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Introduction

Numerous extended classical distributions have been proposed for modelling data in sev-
eral areas such as biological studies, environmental and medical sciences, engineering,
economics, finance and actuarial science. However, in many applied areas like lifetime
analysis, finance and insurance, there is a clear need for further extended distributions,
that is, new distributions which are more flexible to model real data in these areas, since
the data can present a high degree of skewness and kurtosis. There are many generaliza-
tions and extensions of distributions in literature using the randomly-stopped approach
for either the minimum or maximum of K independent and identically distributed (iid)
random variables (discrete or continuous). See, for example, Nekoukhou and Bidram
(2017). Further, Rooks et al. (2010) introduced a two-parameter power-Cauchy (PC) dis-
tribution for analyzing upside-down bathtub (UBT) hazard function data. The cumulative
distribution function (cdf) and probability density function (pdf) of the PC distribution
with shape parameter o and scale parameter o are, respectively, given by
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Gpc(za,0) =27  tan™! (z/0)*, z2>0 a,0>0 (1)
and
grc@a,0) =217 (@/0) (2/0)* " [1+ (/)] . )

Tahir et al. (2016) studied the exponentiated power-Cauchy (EPC) distribution. Let Z,
denote the EPC distribution with baseline parameters « and o and power parameter
a > 0. The cdf and pdf of Z, are given by

o= )T
and

i =205 (2) (7 [0 ()] P (T
respectively.

In this paper, we define a new four-parameter generalization of the PC distribution
named the power-Cauchy negative-binomial (PCNB) model. The new distribution is flex-
ible to model complex positive real data sets, i.e., it can have decreasing, UBT shaped
and decreasing-increasing-decreasing hazard rate functions (hrfs). It thus provides a good
alternative to several well-known life distributions.

The paper is unfolded as follows. In “The proposed model” section, we define the PCNB
distribution. In “Properties of the new model” section, we obtain some of its mathematical
properties including quantile function (qf), tail behaviors, a useful linear representation
for its density function and some types of moments. In “Estimation” section, the model
parameters are estimated by maximum likelihood and a simulation study is performed. In
“Regression model” section, we present a regression model based on the PCNB distribu-
tion with censored data. In “Applications” section, the usefulness of the new distribution
is illustrated by means of four real data sets where we show empirically that it out-
performs some well-known lifetime distributions. Finally, “Concluding remarks” section

offers some concluding remarks.

The proposed model

General Insurance companies typically face two major problems when they want to use
past or present claim amounts in forecasting future claim severity. First, they have to find
an appropriate statistical distribution for their large volumes of claim amounts. Then, test
how well this statistical distribution fits their claim data. Most data in general insurance
problems is skewed to the right and therefore most distributions that exhibit this charac-
teristic can be used to model the claim severity. Insurance data contains relatively large
claim amounts, which may be infrequent. Hence, there is a clear need to use statistical
distributions with relatively heavy tails and highly skewed like the PC distribution.

Large claims play a special role because of their importance financially. It is also hard
to assess their distribution. They do not occur very often, and historical experience is
therefore limited. Insurance companies may even cover claims larger than anything that
has been seen before. How should such situations be tackled? The simplest would be to
fit a parametric family and try to extrapolate beyond past experience. That may not be a
very good idea. A generalization of the PC distribution may fit well in the central regions
without being reliable at all at the extreme right tail, and such a procedure may easily
underestimate big claims severely.
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Let T4, ..., Tk denote the failure times of K (a latent random variable) claims where K
is assumed independent of the T;s in a set-up with at least one claim. Then, we define Z =
max{T1,..., Tx}. Consider that the Ti/ s are iid random variables with common cdf G(z)
and that K follows the negative-binomial (NB) probability mass function (# = 1,2, ... and
p are fixed but unknown parameters)

k—1
P(K =k = (n B 1>p” A-p " k=mn+1,..., pe©).
Under this set-up, the conditional pdf of Z given K is
fz| K =k) = kg(z) Gz) L.

