
Duris et al. Journal of Statistical Distributions and
Applications  (2018) 5:2 
DOI 10.1186/s40488-018-0083-x

RESEARCH Open Access

Mean and variance of ratios of proportions
from categories of a multinomial distribution
Frantisek Duris1,2* , Juraj Gazdarica3, Iveta Gazdaricova3, Lucia Strieskova3, Jaroslav Budis4, Jan Turna5

and Tomas Szemes1,3,5

*Correspondence:
fduris@dcs.fmph.uniba.sk
1Geneton s.r.o., Galvaniho 7, 82104
Bratislava, Slovakia
2Slovak Centre of Scientific and
Technical Information, Lamacska
cesta 7315/8A, 81104 Bratislava,
Slovakia
Full list of author information is
available at the end of the article

Abstract
Ratio distribution is a probability distribution representing the ratio of two random
variables, each usually having a known distribution. Currently, there are results when
the random variables in the ratio follow (not necessarily the same) Gaussian, Cauchy,
binomial or uniform distributions. In this paper we consider a case, where the random
variables in the ratio are joint binomial components of a multinomial distribution. We
derived formulae for mean and variance of this ratio distribution using a simple
Taylor-series approach and also a more complex approach which uses a slight
modification of the original ratio. We showed that the more complex approach yields
better results with simulated data. The presented results can be directly applied in the
computation of confidence intervals for ratios of multinomial proportions.
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1 Introduction
Combinations of random variables (e.g., sums, products, ratios) regularly occur in many
scientific areas. Particularly useful is the ratio of two random variables. For example, plant
scientists use the ratio of leaf area to total plant weight (leaf area ratio) in the plant growth
analysis (Poorter and Garnier 1996), and geneticists use the ratio of total genetic diver-
sity distributed among populations to total genetic diversity in the pooled populations
as a measure of population differentiation (Culley et al. 2002). The ratio of two fluores-
cent signals has several applications in fluorescence microscopy, e.g., estimating the DNA
sequence copy number as a function of chromosomal location (Piper et al. 1995), and
there are many (dimensionless) ratios employed in engineering (Mekic et al. 2012). In case
of categorical data (i.e., from a binomial or multinomial distribution), there are numerous
applications of ratios as well in consumer preference studies, election poll results, quality
control, epidemiology, and so on.
Formally, a ratio distribution is a probability distribution constructed as the distribu-

tion of the ratio of two random variables, each having another (known) distribution. More
particularly, given two random variables Y1 and Y2, the distribution of the random vari-
able Z that is formed as the ratio Z = Y1/Y2 is a ratio distribution. When using ratio
distributions for theoretical and practical purposes, it is helpful to know its mean and
variance, preferably in a computationally efficient form. In the case that Y1 and Y2 follow
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normal distributions, andμY2 = 0, Z is known as Cauchy distribution (Geary 1930; Fieller
1932; Hinkley 1969; Korhonen and Narula 1989; Marsaglia 2006). Other authors have
addressed ratios of binomial proportions (also known as relative risk) (Koopman 1984;
Bonett and Price 2006; Price and Bonett 2008), ratios of uniform distributions (Sakamoto
1943), Student’s t distributions (Press 1969), Weibull and gamma distributions (Basu and
Lochner 1971; Provost 1989; Nadarajah and Kotz 2006), beta distributions (Pham-Gia
2000), Laplace and Bessel distributions (Nadarajah 2005; Nadarajah and Kotz 2005) and
others. General notes on the product and ratio of two (not necessarily normal) random
variables can also be found in (Frishman 1971; Van Kempen and Van Vliet 2000).
In our paper, we consider a ratio involving two or more random variables that jointly

have a multinomial distribution. This situation is similar to relative risk or risk ratio which
is the ratio of the probability of an event occurring (for example, developing a disease or
being injured) in an exposed group to the probability of the event occurring in a compar-
ison, non-exposed group. However, while the probabilities in the risk ratio are indepen-
dent (in the sense that they describe two independent events in two independent groups),
in our case, the probabilities are tied together through the covariance between multino-
mial categories. These ratios serve as a common framework for opinion polls, statistical
quality control, and consumer preference studies. Confidence intervals for the odds ratio,
which can be easily calculated, if the standard deviation is known, are especially important
for applications. Nelson (1972) presented estimates, confidence intervals, and hypoth-
esis tests for the odds ratio in trinomial distributions. Piegorsch and Richwine (2001)
examined some types of confidence intervals in the context of analysis of genetic mutant
spectra. Quesenberry and Hurst (1964) and Goodman (1965) explored methods for
obtaining a set of simultaneous confidence intervals for the probabilities of a multinomial
distribution. A comparison of performance of various confidence intervals also appeared
in Alghamdi (2015); Aho and Bowyer (2015). To the best of our knowledge, however,
there has been no analytical treatment of the ratio of multinomial proportions including
derivations for formulae for the mean and variance of such a ratio.
A ratio between two or more random variables that jointly have a multinomial distri-

