λ2xð Þ1=λ4 [0,∞)

(vi) =0 <0 <0 =0 uλ3−1
� 	

=λ2 1þ λ2xð Þ1=λ3 (−∞, 0]
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Lemma 1 (Transformation): Let T be any random variable with PDF fT(x).

a. If T has the support [λ1,∞) as in case (iv) in Table 2, then the random

variable X ¼ QR 1− 1−λ2 T−λ1ð Þ½ �1=λ4
� �

belongs to the T-R{GL} families of

distributions.

b. If T has the support [0,∞) as in case (v) in Table 2, then the random variable X

¼ QR 1− 1−λ2T½ �1=λ4
� �

belongs to the T-R{GL} families of distributions.

c. If T has the support (−∞, 0] as in case (vi) in Table 2, then the random variable X

¼ QR 1þ λ2T½ �1=λ3
� �

belongs to the T-R{GL} families of distributions.

Proof: The proof follows directly from the definition of the T-R{GL} families of distri-

butions in (2.1) and Table 2.

Note that in the first three cases (i)-(iii) in Table 2, the relationships between the ran-

dom variables X and T can be evaluated numerically.

The relation FX(x) = FT(QY(FR(x))), where T = QY(FR(X)) implies X =QR(FY(T)),

provides an important connection between the random variables X and T. For ex-

ample, one can apply the transformation X = QR(FY(T)) to generate random sam-

ples from X which has the CDF FX(x) by first simulating the random variable T

from the PDF fT(t). Moreover, the rth moments (if they exist) of the T-R{Y} family

of distributions can be obtained using EX[X
r] = ET[QR(FY(T))]

r.

The next lemma makes a connection between the quantile function for the random

variable X which follows the T-R{GL} families of distributions and the quantile func-

tions of the random variables T and R.

Lemma 2 (Quantiles): Let QT(u) and QR(u) be the quantile functions of the random

variables T and R, respectively.

a. If T has the support [λ1,∞) as in case (iv) in Table 2, then the quantile function of

the random variable X which follows the T-R{GL} distributions is QX uð Þ ¼ QR

1− 1−λ2 QT uð Þ−λ1ð Þ½ �1=λ4
� �

.

b. If T has the support [0,∞) as in case (v) in Table 2, then the quantile function of

the random variable X which follows the T-R{GL} distributions is QX uð Þ ¼ QR

1− 1−λ2QT uð Þ½ �1=λ4
� �

.

c. If T has the support (−∞, 0] as in case (vi) in Table 2, then the quantile function of

the random variable X which follows the T-R{GL} distributions is QX uð Þ ¼ QR

1þ λ2QT uð Þ½ �1=λ3
� �

.

Proof: The results follow directly by solving FX(QX(u)) = u for QX(u), where FX(.) is

the CDF of the random variable X.

In the literature, some of the quantile functions do not have closed form expres-

sions. For instance, in the first three cases (i)-(iii) in Table 2 the random variable

X has no closed form expression for its quantile function, and it has to be evalu-

ated numerically.

An implicit formula for the mode(s) of the T-R{GL} families of distributions is

presented in the following theorem.

Theorem 1 The mode(s) of the T-R{GL} families of distributions in (2.2) can be

obtained from the roots of the equation
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f R
′ xð Þ

f R
2 xð Þ ¼ −Q′

Y FR xð Þð Þ Q″
Y FR xð Þð Þ

Q′
Y FR xð Þð Þ� 	2 þ f T

′ λ1 þ λ2
−1 FR

λ3 xð Þ−FR
λ4 xð Þ

h i� �
f T λ1 þ λ2

−1 FR
λ3 xð Þ−FR

λ4 xð Þ
h i� �

2
4

3
5; ð3:1Þ

where FR xð Þ ¼ 1−FR xð Þ is the survival function of the random variable R with PDF

fR(x), Q′
Y FR xð Þð Þ ¼ λ2

−1 λ3FR
λ3−1 xð Þ þ λ4FR

λ4−1 xð Þ
h i

, and Q″
Y FR xð Þð Þ ¼ λ2

−1

λ3 λ3−1ð ÞFR
λ3−2 xð Þ−λ4 λ4−1ð ÞFR

λ4−2 xð Þ
h i

.

Proof: One can show the result in (3.1) by setting the first derivative of fX(x) in (2.2)

to 0.