Then, the marginal pdf of Z follows as

Y kg@) G} <’; }

k=n
_ M@ (k-1 B )
~ (1-p)"G() l; k<n — 1) [(1-p)G@)]

np"g(z) Gz)"!

f(2)

1 neq _ Nk—n
1>p 1-p)

_ __ 5)
[1-a-pGE]™"
The cdf of Z (which holds for any positive real #) is given by
_ pG(2) "
e = [1 —a —p)G(z)i| ' ©
Inserting Egs. (1) and (2) in Eq. (5), we obtain
f) = 27 L np™(ajo) (z/o)* ! [1 + (z/cr)zo‘]_1 [271_”1+'c121r1_1 (z/cr)‘)‘]”_1 @

[1 —2771(1 —p) tan! (z/a)"‘]

where @, > 0 and p € (0, 1). Henceforth, we denote by Z ~ PCNB(#, p, «, o) a random
variable having the density (7). The cdf of Z is given by

8)

-1 -1 o n
F(Z)ZF(Z;VZ,[J,O[,G):[ 2r p tan (Z/O') ]

1-27-1(1 —p) tan1(z/0)*
Clearly, if p = n = 1, the PCNB model is identical to the PC distribution (2). Moreover,
the PCNB(n, p, o, o) model has the following six sub-models:

(i) Ifp=n=a =1,itgives the half-Cauchy (HC) distribution;
(i) Ifa =1,itreduces to the half-Cauchy negative binomial (HCNB) distribution;
(iii) Ifn = 1, it gives the PC-geometric distribution;
(iv) Ifa =n=1,it becomesthe HC-geometric distribution;
(v) Ifp =1, it reduces to the exponentiated-PC distribution;
(vi) Ifp =n =1, it becomes the PC distribution.

Note that the special models given in (ii), (iii) and (iv) do not exist in the literature.

The survival function (sf), hrf and reversed hazard rate function (rhrf) of Z are given
by S(z) = 1 — F(z), h(z) = f(2)/S(z) and r(z) = f(z)/F(z), respectively, where F(z) and
f(z) are defined before. Figures 1 and 2 display some plots of the density and hrf of Z for
o = 1 and different values of «, p and n. The plots in Fig. 1a and b reveal that the PCNB
density can have different shapes such as right-skewed and reversed-]J. The plots in Fig. 2a
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Fig. 1 Plots of the PCNB density
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and b indicate that the hrf of Z can have DFR (decreasing failure rate), UBT and DID

(decreasing-increasing-decreasing) shapes.

Properties of the new model
In this section, we provide some structural properties of the new distribution.

Quantile function and random number generation
The qf of Z is determined by inverting (8) as

7'[141/" 1/a
])] , ue(01).

Q(u) = o |tan 9)
[ (2[p+ (1 —p)ul/n
We can easily generate PCNB random variables from (9).
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Fig. 2 Plots of the PCNB hrf
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Tail behaviors
The tail behaviors of the pdf and cdf of Z in (7) and (8) are given as follow:

f(z) ~naAz"® las z— 0%,
f(z) ~aBz % las z— oo,
F(z) ~ AZ™, as z— 0%,

1—F(z) ~Bz %as z— oo,

where A = (2p/7)" and B = 2n/(p ). For example, for fixed values of n and p, the
left and right tails of the PCNB distribution are heavier when « increases. Also, for fixed
values of « and p, the left tail becomes heavier when # increases.

Moments
For any real ¢ > 0, the power series (1 — )77 = 2,920@1)1‘ t//j! holds, where (@j =
q+@+1)+---+(@g+j—1) =T'(g+j)/ ' (q) is the ascending order factorial and (¢q)p = 1.

Then, the cdf of Z in Eq. (8) can be expressed as

o0
F(z) = ) Bi(np) Gpc(za,0)", (10)
j=0
where B;j(n, p) = (n); p"(1 — pY/j! (forj > 0) and Gpc(z; a, o) is the cdf given in Eq. (1).
By differentiating Eq. (10), the pdf of Z follows as

o0
f@ = Bi(n,p) huy(2), (11)

j=0
where /1,1j(z) = hu1j(z @, 0) is the EPC density function with power parameter n + j
given by Eq. (4). Equation (11) reveals that the PCNB density is a linear combination of
EPC densities. So, some mathematical properties of Z can be obtained from those of the

EPC distribution. Next, we provide two examples.