bution also arises in the trending field of the non-invasive prenatal testing of common
fetal aneuploidies such as trisomy of the 13th, 18th or 21st chromosome (Chiu et al. 2008;
Sehnert et al. 2011; Lau et al. 2012; Minarik et al. 2015). We are currently working on
implementation of this model into laboratory practice, and this paper represents a math-
ematical background of our work. In this paper, we discuss two solutions to the problem
of mean and variance of the said ratio. More particularly, we derive asymptotic formulae
for the mean and variance of the random variable Z = Y1/Y2, where Y1 = ∑

k∈I Xk and
Y2 = ∑

k∈J Xk , I, J ⊂ {1, ..., r} and I ∩ J = ∅, are sums of random variables X1, ...,Xr which
together have a joint multinomial distribution.

2 Solution by Taylor series
There is a simple solution to the mean and variance of the ratio of multinomial propor-
tions that can be derived by using the Taylor series. Formally, let a set of random variables
X1, ...,Xr have a probability function

pr (X1 = x1, ...,Xr = xr) = n!
∏r

i=1 xi!

r∏

i=1
pxii ,
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where xi are non-negative integers such that
∑

xi = n and pi are constants with pi > 0
and

∑
pi = 1. The joint distribution of X1, ...,Xr is known as multinomial distribution.

Let u, v ∈ {0, 1}r be two binary vectors such that
∑

ui > 0,
∑

vi > 0 and uivi = 0 for all
i. We define

Z0 = X · u
X · v ,

where · represents a scalar product and X = (X1, ...,Xr). Without loss of generality, we
will restrict our explorations to r = 3 and Z0 = X1/X2. This holds because the choice
vectors u, v have no common Xi; thus, the Xis can be grouped to three disjoint sets: 1) Xis
selected by u, 2) Xis selected by v, and 3) all others.
Also, the reader will note that the ratio Z0 = X1/X2 can be viewed as a ratio of absolute

quantities as well as a ratio of fractions or probabilities because Z0 = (X1/n)/(X2/n).
Before we proceed any further, observe that because of the possible zero in the denom-

inator of Z0, there is no analytical solution to the mean and variance of the ratio Z0. A
workaround for this problem is to rewrite this ratio using a function that does not have
a singularity. Let Z0 = f (X1,X2) = X1/X2 be a function of two random variables. Then,
with μ = (

μX1 ,μX2

)
, we can use the Taylor series to approximate the function f as

Z0 = f (X1,X2) ≈ f (μ) + (
X1 − μX1

) ∂f
∂X1

(μ) + (
X2 − μX2

) ∂f
∂X2

(μ)

+ 1
2

(
X1 − μX1

)2 ∂2f
∂X2

1
(μ) + 1

2
(
X2 − μX2

)2 ∂2f
∂X2

2
(μ)

+ (
X1 − μX1

) (
X2 − μX2

) ∂2f
∂X1∂X2

(μ),

from which we have

E(Z0) ≈ f (μ) + 1
2

∂2f
∂X2

1
(μ)σ 2

X1 + 1
2

∂2f
∂X2

2
(μ)σ 2

X2 + ∂2f
∂X1∂X2

(μ)σX1,X2 . (1)

Since X1 and X2 are terms of a random vector X = (X1,X2,X3) drawn from the multi-
nomial distribution given by (n, p1, p2, p3), we have μXi = npi and σ 2

Xi
= npi(1 − pi) for

i = 1, 2, and σX1,X2 = −np1p2. It follows easily that

E(Z0) ≈ p1
p2

+ 1
n

(
p1(1 − p2)

p22
+ p1

p2

)

= p1
p2

(

1 + 1
np2

)

. (2)