Note that the result in Theorem 1 does not necessarily guarantee that the mode is

unique. It is possible that some members of the T-R{GL} families of distributions have

more than one mode. For example, the uniform-exponential{GL} distribution in section

4 is bimodal, depending on the values of its shape parameters.

Shannon (1948) defined the entropy of a random variable X as a measure of uncer-

tainty variation by ηX = EX[− log(fX(X))]. The next theorem defines the Shannon’s en-

tropy of the random variable X that follows the T-R{GL} families of distributions with

PDF fX(x) in terms of the Shannon’s entropy of the random variable T with PDF fT(x).

Theorem 2 The Shannon’s entropy for the T-R{GL} families of distributions is

given by

ηX ¼ ηT þ ET logf Y Tð Þ½ � þ ET logqR FY Tð Þð Þ½ �; ð3:2Þ

where ηT is the Shannon’s entropy of the random variable T with PDF fT(x) and qR(.) is

the quantile density function of the random variable R.

Proof: By the definition of Shannon’s entropy,

ηX ¼ EX − log f X Xð Þð Þ½ � ¼ EX log
λ3FR

λ3−1 Xð Þ þ λ4 1−FR Xð Þð Þλ4−1
λ2

 !−1" #

þEX − logf R Xð Þ½ � þ EX − logf T λ1 þ FR
λ3 Xð Þ− 1−FR Xð Þð Þλ4

λ2

 !" #
: ð3:3Þ

The random variable T ¼ QY FR Xð Þð Þ ¼ λ1 þ FR
λ3 Xð Þ− 1−FR Xð Þð Þλ4

λ2

� �
, or equivalently, X =

QR(FY(T)). This implies that

EX − logf T λ1 þ FR
λ3 Xð Þ− 1−FR Xð Þð Þλ4

λ2

 !" #
¼ ET − logf T Tð Þ½ � ¼ ηT ; ð3:4Þ

EX log
λ3FR

λ3−1 Xð Þ þ λ4 1−FR Xð Þð Þλ4−1
λ2

 !−1" #
¼ EX logf Y QY FR Xð Þð Þð Þ½ �

¼ ET logf Y Tð Þ½ �; ð3:5Þ
EX − logf R Xð Þ½ � ¼ ET − logf R QR FY Tð Þð Þð Þ½ � ¼ ET logqR FY Tð Þð Þ½ �: ð3:6Þ

Substituting (3.4) through (3.6) into (3.3) gives (3.2).

The result in (3.2) can be used to find the Shannon entropies of T-R{GL}for the cases

(iv)-(vi) since FY(x) and fY(x) are in closed form. For example, consider case (v) in Table

2 and let the random variable T follow the Lomax distribution with PDF fT(t) = (α/β)[1
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+ (t/β)]−(α + 1), t ≥ 0, α, β > 0, and let the random variable R follow the standard exponen-

tial distribution with PDF fR(x) = e−x and quantile function QR(u) = − log(1 − u). The

Shannon entropy of the Lomax distribution is given by

ηT ¼ αþ 1ð Þ=αð Þ− log α=βð Þ:

ET logf Y Tð Þ½ � ¼ ET log λ2=λ4ð Þ 1−λ2tð Þ 1=λ4ð Þ−1
� �h i

¼ λ2β λ4−1ð Þ=λ4ð ÞΓ αð Þ2~F 1 1; 1; 1þ α; 1þ λ2βð Þ þ log λ2=λ4ð Þ;

where Γ(α) is the gamma function and 2~F 1 1; 1; 1þ α; 1þ λ2βð Þ is the regularized hyper-

geometric function.

ET logqR FY Tð Þð Þ½ � ¼ ET − log 1−λ2tð Þ1=λ4
h i

¼ − −λ2βð Þα=λ4ð ÞΓ αð Þ2~F 1 α; α; 1þ α; 1þ λ2βð Þ:

Therefore, the Shannon entropy of the Lomax-exponential{GL} is given by

ηX ¼ αþ 1
α


 �
− log

α

β


 �
þ log

λ2
λ4


 �
þ λ2β λ4−1ð Þ

λ4


 �
Γ αð Þ2~F 1 1; 1; 1þ α; 1þ λ2βð Þ

−
−λ2βð Þα
λ4


 �
Γ αð Þ2~F 1 α; α; 1þ α; 1þ λ2βð Þ:

Moments In general, the non-central moments (if they exist) for the T-R{GL} family of

distributions can be obtained by using EX[X
n] = ET[QR(FY(T))]

n = ∫T[QR(FY(t))]
nfT(t)dt.