Tahir et al. (2016) (see Sections 6.8 and 6.9) determined the sth ordinary and incomplete

moments of Z, as

oo 2i+%
05m)“ e a;(s/a)
E(Z) =ao’ 12
(Z2) =ao ; FET TRy (12)
and
z 00 2i+s/a .. a+2i+s/a
0.5m) a;(s/o) D,

dz=ao’ , 13
/OzstPC(Z) =a0 ; a+2i+s/a 13

respectively, where ag(s) = 1, ai(s) = s/3, az(s) = s(5s + 7)/90, etc, and D, =
27! tan"1(z/0)%.
Then, the rth ordinary moment of Z follows from Egs. (11) and (12) as
(n+j)o" (05m)**/* a;(r/a)
(n+j+ 2i + r/a) '

oo
w,=EZ) =Y Bjnp)
i,j=0

(14)

Analogously, the rth incomplete moment of Z, say m,(z) = foz 7" fpcng(2)dz, can be
obtained from (11) and (13) as
(n +]) (0'571_)2,'4_,/0[ D}Z'l+j+21+r/oz
n+j+2i+r/a)

mp(z) = o Z Bj(n, p) ai(r/a)

i,j=0

(15)
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The first incomplete moment m1; (q) follows from Eq. (15) for r = 1. It is useful to obtain
the Bonferroni and Lorenz curves and mean deviations for the new model.

Estimation

Several approaches for parameter point estimation were proposed in the literature but the
maximum likelihood method is the most commonly employed. The maximum likelihood
estimates (MLEs) enjoy desirable properties that can be used when constructing confi-
dence intervals for the model parameters. Large sample theory for these estimates delivers
simple approximations that work well in finite samples. The normal approximation for
the MLEs in distribution theory is easily handled either analytically or numerically.

We consider the estimation of the unknown parameters of the new distribution by the
maximum likelihood method. Let z1, ...,z be m observed values from the PCNB dis-
tribution given by (7) with vector of parameters § = (n, p,a,0) . The log-likelihood
£ = £(0) for 0 is given by

¢ = mlog [2np”n71 (@/o)] + (@ —1) Zlog (zi/o) — Zlog [1+ (z,'/o)z"‘]
i=1 i=1

+1=1) ) logl (2/m) tan”" (21/0)" ]

i=1

m
—(n+1) Zlog 1-A-pl@/m)tan~ (z;/0)*]}. (16)
i=1

Equation (16) can be maximized either directly by using well-known computing
platforms such as the R (opt im function), SAS (PROC NLMIXED) and Ox program (sub-
routine MaxBFGS). These scripts can be applied and executed for a wide range of initial
values. This process often leads to more than one maximum. However, in these cases, we
consider the MLEs corresponding to the largest value of the log-likelihood statistics. In
a few cases, no maximum is identified for the selected initial values. In these cases, new
initial values can be tried in order to obtain a maximum. There exist sufficient conditions
for the existence of the MLEs such as compactness of the parameter space and the con-
cavity of the log-likelihood function. These estimates can exist even when such conditions
are not satisfied. For more complex models, and in particular when there is no explicit
solution, it is nearly impossible to establish theoretical conditions on the existence and
uniqueness of the MLEs. However, such properties can be investigated numerically for
this distribution and a given data set.

For interval estimation on the model parameters, we can evaluate the estimated
observed information matrix J (5) numerically. Further, we can easily check if the fit using
the PCNB model is statistically “superior” to the fits using any of its six special models.
For example, for comparing the PCNB and HC distributions, i.e., testing the null hypoth-
esis Hy : p = n = a = 1 against H; : Hy is false, the likelihood ratio (LR) statistic is
given by w = 2{6(4’9\) - 6(5)}, where 0 and 8 are the unrestricted and restricted estimates
obtained by maximizing ¢ = ¢(6) under H; and Hy, respectively. The limiting distribu-
tion of this statistic is x5 under the null hypothesis, which is rejected if w exceeds the
upper 100(1 — y)% quantile of the X32 distribution.

The PCNB survival function has closed-form expression and hence this distribution

can be used effectively in analyzing lifetime data in the presence of censoring. Consider
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a situation, where the time to event is not completely observed and is subjected to right
censoring. Let C; denote censoring time. We then observe z; = min(¢;, ¢;), where ¢; is the
observed time to the event and ¢; is the observed right-censored, for i = 1,...,m. The
log-likelihood function reduces to

m

£(0) = ciZ {log [2np”n_1(a/0)] + (@ — 1) log (zi/0)
i=1

—log [1 + (zi/a)zo‘] — (m—1)log [271_1 tan~! (z,-/o)"‘]
—(m+1)log[1 —2(1 — p)r ' tan™! (z;/0)*]}

, - 2pm~tan~! (z;/0)®
+A—a) ;log {1 - [1 —2(1 —p)r~ttan~! (Zi/U)u]} '

The above log-likelihood can be maximized numerically to obtain the MLEs. We use
the optim routine in the R software.