For variance, we use a simpler approximation of f

f (X1,X2) ≈ f (μ) + (
X1 − μX1

) ∂f
∂X1

(μ) + (
X2 − μX2

) ∂f
∂X2

(μ),

from which we have

var(Z0) ≈ ∂f
∂X1

(μ)2σ 2
X1 + ∂f

∂X2
(μ)2σ 2

X2 + 2
∂f
∂X1

(μ)
∂f
∂X2

(μ)σX1,X2 , (3)

and finally

var(Z0) ≈ 1
n

(
p1(1 − p1)

p22
+ p21(1 − p2)

p32
+ 2

p21
p22

)

= 1
n

(
p1
p2

)2 (
1
p1

+ 1
p2

)

. (4)
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3 Solution by amodified ratio
3.1 Definition

Let the symbols X, u, and v have the same meaning as in Section 2. We define a new
random variable Z1 as

Z1 = X · u
X · v + 1

. (5)

The + 1 in the above definition serves to avoid zero in the denominator, and thus solves
the problem with the singularity of Z0. For the same reasons as in Section 2, we will
restrict our explorations to k = 3 and Z1 = X1/(X2 + 1).

3.2 Sample space

The sample space SZ1 ⊆ Q of the random variable Z1 is limited by the sample space SX
of the multinomially distributed random vector X = (X1,X2,X3). Therefore, if X assumes
values from the multinomial distribution given by (n, p1, p2, p3), then Z1 cannot assume
all rational values a/(b + 1) for some a, b ∈ N, but only those that satisfy a + b ≤ n and
a, b ≥ 0. Furthermore, values 2/2 and 4/4 are considered identical; therefore, different
outcomes of random vector X may correspond with the same outcome of Z1. In other
words, each instance (a, b, c) of X corresponds with exactly one instance a/(b + 1) of Z1,
while an instance of Z1 may correspond with multiple instances of X.
Naturally, the probability of a particular value of Z1 can be determined by summing

the probabilities of all (multinomial) vectors that are associated with this value. From
this, it follows that if the initial multinomial probability distribution function of random
vector X is

pr (X1 = a,X2 = b,X3 = c) =
(

n
a, b, c

)

pa1 p
b
2 p

c
3,

then the probability distribution function of random variable Z1 is

pr (Z1 = d) =
∑

a,b,c∈{0,...,n}
a+b+c=n
a/(b+1)=d

(
n

a, b, c

)

pa1 p
b
2 p

c
3,

which can be rewritten as

pr (Z1 = d) =
n∑

b=0

n−b∑

a=0
a/(b+1)=d

(n
b

) (
n − b
a

)

pa1 p
b
2 (1 − p1 − p2)n−a−b.

3.3 Mean and variance

Nowwe can state the mean and variance of Z1. The proofs of the statements can be found
in the Appendix.

Theorem 1 Let X = (X1,X2,X3) be a random vector from the multinomial distribution
given by (n, p1, p2, p3). The expected value of the random variable Z1, given by (5), is

E(Z1) = p1
p2

(
1 − (1 − p2)n

)
.
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Theorem 2 Let X = (X1,X2,X3) be a random vector from the multinomial distribution
given by (n, p1, p2, p3), where

n >
1 − p2
p2

N + 1 − 2p2
p2

for some natural non-zero N. The variance of the random variable Z1, given by (5), is

var(Z1) =
[

p1
p2(1 − p2)

]2 1−p2
p1 − 2
n + 2

+ p1
p2(1 − p2)

p1
1−p2 − 1
n + 1

+
N∑

k=1

[
p1

p2(1−p2)

]2

(
n+k+1

k

)
pk2

⎡

⎣1 −
k + 2 − 1−p2

p1
n + k + 2

⎤

⎦ + O
(

1
nN+1

)

.

Corollary 1 For N = 1 we have for the variance from Theorem 2

var(Z1) = 1
n

(
p1
p2

)2 (
1
p1

+ 1
p2

)

+ O
(

1
n2

)

.

Observe that the formula for the variance is asymptotic in nature, and thus it may not work
well for small n and certain configurations of p1, p2 and p3. See Section 5 for more details.