However, FY(.) in the first three cases in Table 2 have no closed form and one may use

EX[X
n] = ∫Xx

nfX(x)dx to find the moments. For the cases (iv)-(vi) in Table 2, the quantile

function QX(u) is in closed form, so the nth moment of the random variable X may be

obtained from EX Xn½ � ¼ R 10 QX uð Þ½ �ndu: The following Theorem 3 derives an approxi-

mation for computing the nth moment of a member, Uniform-R{GL} of case (i).

Theorem 3 Let T be a random variable that follows the uniform distribution with

support as in case (i) in Table 2, and let X be a random variable having the Uniform-

R{GL} PDF. The nthmoment of X can be expressed in terms of the quantile function

QR(u) and is given by:

EX Xnð Þ ¼ 1
2

λ3

Z 1

0
uλ3−1 QR uð Þ½ �nduþ λ4

X∞
k¼0

−1ð Þk λ4−1
k


 �Z 1

0
uk QR uð Þ½ �ndu

" #
:

ð3:7Þ

Proof:

EX Xn½ � ¼
Z ∞

−∞
xnf X xð Þdx ¼ 1

2

Z ∞

−∞
xnf R xð Þ λ3FR

λ3−1 xð Þ þ λ4 1−FR xð Þð Þλ4−1
h i

dx: ð3:8Þ

Using the substitution u = FR(x), then equation (3.8) can be written as

EX Xn½ � ¼ 1
2

Z 1

0
λ3u

λ3−1 QR uð Þ½ �nduþ
Z 1

0
λ4 1−uð Þλ4−1 QR uð Þ½ �ndu

� 

: ð3:9Þ

For λ4 > 0, a real non-integer, then by the generalized binomial theorem, we have
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1−uð Þλ4−1 ¼
X∞
k¼0

−1ð Þk λ4−1
k


 �
uk ; ð3:10Þ

and if λ4 > 1 and it is an integer, then the upper summation stops at λ4 − 1. The series

in (3.10) converges uniformly on (0, 1) since 0 < u < 1. By the dominated convergence

theorem of series, the second integral in (3.9) can be integrated term by term. This

completes the proof.

Remark 1: Let r = λ3 − 1 and s = λ4 − 1, the nth moment of Uniform-R{GL} in (3.9) can

be expressed as the probability weighted moments of random variable R, EX Xn½ � ¼ 1
2

λ3Mn;r;0 þ λ4Mn;0;s
� �

, where Mn;r;s ¼ ER XnFR
r Xð ÞFR

s
Xð Þ� �

is the probability weighted

moments of the random variable R of order (n, r, s).

Remark 2: If the random variable R has finite nth moment (i.e. [QR(u)]
n is integrable),

then by applying Cauchy-Schwarz inequality to (3.9), the nth moment of X is bounded

by the upper bound

EX Xn½ �≤ λ3
2

Z 1

0
QR uð Þ½ �2ndu

Z 1

0
u2λ3−2du

� �1=2

þ λ4
2

Z 1

0
QR uð Þ½ �2ndu

Z 1

0
1−uð Þ2λ4−2du

� �1=2

¼ 1
2

ER X2n
� 	� �1=2 λ3

2

2λ3−1

� �1=2

þ λ4
2

2λ4−1

� �1=2
" #

:

Some examples of T-R{GL} families of distributions with different T and R
distributions
In this section different T and R distributions are used to generate various members of the

T-R{GL} families of distributions. We present four new T-R{GL} distributions namely,

uniform-exponential{generalized lambda}, normal-uniform{generalized lambda}, Pareto-

Weibull{generalized lambda} and log-logistic-logistic{generalized lambda}.