Monte Carlo simulation study. Now we assess the performance of the maximum like-
lihood method for estimating the PCNB parameters using Monte Carlo simulations. The
simulation study is repeated 5000 times each with sample sizes m = 50, 100, 200, 500 and
parameter scenarios: I: p = 0.8,n = 0.5, =0.5ando = 1,1 p = 0.5, n = 0.5, = 1.5
ando = landIll: p = 0.1, » = 1.5, « = 1.5 and ¢ = 1. Table 1 gives the average biases
(Bias) of the MLEs, mean square errors (MSE) and model-based coverage probabilities
(CP) for the parameters p, n, « and o under these scenarios and different sample sizes.
Based on the simulation results, we conclude that the MLEs perform well in estimating
the parameters of the PCNB distribution. The CPs of the confidence intervals are quite
close to the 95% nominal levels. Therefore, the MLEs and their asymptotic results can be
adopted for estimating and constructing confidence intervals for the model parameters.

Table 1 Monte Carlo simulation results: Biases, MSEs and CPs
| I 1]

Parameter m Bias MSE CcpP Bias MSE CcpP Bias MSE CcpP
p 50 —0.233 0218 094 —0.021 0.169 0.94 0.205 0.195 093
100 —0.209 0.200 0.96 0.016 0.154 0.98 0.154 0.147 0.96
200 —0.188 0.183 0.96 0.055 0.150 0.96 0.111 0.100 0.95
500 —0.142 0.143 0.95 0.054 0.127 0.96 0.092 0.080 0.95
n 50 —0.038 0.045 0.96 0.076 0.172 0.98 1.104 0.896 0.95
100 —0.036 0.024 0.98 —0.016 0.022 0.96 0.983 0.521 0.95
200 —0.034 0.012 0.95 —0.007 0.014 0.95 0.514 0.165 0.96
500 —0.027 0.006 0.95 —0.010 0.006 0.95 —0.024 0.013 0.95
o 50 0.124 0.071 0.99 0370 0217 0.98 0.077 0.153 0.95
100 0.072 0.025 0.98 0.172 0.162 0.98 0.005 0.062 097
200 0.046 0.010 0.96 0.093 0.074 097 —0.012 0.031 0.95
500 0.028 0.004 0.95 0.061 0.034 0.95 —0.024 0.013 0.95
o 50 0312 0.573 093 —0.033 0.351 092 0.069 1.010 1.00
100 —0.042 0.290 0.95 —0.025 0.219 0.96 0.083 1.000 1.00
200 —0.096 0.107 0.96 —0.018 0.168 0.96 0.101 0.902 0.99

500 —0.107 0.098 0.95 —0.004 0.113 0.98 0.100 0.725 0.95
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Regression model

In many practical applications, the lifetimes are affected by explanatory variables such as
the cholesterol level, blood pressure, weight and many others. Parametric models to esti-
mate univariate survival functions and for censored data regression problems are widely
used. A regression model that provides a good fit to lifetime data tends to yield more
precise estimates of the quantities of interest.

In applications in the area of survival analysis, the hrf is often U-shaped or unimodal,
i.e.,, the function is not monotonic. The regression models commonly used for survival
data are the log-Weibull, monotonic failure rate, log-logistic, decreasing failure rate and
unimodal functions. One of the objectives of this work is to propose a new regres-
sion model, in location and scale form, called the log-power-Cauchy negative-binomial
(LPCNB) regression model, which presents different failure rate functional forms. The
proposed model is an alternative to the traditional extreme value (or log-Weibull), logistic
and log-normal models, among others. One way to study the effect of these explanatory
variables on the response variable Y is through a location-scale regression model, also
known as a model of accelerated lifetime. These models consider that the response vari-
able belongs to a family of distributions characterized by a location parameter and a scale
parameter. Further details on this class of regression models can be found in Cox and
Oakes (1984), Kalbfleisch and Prentice (2002) and Lawless (2003). In the context of sur-
vival analysis, some distributions have been used to analyze censored data. For example,
more recently, Cruz et al. (2016) proposed the log-odd log-logistic Weibull regression
model with censored data, Lanjoni et al. (2016) defined an extended Burr XII regres-
sion model and Ortega et al. (2016) introduced the odd Birnbaum-Saunders regression
model with applications to lifetime data. In a similar manner, we define a location-scale
regression model using the LPCNB regression model.