4 Approximate error of solution by amodified ratio
Let

Err = g(X1,X2) = X1
X2

− X1
X2 + 1

= X1
X2(X2 + 1)

be a function of two random variables expressing the difference between Z0 and Z1. Anal-
ogous to the Eqs. (1)–(4) from Section 2 and with f (X1,X2) = X1/ [X2(X2 + 1)], we have
for the mean and variance of Err

E(Err) ≈ p1
p2(1 + np2)

+ p1(1 − p2)
(
1 + 3np2 + 3n2p22

)

np22(1 + np2)3
+ p1(1 + 2np2)

np2(1 + np2)2

= p1
[
1 + 4np2 + (5 − p2)n2p22 + n3p32

]

np22(1 + np2)3
, (6)

var(Err) ≈ (1 − p1)p1
np22(1 + np2)2

+ (1 − p2)(p1 + 2np1p2)2

np32(1 + np2)4
+ 2p21(1 + 2np2)

np22(1 + np2)3

= p1
[
p2(1 + np2)2 + p1

{
1 + 4np2 + (4 − p2)n2p22

}]

np32(1 + np2)4
. (7)

It follows from the Eqs. (6) and (7) that Z1 is an asymptotically (n → ∞) unbiased
estimator of the ratio of multinomial proportions Z0. Moreover, the Eqs. (6) and (7) can
be used to correct the mean and variance of the modified ratio Z1 to better reflect the
mean and variance of the original ratio Z0. Let Zcor

1 = Z1 +Err be a new random variable.
Since the expected value is linear, we have directly

E
(
Zcor
1

) = E(Z1) + E(Err) ≈

≈ p1
p2

(
1 − (1 − p2)n

) + p1
[
1 + 4np2 + (5 − p2)n2p22 + n3p32

]

np22(1 + np2)3
.

For the variance, we have

var(Zcor
1 ) = var(Z1) + var(Err) + 2cov(Z1,Err),
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where

cov(Z1,Err) = E(Z1 · Err) − E(Z1) · E(Err).

To approximate the value of E(Z1 · Err), we use the Taylor series again, particularly
Eq. (1). After some rearrangement, we get

E
(

X2
1

X2(X2 + 1)2

)

≈ np21
p2(1 + np2)2

+ (1 − p1)p1
p2(1 + np2)2

+ p21(1 − p2)
(
1 + 4np2 + 6n2p22

)

p22(1 + np2)4
+ 2p21(1 + 3np2)

p2(1 + np2)3

=p1
[
p2(1 + np2)2 + p1

{
1 + (5 + 2p2)np2 + (8 − p2)n2p22 + n3p32

}]

p22(1 + np2)4

Thus, we can now easily calculate the value of var
(
Zcor
1

)
(equation omitted due to its

length). In the next section, we shall discuss numerical simulations and performance of
the presented formulae.
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Fig. 1 The simulation results based on the multinomial distribution given by (n, 0.25, 0.5, 0.25), where n
ranges from 10 to 50. The mean and variance of the original ratios Z0 (squares) as well as modified ratios Z1
(red circles) are compared with models: the Taylor-series model (solid line), the modified ratio model (dashed
line), and the corrected modified ratio model (dash-dot line). Additionally, in the upper plot, there is also
information about the variable zeros on the secondary right axis (dots). In this case, the modified ratio model
outperforms the Taylor series model for Z0 data. Additionally, the uncorrected modified ratio model
describes the Z1 data very well
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5 Numerical simulations
Numerical simulations were performed in the following way. We selected several multi-
nomial distributions given by (n, p1, p2, p3) and for each such distribution, we sampled
105 random vectors (X1,X2,X3). Vectors with X2 = 0 were counted (variable zeros) and
omitted from further calculations; that is, they were not replaced by new random vec-
tors. For the vectors with X2 �= 0, we calculated the ratios Z0 = X1/X2, while the ratios
Z1 = X1/(X2 + 1) were calculated from all 105 sampled vectors. Thus, we obtained
105 − zeros values of Z0 and 105 values of Z1. From both sets we calculated the mean and
variance of the sampled data. We compared these values with the predictions as follows
below.
For the mean, we compared the means of the two data sets with the Taylor-series solu-

tion given by Eq. (2), and with the modified ratio (MR) solution given by Theorem 1 with
and without the correction given by the Eq. (6).
For the variance, we compared the variances of the two data sets with the Taylor-series

solution given by Eq. (4), and with the modified ratio solution given by Theorem 2 with
and without the correction (the final formula for corrected variance of the modified ratio
was omitted due to its length, but see Section 4 for calculation details). Note that for
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Fig. 2 The simulation results based on the multinomial distribution given by (n, 0.25, 0.05, 0.7), where n
ranges from 120 to 300. For the use of symbols see Fig. 1. Again, the modified ratio model outperforms the
Taylor-series model for Z0 data in this case, although the fit is not so close as in Fig. 1. The uncorrected
modified ratio model still describes the Z1 data very well
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variance given by Theorem 2, we considered the case N = 5 so that its error O
(
1/n6