The uniform-exponential{generalized lambda} distribution

Consider case (i) in Table 2 and let T be a random variable that follows the uniform

distribution. If a random variable R follows the exponential distribution with a rate par-

ameter θ > 0 and CDF FR(x) = 1 − e−θx, x ≥ 0, then the CDF and PDF of the uniform-

exponential{generalized lambda}(U-E{GL}) distribution are given by, respectively:

FX xð Þ ¼ 1
2

1þ 1−e−θx
� 	λ3− e−θx

� 	λ4h i
; ð4:1Þ

f X xð Þ ¼ 1
2
θe−θx λ3 1−e−θx

� 	λ3−1 þ λ4 e−θx
� 	λ4−1h i

; x≥0; θ; λ3; λ4 > 0: ð4:2Þ

The parameters λ3 and λ4 are shape parameters (see Figure 2). It is clear that the U-

E{GL} distribution reduces to the exponential distribution when λ3 = λ4 = 1 or λ3 = λ4 =

2. Various shapes of the U-E{GL} distribution for different values of the parameters θ,

λ3, λ4 are provided in Fig. 2. These graphs indicate that the U-E{GL} distribution can be

monotonically decreasing (reversed J-shape), right skewed, unimodal or bimodal.

Aldeni et al. Journal of Statistical Distributions and Applications  (2017) 4:25 Page 9 of 18



The normal-uniform{generalized lambda} distribution

Consider case (iii) in Table 2 and let T be a standard normal random variable with PDF

f T xð Þ ¼ ϕ xð Þ ¼ 1ffiffiffiffi
2π

p exp −x2=2ð Þ and CDF FT(x) =Φ(x). Let R be a random variable that

follows the uniform distribution with parameters a, b and CDF FR xð Þ ¼ x−a
b−a ; x ∈ [a, b],

−∞ < a < b <∞. If we set the location parameter λ1 = 0 in case (iii) in Table 2, then the

CDF and PDF of the normal-uniform{generalized lambda} (N-U{GL}) distribution are

given by, respectively:

FX xð Þ ¼ Φ
1
λ2

x−a
b−a

� �λ3
− 1−

x−a
b−a

� �λ4
 �� 

; ð4:3Þ

f X xð Þ ¼ 1

λ2 b−að Þ ffiffiffiffiffiffi
2π

p λ3
x−a
b−a

0
@

1
A

λ3−1

þ λ4 1−
x−a
b−a

0
@

1
A

λ4−1
0
B@

1
CA�

exp −
1

2λ2
2

x−a
b−a

0
@

1
A

λ3

− 1−
x−a
b−a

0
@

1
A

λ4
0
B@

1
CA

22
64

3
75; x∈ a; b½ �;−∞ < a < b < ∞; λ2; λ3; λ4 < 0:

ð4:4Þ

The parameters λ2, λ3, and λ4 are shape parameters (see Fig. 3). Plots of N-U{GL} dis-

tribution when a = 0, b = 3 and various values of λ2, λ3 and λ4 are given in Fig. 3. The

plots show that the N-U{GL} distribution can be symmetric, left skewed or right

skewed and it can be either unimodal or bimodal.

The Pareto-Weibull{generalized lambda} distribution:

Consider case (iv) in Table 2 and let the random variable T follow the Pareto distribu-

tion with CDF FT(x) = 1 − (λ1/x)
s, x ≥ λ1, λ1 > 0, s > 0, and take the random variable R to

be the Weibull distribution with CDF FR xð Þ ¼ 1−e− x=γð Þc ; x≥0; γ; c > 0: If we replace

λ1λ2 by −β, β > 0 and let λ4 = − 1, then the CDF and PDF of the Pareto-

Weibull{generalized lambda} (P-W{GL}) distribution are respectively given by

FX xð Þ ¼ 1− β= β−1þ e x=γð Þc
h i� �s

; ð4:5Þ

Fig. 2 Plots of U-E{GL} distribution for various values of θ, λ3 and λ4
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f X xð Þ ¼ scβsγ−1 x=γð Þc−1e x=γð Þc β−1þ e x=γð Þc
� �−s−1

; x≥0; s; β; c; γ > 0: ð4:6Þ

When s = β = 1, the P-W{GL} distribution reduces to the Weibull distribution, which

has Rayleigh and exponential distributions as special cases. It is worth mentioning that

by setting c = 1 in (4.6), the P-W{GL} distribution reduces to the Pareto-

exponential{generalized lambda} distribution, which is called in the literature the

gamma/Gompertz distribution. Thus, the P-W{GL} distribution is a generalization of

the gamma/Gompertz distribution, which was derived using a different approach

(Bemmaor and Glady, 2012).

Figure 4 illustrates some possible shapes of the density function in (4.6) when γ = 1

and for selected parameter values. The graphs in Fig. 4 indicate that the P-W{GL} dis-

tribution can be skewed to the left, skewed to the right or monotonically decreasing

(reversed J-shape). Different combinations of the values of the parameters were tried

but in all cases the graph of P-W{GL} distribution appears to be unimodal.