Let Z ~ PCNB(#n, p, @, o) be a random variable having the density (7). A class of regres-
sion models for location and scale is characterized by the fact that the random variable
Y = log(Z) has a distribution with location parameter (. (v), which depends only on the
explanatory variable vector, and a scale parameter a. Then, we can write Y = u(v) +aW,
where a > 0 and the distribution of W does not depend on v.

The random variable Y = log(X) re-parameterized in terms of 4 = log(c) anda = o~}
has density function (for y € R) given by

oy (275))71 n exp (y—Tu) ar:tan(n—l) [exp (y;l*)](nﬂ), .
a {1 — (1 —p)27—*arctan [exp (}%)“

where n > 0 and p € (0,1) are shape parameters, u € R is the location parameter and
a > 0 is the scale parameter.

We refer to Eq. (17) as the LPCNB distribution, say ¥ ~ LPCNB(n,p, u,a). If Z ~
PCNB(n,p,o,0), then Y = log(Z) ~ LPCNB(n, p, u, a).

For p = n = 1, we obtain the log-power Cauchy (LPC) model. The survival function
corresponding to Eq. (17) is given by

o (22Y arctan” [exp (y—TM)]
Sy =1 (TF ) {1—(1—]9)2n*1arctan[exp(y;7u)]}n. (18)
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Plots of the density function (17) for selected parameter values are displayed in Fig. 3a
and b, which show great flexibility for different values of p and n.
We define the standardized random variable W = (Y — w)/a having the density
function
(n—1)
] (19)

v

2p\" n exp(w) arctan [exp(w)
s = (%2) —
{1 — (1 —p)2n—larctan [exp(w)]}

Next, we propose a linear location-scale regression model linking the response variable

y; and the explanatory variable vector viT = (Vi1,...,Vjp) given by
yi:v?1+awi,i:1,...,m, (20)
where the random error w; has density function (19), T = (z1,. . ., rp)T, a > 0,n> 0and
p € (0,1) are unknown parameters. The parameter ¢; = viT 7 is the location of y;. The
location parameter vector ¢ = (¢1,...,¢,)" is represented by a linear model ¢ = vr,
where V = (vi,...,v,,)T is a known model matrix. The LPCNB model (20) opens new
possibilities for fitting many different types of data.
Consider a sample (y1,V1), ..., Wm, Vi) of m independent observations, where each
random response is defined by y; = min{log(z;),log(c;)}. We assume non-informative

censoring such that the observed lifetimes and censoring times are independent. Let
F and C be the sets of individuals for which y; is the log-lifetime or log-censoring,
respectively. Conventional likelihood estimation techniques can be applied here. The log-
likelihood function for the vector of parameters § = (p, n,a, tT)T from model (20) has
the form (0) = Y- 1i(8) + X £, (8), where ,8) = log[f ()], [ 8) = logIS(i)], £ 1)
is the density (171§Fand S(yisei(; the survival function (18) of Y;. The total log-likelihood
function for @ reduces to

/(@) = gqlog (

np" 2"
amn”

) + Z wi+m—1) Z log{arctan[ exp(w;)] } —
ieF ieF
n+1) Zlog {1 -1 —p)27r_1 arctan[ exp(w;)] } +
ieF

Zlog {1 B (219)" { arctan”[ exp(z;)] (1)

n b
povet T 1— (1 —p)27—Larctan]exp(z;)] }
s — n=0.1 N
o -- n=05 H
@ n=1.0 HEEY
° - n=15 iy
o n=2.0 ! \
5
S
3
8
o
y y
Fig. 3 Plots of the LPCNB density for some parameter values
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where g is the number of uncensored observations (failures) and w; = (yi — viT T) /a. The
MLE 8 of  can be evaluated by maximizing the log-likelihood (21). We use the procedure
NLMixed in SAS to calculate 8. Initial values for T and a are taken from the fit of the LPC
regression model withp =n = 1.

The elements of the (p + 3) x (p + 3) observed information matrix (), namely
Jop» Jpn> Jpar Jpty» Juns Jnar Intj» Jaar Jar; and Jyz, (for j,s = 1,..., p), can be evaluated numer-
ically. Inference on @ can be conducted in the classical way based on the approximate
multivariate normal N3 (0, J (g)’l) distribution for 8.

We can use the likelihood ratio (LR) statistic for comparing some special models with

the LPCNB regression model. We consider the partition § = (01T,02T ) T, where 67 is
a subset of parameters of interest and @5 is a subset of remaining parameters. The LR
statistic for testing the null hypothesis Hy : 6; = 0§0) versus the alternative hypothe-
sis Hy : 01 # 050) is given by w = 2{£(f0\) - 6(5)} , where 9§ and @ are the estimates
under the null and alternative hypotheses, respectively. The statistic w is asymptotically
(as n — oo) distributed as X;, where ¢ is the dimension of the subset of parameters 6;

of interest.

Applications

In this section, the PCNB distribution is fitted to model three real life data sets. We
compare the fits of the PCNB model with the beta-Weibull (BW) proposed by Lee et al.
(2007), beta half-Cauchy (BHC) defined by Cordeiro and Lemonte (2011), Kumaraswamy
half-Cauchy (KHC) presented by Ghosh (2014), power-Cauchy geometric (PCG) and
power-Cauchy models. We estimate the parameters by using the maximum likelihood
method. In order to compare the models, we consider the following goodness-of-fit statis-
tics: Akaike information criterion (AIC) and Kolmogorov-Smirnov (K-S) measure with
the associated p-value. The pdfs of the BW, BHC and KHC (forx > O and 4, b,c,0,A > 0)

distributions are given by

fow (%) = )\B(C 5 (;)C Lo bd)e [1 _e,@c]aﬂ’
s =3 14 (] ot () -2t e ()
(f) ] I:tanfl <§>]a—1 [1 ~ {27171 - (3)]5;]1%1,

respectively, where K1 = 2%/[o n% B(a,b)] and K = ab2*/(c 7%)

Jxrc(x) = K [

Data set 1: Load haul dumbp machines failure data. First, we consider data on the
times between successive failures (TBFs) of load haul dumbp machines. The operation
and maintenance cards of a fleet of 19 LHD machines were collected for a period of one
year. These cards record times to failure, the engine clock hour and the reported failures
in case of operation cards, and the times to repairs and actual repairs performed in case of
maintenance cards (see Kumar et al. [1989, Appendix 2, Table B1]). The summary statis-
tics of the data are: m= 50, x= 45.88, s=51.76936, skewness=2.07528 and kurtosis=6.06486.
The MLEs (with SEs in parentheses), the AIC and K-S statistics and their p-values are
listed in Table 2. The figures in this table indicate that the PCNB model provides the
best fit to the current data. Next, we provide the scaled TTT plot, see Aarset (1987), for
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Table 2 MLEs, their SEs (in parentheses) and goodness-of-fit measures for the first data set

Distribution Estimates AlC K-S p-value

PCNB(e, p, n, o) 1.8529 0.0029 0.3905 35171 487.1582 0.0791 09131
(0.3737) (0.0015) (0.1375) (1.6477)

BW(a, b, c, &) 8.9783 0.10422 0.5264 0.3086 489.5797 0.1028 0.6655
(3.9535) (0.0224) (0.0250) (0.0033)

PCGla, p, o) 1.182 711917 09153 4924754 0.0911 0.8009
(0.1415) (6.7322) (0.9334)

BHC(a, b, o) 15514 09514 11.1816 499.1124 0.1256 0.4096
(0.6308) (0.3152) (9.3295)

KHC(a, b, o) 1.3321 09188 14.3689 4973825 0.1528 0.1936
(0.8090) (0.3935) (7.9620)

PCla, o) 1.0127 25.1088 4927543 0.0877 0.8360
0.12771) (5.2807)

these data in Fig. 4b. The summary statistics and Fig. 4a and b reveal that the first data
set is right-skewed with DID failure rate shape. So, the PCNB has the ability to fit right-
skewed data with DID failure rate shape. For a visual comparison, we provide PP plots of
the fitted models to these data in Fig. 5. Clearly, the PCNB model provides a closer fit to
these data.

Data set 2: Jet Airplanes failure data. The second data set is taken from Porchan
(1963), which represents the failure times of air conditioning system of 720 jet airplanes.
A set of the summary statistics of the data are: m=213, x= 93.14085, s=106.7636, skew-
ness=2.11185 and kurtosis=4.92499. The results of the fitted distributions are presented
in Table 3. We conclude that the PCNB model provides the best fit with lowest values of
the AIC and K-S statistics and largest p-value. The scaled TTT plot for the second data
set in Fig. 6b gives an indication of a decreasing failure rate shape. The summary statistics
and Fig. 6a and b reveal that the second data set is right-skewed with decreasing failure
shape. So, the PCNB distribution can be used effectively to model these data. The PP plots
in Fig. 7 also support the results of Table 3.