Fig. 3 Plots of N-U{GL} distribution when a = 0, b = 3 and for various values of λ2, λ3 and λ4

Fig. 4 Plots of P-W{GL} distribution when γ = 1 and for various values of β, s and c
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The log-logistic-logistic{generalized lambda} distribution:

Consider case (v) in Table 2 and let T be a random variable that follows the standard

log-logistic distribution with CDF FT xð Þ ¼ x
1þx ; x ≥ 0. Take the random variable R to be

the logistic distribution with CDF FR xð Þ ¼ 1
2 þ 1

2 tanh
x−μ
2σ

� 	 ¼ e x−μð Þ=σ
1þe x−μð Þ=σ ;−∞ < x < ∞;

where the location parameter μ ∈ ℝ and the scale parameter σ > 0. If we replace λ2 by

−c, c > 0 and λ4 by −w,w > 0, then the CDF and PDF of the log-logistic-

logistic{generalized lambda} (LL-L{GL}) distribution are respectively given by

FX xð Þ ¼ 1−2w 1− tanh x−μð Þ=2σ½ �ð Þ−w
1−c−2w 1− tanh x−μð Þ=2σ½ �ð Þ−w; ð4:7Þ

f X xð Þ ¼ cw 2−2 tanh x−μð Þ=2σ½ Þð �Þw−1 sech2 x−μð Þ=2σ½ Þ�
σ 2w þ c−1ð Þ 1− tanh x−μð Þ=2σ½ Þð �Þwf g2

;

−∞ < x < ∞; μ∈ℝ; σ; c;w > 0: ð4:8Þ

Note that the LL-L{GL} distribution reduces to the logistic distribution when c =w =

1. In Fig. 5, various graphs of the density in (4.8) when σ = 1 and for various values of

the parameters μ, c and w are provided. The plots show that the LL-L{GL} distribution

can be symmetric, left skewed or right skewed. The graph of LL-L{GL} distribution ap-

pears to be unimodal from trying many different combinations of the parameter values.

Parameter estimation and simulation for U-E{GL} distribution
In this section, we use the method of maximum likelihood to address the parameter es-

timation and conduct a simulation to examine the performance of this method. Let x1,

x2,…, xn be a random sample of size n from a U-E{GL} distribution defined in equation

(4.2), then the log-likelihood function is given by

ℓ θ; λ3; λ4ð Þ ¼ n log θ=2ð Þ−θ
Xn
i¼1

xi þ
Xn
i¼1

log λ3 1−e−θxi
� 	λ3−1 þ λ4 e−θxi

� 	λ4−1h i
: ð5:1Þ

To measure the performance of the MLEs, we conduct a simulation study to evaluate

the MLEs in terms of the bias (actual − estimate) and standard deviation of the param-

eter estimates for different parameter combinations and sample sizes.

Fig. 5 Plots of LL-L{GL} distribution when σ = 1 and for various values of μ, w and c
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The U-E{GL} is a generalization of the exponential distribution. It reduces to the ex-

ponential distribution with mean 1/θ when λ3 = λ4 = 1 or λ3 = λ4 = 2. In the simulation

study, we take the initial estimates of parameters λ3 and λ4 to be 1 and the initial esti-

mate of parameter θ to be the MLE of θ by taking the simulated data to have an expo-

nential distribution. We obtain a random sample x1, x2,…, xn of size n from a U-E{GL}

distribution by first generating a random sample t1, t2,…, tn from standard uniform

distribution and then transforming it to U-E{GL} using the relationship X =QR(FY(T))

= −(1/θ) log(1 − FY(T)), where FY(T) is computed numerically in SAS for different

parameter combinations of λ3 and λ4.

In this simulation, five sample sizes are considered (n = 50, 100, 250, 500, 1000). The

NLMIXED procedure in SAS is used to maximize the log-likelihood function in Equa-

tion (5.1). We consider different parameter combinations to cover different shapes of

the distribution, including monotonically decreasing, right skewed, unimodal or bi-

modal. The parameter combinations considered are (λ3, λ4, θ) = {(0.8, 0.6, 0.5), (1, 2,

2), (2, 0.8, 1), (3, 0.5, 3), (4, 0.7, 2)}. The MLEs of the parameters λ3, λ4 and θ are com-

puted and the process is repeated 1000 times for each sample size and each parameter