In conclusion, the PCNB model is certainly an appropriate model for fitting the first

two data sets.
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Data set 3: Head and neck cancer data. The third data set is taken from Efron (1988)
regarding head and neck cancer clinical trial consisting of survival times of 51 patients
in arm A who were given radiation therapy. Nine patients were lost to the follow-up and
were regarded as censored observations. The MLEs of the model parameters are listed in
Table 4. The figures in this table indicate that the PCNB model provides the best fit with

Table 3 MLEs, their SEs (in parentheses) and goodness-of-fit measures for the second data set

Distribution Estimates AlC K-S p-value

PCNB(«, p, n, o) 16228 0.0035 0.7221 2.8888 2364.093 0.046 0.7588
(0.1972) (0.0009) (0.1969) (1.7041)

BW(a, b, c, A) 7.6164 0.1194 0.568 1.1134 2367.086 0.0767 0.1632
(1.51771) (0.0088) 0.0025) (0.0033)

PCGla, p, o) 1.3668 76.7098 2.9658 2368.893 0.0483 0.6507
(0.0905) (131.7613) (3.3747)

BHC(a, b, o) 1.7824 0.9400 22.1049 2388.513 0.1029 0.0219
(0.2498) (0.1014) (4.6448)

KHC(a, b, o) 14395 1.1559 36.2886 2375.904 0.0837 0.1013
(0.1744) (0.1462) (7.4700)

PCla, o) 1.1812 53.1034 2369.847 0.0524 0.6033
(0.0723) (4.5017)

Page 12 0of 17
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Fig. 6 a Histogram, b TTT plot for data set 2

lowest values of the AIC and K-S statistics. The plot in Fig. 8b reveals that the third data
set has UBT failure rate shape, and then the PCNB distribution can be used effectively
to model these data. The plots of the estimated survival functions of the PCNB, BW and
GPC distributions are displayed in Fig. 8a. Clearly, the PCNB estimated survival function
provides a closer fit to the empirical survival function than the other models.
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Table 4 MLEs, their SEs (in parentheses) and goodness-of-fit measures for the third data set

Distribution Estimates AlC BIC

PCNB(«, p, n, o) 1.2865 0.0070 1.6620 4.2398 592.1857 599.9130
(0.2690) (0.0055) (1.0335) (6.2151)

BW(a, b, c, &) 17.8517 0.7694 03143 4.0437 594.1023 601.8296
(59.5446) (1.8538) (0.4824) (25.6600)

PCGla, p, o) 14738 0.0053 9.2046 599.0166 604.8121
(0.1888) (0.0041) (6.0303)

BHC(a, b, o) 1.9480 1.0755 1272517 598.7476 604.5431
(0.6174) (0.2655) (54.0490)

KHC(a, b, o) 1.9059 1.0921 130.6862 598.7297 604.5252
(0.6031) (0.2780) (55.0280)

PCle, o) 0.5788 45.3099 649.3128 653.1764
0.1101) (12.3464)

Regression model example : Entomology data. First, we use the data from a study car-
ried out at the Department of Entomology of the Luiz de Queiroz School of Agriculture,
University of Sao Paulo, which aims to assess the longevity of the Mediterranean fruit
fly (ceratitis capitata). The need for this fly to seek food just after emerging from the lar-
val stage has permitted the use of toxic baits for its management in Brazilian orchards
for at least fifty years. This pest control technique consists of using small portions of
food laced with an insecticide, generally an organophosphate, that quickly kills the flies,
instead of using an insecticide alone. Recently, there have been reports of the insecticidal
effect of extracts of the neem tree leading to proposals to adopt various extracts (aqueous
extract of the seeds, methanol extract of the leaves and dichloromethane extract of the
branches) to control pests such as the Mediterranean fruit fly. The experiment was com-
pletely randomized with eleven treatments, consisting of different extracts of the neem
tree, at concentrations of 39, 225 and 888 ppm.

After preliminary statistical analysis, these eleven treatments were allocated into two

groups, namely:
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Fig. 8 a Empirical survival and estimated survival functions, b TTT plot for data set 3
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Table 5 MLEs of the parameters from the LPCNB regression model fitted to the entomology data
set, the corresponding SEs (given in parentheses), p-values in [-]

Model a n p ) T 5}
LPCNB 0.2514 04118 0.1496 29793 0.0188 -0.2787
(0.0383) (0.0897) (0.1470) (0.1471) (0.0779) (0.0854)
[<0.001] [0.8098] (0.0013]
LPC 04100 1 1 3.0781 -0.0207 -0.2779
(0.0293) (0.0617) (0.0832) (0.0939)
[<0.001] [0.8038] [0.0035]

e Group 1: Control 1 (deionized water); Control 2 (acetone - 5%); aqueous extract of
seeds (AES) (39 ppm); AES (225 ppm); AES (888 ppm); methanol extract of leaves
(MEL) (225 ppm); MEL (888 ppm); and dichloromethane extract of branches (DMB)
(39 ppm).

e Group 2: MEL (39 ppm); DMB (225ppm) and DMB (888 ppm).

The response variable in the experiment is the lifetime of the adult flies in days after
exposure to the treatments. The experimental period was set at 51 days, so that the num-
bers of larvae that survived beyond this period were considered as censored data. The
total sample size is # = 72, because four observations were lost. Therefore, the variables
used in this study are: z;-lifetime of ceratitis capitata adults in days, v;;-sex of the larvae
and vj2-group (0=group 1, 1=group 2). We start the analysis of these data considering only
failure (z;) and censoring (c;) data and an appropriate model for fitting the data could be
the LPCNB and LPC distributions.

Next, we present results on fitting the model

Yi =70+ n1vil1 + Tavio +aw;,

where the response variable Y; follows the LPCNB distribution givenin (17),i = 1,...,72.
Table 5 lists the MLEs and their standard errors in parentheses for two fitted regression
models. The MLEs of the model parameters are evaluated using the NLMixed procedure
in SAS. Iterative maximization of the logarithm of the likelihood function (21) starts with
initial values for T and o, which are taken from the fit of the LPC regression model.

We note from the fitted LPCNB regression model that v, is significant at 1% and that
there is a significant difference between the groups 1 and 2 for the survival times. Table 6
gives a summary of the AIC, consistent Akaike information criterion (CAIC) and Bayesian
information criterion (BIC) to compare the LPCNB and LPC regression models. The
LPCNB regression model outperforms the LPC model irrespective of the criteria and then
they can be used effectively in the analysis of these data.

Finally, we turn to a simplified model retaining only v, as an explanatory variable

Yi =To + Tavia +aw,.

Table 6 AIC, CAIC and BIC statistics for comparing the LPCNB and LPC regression models

Model AIC CAIC BIC
LPCNB 3328 3334 351.7
LPC 346.0 346.0 3586
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Table 7 MLEs of the parameters from the fitted LPCNB regression model to the entomology data

Model a n p 0 15}
LPCNB 0.2532 04164 0.1569 29917 -0.2771
(0.0375) (0.0879) (0.1496) (0.1391) (0.0846)
[<0.001] [0.0013]

The MLEs for the LPCNB regression model fitted to these data are listed in Table 7.
In order to assess if the model is appropriate, Fig. 9 displays the plots of the empirical
survival function and the estimated survival function from the fitted LPCNB regression
model. In fact, this regression model provides a good fit to these data.

Concluding remarks

We consider a lifetime model in the context of insurance claims where the claim sizes
follow a power Cauchy and the number of claims is negative binomial distributed. In
these terms, we propose a new model by compounding the power-Cauchy and negative-
binomial distributions called the power-Cauchy negative-binomial (PCNB) distribution.
We provide a useful linear representation for its density, which allows to obtain some
properties for the proposed distribution. We use the maximum likelihood method for
estimating the model parameters. The suitability of these estimates is investigated by a
simulation study. We fit the proposed distribution to three real data sets to show empir-
ically its flexibility. We proposed a new class of regression models for location and scale
based on the logarithm of the PCNB random variable. Estimation and inference on the
regression coefficients are discussed and an application to real data in Entomology is
addressed. Various future studies can be conducted, such as employing other estima-
tion techniques (bootstrap and Bayesian methods) and investigating the sensitivity of
the LPCNB regression model using diagnosis and analysis of residuals. which led to this

improved version.
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