Table 3 Average bias (standard deviation) for the MLEs

Actual values Average bias Mode(s)

λ3 λ4 θ n λ3 λ4 θ

0.8 0.6 0.5 50 -0.0120 (0.1765) 0.0332 (0.1666) -0.0405 (0.1156) Reversed J-shape with one mode at
x = 0

100 -0.0415 (0.1498) 0.0382 (0.1565) -0.0495 (0.1092)

250 -0.0357 (0.1100) 0.0294 (0.1348) -0.0385 (0.0944)

500 -0.0240 (0.0828) 0.0127 (0.1216) -0.0238 (0.0807)

1000 -0.0130 (0.0591) -0.0000 (0.1081) -0.0121 (0.0658)

1 2 2 50 -0.0289 (0.2693) 0.1108 (0.5991) -0.1246 (0.4180) Unimodal at x = 0

100 -0.0336 (0.2405) 0.0757 (0.5425) -0.1135 (0.3728)

250 -0.0345 (0.2089) 0.0496 (0.4811) -0.0942 (0.2870)

500 -0.0284 (0.1839) 0.0436 (0.4072) -0.0713 (0.2122)

1000 -0.0469 (0.1769) -0.0014 (0.3396) -0.0549 (0.1534)

2 0.8 1 50 0.1337 (0.5625) 0.0237 (0.2040) -0.0222 (0.2059) Right-skewed with one mode at x > 0

100 0.0073 (0.5240) 0.0424 (0.1978) -0.0504 (0.1845)

250 -0.1297 (0.4199) 0.0381 (0.1895) -0.0684 (0.1531)

500 -0.1440 (0.3393) 0.0170 (0.1692) -0.0506 (0.1224)

1000 -0.1121 (0.2746) -0.0019 (0.1484) -0.0281 (0.0925)

3 0.5 3 50 -0.0571 (0.7754) -0.0030 (0.1311) -0.0908 (0.5682) Right-skewed with one mode at x > 0

100 -0.0851 (0.7237) -0.0018 (0.1190) -0.0870 (0.5159)

250 -0.1058 (0.6366) -0.0054 (0.0990) -0.0529 (0.4076)

500 -0.1073 (0.5306) -0.0088 (0.0836) -0.0309 (0.3365)

1000 -0.0796 (0.4066) -0.0034 (0.0632) -0.0256 (0.2526)

4 0.7 2 50 0.0921 (1.0819) 0.0284 (0.1753) -0.0651 (0.3435) Bimodal with two modes at x = 0 and
x > 0

100 -0.0580 (1.0216) 0.0110 (0.1722) -0.0609 (0.3031)

250 -0.1211 (0.8777) -0.0007 (0.1428) -0.0393 (0.2348)

500 -0.1794 (0.7393) -0.0030 (0.1183) -0.0360 (0.1914)

1000 -0.1301 (0.5861) 0.0010 (0.0868) -0.0256 (0.1454)
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combination. The average bias and standard deviation of the MLEs are computed and

the results are presented in Table 3.

The simulation results show that the maximum likelihood estimation method per-

forms quite well in estimating the U-E{GL} distribution parameters. It is observed that

the standard deviations of the MLEs decrease as the sample size increases and the aver-

age biases of the MLEs are somewhat small and seem to be reasonable. As the sample

size increases, it is also noticed that the average biases do not show a clear decreasing

or increasing pattern. In addition, it appears that the MLEs of θ tend to be overesti-

mated. In conclusion, the simulation results suggest that the maximum likelihood

estimation method is appropriate and it can be used to estimate the parameters of the

U-E{GL} distribution.

Applications
In order to illustrate the flexibility of the members of T-R{GL} families of distributions

in fitting real data, we present some applications of the U-E{GL} distribution using two

different real data sets. We use the method of maximum likelihood to estimate the pa-

rameters of the fitted distribution. The fits of the U-E{GL} distribution are compared to

other distributions based on the log-likelihood value, the Kolmogorov-Smirnov (K-S)

statistic, the p-value of (K-S) statistic and the Akaike information criterion (AIC).

Remission times of bladder cancer patients:

The data in Table 4 represents the remission times (in months) of a random sample of

128 bladder cancer patients. This data was previously used by Zea et al. (2012) to com-

pare the fits of the five-parameter beta exponentiated Pareto (BEP) distribution and

other sub-models such as the beta-Pareto (BP) distribution. The data is also recently

studied and analyzed by Almheidat et al. (2015) to show the flexibility of the four-

parameter Cauchy-Weibull{logistic} (C-W{L}) distribution in fitting real data. The data

is unimodal and is highly skewed to the right (skewness = 3.286 and kurtosis = 18.483).

We apply the U-E{GL} distribution to fit the same data. The MLEs (with corresponding

standard errors) of the parameters, the log-likelihood, the AIC, the K-S statistic and the p-value

of (K-S) statistic for the U-E{GL} distribution and the other fitted distributions are provided in

Table 5. The results in Table 5 for the C-W{L} distribution are taken from Almheidat et al.

Table 4 Remission times (in months) of bladder cancer patients

0.080 0.200 0.400 0.500 0.510 0.810 0.900 1.050 1.190 1.260 1.350 1.400

1.460 1.760 2.020 2.020 2.070 2.090 2.230 2.260 2.460 2.540 2.620 2.640

2.690 2.690 2.750 2.830 2.870 3.020 3.250 3.310 3.360 3.360 3.480 3.520

3.570 3.640 3.700 3.820 3.880 4.180 4.230 4.260 4.330 4.340 4.400 4.500

4.510 4.870 4.980 5.060 5.090 5.170 5.320 5.320 5.340 5.410 5.410 5.490

5.620 5.710 5.850 6.250 6.540 6.760 6.930 6.940 6.970 7.090 7.260 7.280

7.320 7.390 7.590 7.620 7.630 7.660 7.870 7.930 8.260 8.370 8.530 8.650

8.660 9.020 9.220 9.470 9.740 10.06 10.34 10.66 10.75 11.25 11.64 11.79

11.98 12.02 12.03 12.07 12.63 13.11 13.29 13.80 14.24 14.76 14.77 14.83

15.96 16.62 17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.69 23.63 25.74

25.82 26.31 32.15 34.26 36.66 43.01 46.12 79.05
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(2015) whereas the results for the BP and BEP distributions are obtained from Zea et al. (2012).

The other results in Table 5 are obtained by using the SAS (PROC NLMIXED) software.

The values in Table 5 indicate that the three-parameter U-E{GL} distribution outper-

forms the other three distributions and provide the best fit (based on the log-likelihood,

the AIC, the K-S statistic and the p-value of K-S statistic) to the remission times of bladder

cancer patient’s data. This application suggests that the U-E{GL} distribution can fit very

well highly right skewed data with long tail. Figure 6 displays the histogram of the data

and the density functions of the fitted distributions that provide adequate fits to the data.

The Wheaton river data

In Table 6, the data set with n = 72 is on exceedances (in m3/s) of flood peaks of the

Wheaton River, Yukon Territory, Canada, for the years 1958 to 1984, rounded to one

decimal place. This data was considered by Akinsete et al. (2008) to illustrate the appli-

cation of the beta-Pareto (BP) distribution. The data is also used by Alshawarbeh et al.

(2013) and fitted to the beta-Cauchy (BC) distribution. Recently, Al-Aqtash et al.

Fig. 6 The histogram and the fitted PDFs for remission times of bladder cancer patient’s data

Table 5 MLEs for remission times of bladder cancer patient’s data (standard errors in parentheses)

Distribution aBP aBEP bFour-parameter
C-W{L}

U-E{GL}

Parameter estimates a ¼ 4:805
(0.055)
b ¼ 100:502
(0.251)
k ¼ 0:011
(0.001)
β ¼ 0:080

a ¼ 0:348
(0.097)
b ¼ 159831
(183.7501)
k ¼ 0:051
(0.019)
β ¼ 0:080
α ¼ 8:612
(2.093)

α ¼ −2:3040
(1.0937)
β ¼ 2:0205
(0.4585)
k ¼ 3:0673
(0.7319)
λ ¼ 12:663
(2.6326)

θ ¼ 0:2757
(0.0665)
λ3 ¼ 2:5904
(0.9285)
λ4 ¼ 0:2894
(0.0858)

Log-likelihood −480.446 −432.41 −416.0965 −409.45

AIC 968.893 874.819 840.2 824.9

K-S statistic
(p-value)

0.217
(1.105E-5)

0.142
(0.0121)

0.06672
(0.6189)

0.02876
(0.9999)

a MLEs, log likelihood, K-S (p-value), and AIC are from Zea et al. (2012).
b MLEs, log likelihood, K-S (p-value), and AIC are from Almheidat et al. (2015).
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(2015) used the data in an application of the Gumbel-Weibull (GW) distribution. The

data is skewed to the right (skewness = 1.5 and kurtosis = 3.19).

To show the applicability of the U-E{GL} distribution, the distribution is applied to fit

the data set and the results are compared with the BP distribution, the BC distribution

and GW distribution. The maximum likelihood estimates, the log-likelihood value, the

AIC, the K-S test statistic, and the p-value of the K-S statistics for the fitted distribu-

tions are presented in Table 7. The MLEs, the values of the K-S statistic and its corre-

sponding p-value for the BP distribution, the BC distribution, and GW distribution in

Table 7 are obtained from Al-Aqtash et al. (2015).

Based on the p-value of K-S statistic, the results in Table 7 show that the U-E{GL}

distribution and GW distribution are superior to the other two distributions. Among

the fitted distributions, it seems that the U-E{GL} provides the best fit to the data with

smallest AIC, K-S statistic, and largest log-likelihood value. Figure 7 provides the histo-

gram of the data and the density functions of the U-E{GL} and GW distributions.

From sub-sections 6.1 and 6.2, we observe that the U-E{GL} distribution seems to be

very competitive to other distributions in fitting highly right skewed data with long tail.

Summary
In this article, the class of T-R{generalized lambda} families of distributions based on

the quantile of generalized lambda distribution is introduced using the T-R{Y} frame-

work. One of the advantages for letting the random variable Y in the T-R{Y} framework

to be the quantile function of GLD is that the generalized lambda random variable

leads to three different types of support as shown in sub-section 2.2. For this reason,

different families of the T-R{generalized lambda} distributions can be derived based on

the choices of the random variables T and R. Some general properties of T-R{general-

ized lambda} families of distributions are studied.

Table 7 Parameter estimates for Wheaton river data (standard errors in parentheses)

Distribution aBP aBC aGW U-E{GL}

Parameter estimates a ¼ 7:6954
b ¼ 85:75
θ ¼ 0:1
k ¼ 0:0208

a ¼ 317:0256
(312.5864)
b ¼ 1:4584
(0.4899)
θ ¼ −0:0482
(1.2301)
λ ¼ 0:09617
(0.0688)

μ ¼ −0:6548
(1.1214)
σ ¼ 3:3672
(0.7295)
a ¼ 1:4848
(0.3665)
λ ¼ 8:0323
(2.8206)

θ ¼ 0:1134
(0.0201)
λ3 ¼ 5:3192
(2.2026)
λ4 ¼ 3:0133
(1.0588)

Log-likelihood – 272.1280 – 260.4813 – 247.8373 – 247.7

AIC 552.256 528.952 503.7 501.4

K-S statistic
(p-value)

0.1625
(0.0446)

0.1219
(0.2350)

0.0662
(0.9101)

0.0531
(0.9873)

a MLEs, K-S statistic (p-value) are from Al-Aqtash et al. (2015).

Table 6 Exceedances of the Wheaton River data.

1.7
1.4
0.6
9.0
5.6
1.5

2.2
18.7
2.2
1.7
30.8
2.5

14.4
8.5
39.0
7.0
13.3
27.4

1.1
25.5
0.3
20.1
4.2
1.0

0.4
11.6
15.0
0.4
25.5
27.1

20.6
14.1
11.0
2.8
3.4
20.2

5.3
22.1
7.3
14.1
11.9
16.8

0.7
1.1
22.9
9.9
21.5
5.3

1.9
2.5
1.7
10.4
27.6
9.7

13.0
14.4
0.1
10.7
36.4
27.5

12.0
1.7
1.1
30.0
2.7
2.5

9.3
37.6
0.6
3.6
64.0
27.0
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Four new generalized R distributions in the T-R{generalized lambda} families of dis-

tributions are defined, namely, the uniform-exponential{generalized lambda}, the

normal-uniform{generalized lambda}, the Pareto-Weibull{generalized lambda} and the

log-logistic-logistic{generalized lambda}. As mentioned in sub-section 4.3, the Pareto-

Weibull{generalized lambda} distribution has the gamma/Gompertz distribution and

other distributions as special cases.

The uniform-exponential{generalized lambda} distribution is applied to fit two real

data sets. The results show that the uniform-exponential{generalized lambda} distribu-

tion has the ability to fit right skewed data with long tail.
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