)

would not interfere with the correction.
Figure 1 shows the simulation results for the multinomial distribution given by (n =

10, . . . , 50, p1 = 0.25, p2 = 0.5, p3 = 0.25). The corrected modified ratio gives the best
model of the mean and variance of Z0. Observe also that the uncorrected modified ratio
is a very precise model of Z1.
In Fig. 2, when p2 and n are small, the discrepancy between the models and the data gets

larger, although the corrected modified ratio still outperforms the Taylor-series approach.
The uncorrected modified ratio is also a very good model of Z1.
Figures 3 and 4 further explore the limits of the presented models. In Fig. 3, we com-

pared the performance of the variance models in three multinomial distributions (with
decreasing value of p2) for various values ofN fromTheorem 2. Note that with growingN,
there also grows the minimal value of n for which the Theorem 2 holds; therefore, the
variance models start from a different n. It will be observed that all models have difficulty
describing the initial part of the variance curve of the simulated data. However, one should
keep in mind that the formula in Theorem 2 is only asymptotic.
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Fig. 3 The simulation results based on three multinomial distributions and various values of N from Theorem 2.
Displayed are the results for variance. The simulation data for original ratios Z0 (squares) are compared with
models: the Taylor-series model (solid line) and the corrected modified ratio models with N = 1 (dashed line),
N = 3 (dots), N=5 (dash-dot line). Observe that because of the condition on n in Theorem 2, the modified
ratio models do not start at the same value of n for different N
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Fig. 4 The results for mean for the data from Fig. 3. The simulation data for original ratios Z0 (squares) are
compared with models: the Taylor-series model (solid line) and corrected modified ratio model (dashed line).
Observe the uncorrected modified ratio model (dash-dot line) which exactly models the modified ratios Z1
(red circles) in all cases

In Fig. 4, we compared the models for mean on the same data as in Fig. 3. Again, for
small values of n, the models fail to capture the real trend of the data. On a side note,
the data for Z1 are very well described by the uncorrected modified ratio model from
Theorem 1.
The supplemental material contains a script (Additional file 1) to generate similar plots

for the user-specified multinomial distribution (n, p1, p2, p3) and a range of n. Given the
results from the simulation data, we encourage the reader to use this script and check
whether the formulae presented in the paper will provide for a good approximation of Z0
for his/hers particular multinomial distribution.

Appendix
Proof of Theorem 1

Lemma 1 Let n ∈ N and R ∈ R. Then it holds
n∑

k=0

(n
k

)
Rkk = nR (1 + R)n−1 .
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Proof From
(n
k
) = n

k

(
n−1
k−1

)
it directly follows that

n∑

k=0

(n
k

)
Rkk = nR

n−1∑

k=0

(
n − 1
k

)

Rk = nR(1 + R)n−1.

Proof of Theorem 1 From the definition of the expected value we have

E(Z1) =
∑

d∈SZ1
pr(Z1 = d) · d,

where SZ1 is a sample space of Z1. By using

pr(Z1 = d) =
n∑

b=0

n−b∑

a=0
a/(b+1)=d

(n
b

) (
n − b
a

)

pa1 p
b
2 (1 − p1 − p2)n−a−b

from Section 3.2, we can write

E(Z1) =
∑

d∈SZ1

⎛

⎜
⎜
⎝

n∑

b=0

n−b∑

a=0
a/(b+1)=d

(n
b

) (
n − b
a

)

pa1p
b
2(1 − p1 − p2)n−a−b

⎞

⎟
⎟
⎠ d.

Furthermore, because
∑n

b=0
∑n−b

a=0 enumerates all possible values of a random vector
(X1,X2,X3) = (a, b, n−a−b) for the given n, it also enumerates all values of Z1 including
their multiplicities (see Section 3.2). Thus, we can simplify the expression of E(Z1) into

E(Z1) =
n∑

b=0

n−b∑

a=0

(n
b

) (
n − b
a

)

pa1p
b
2(1 − p1 − p2)n−a−b a

b + 1
.

We rewrite this expression to separate the sums, thus obtaining

E(Z1) = (1 − p1 − p2)n
n∑

b=0

(n
b

) (
p2

1 − p1 − p2

)b 1
b + 1

·

·
n−b∑

a=0

(
n − b
a

) (
p1

1 − p1 − p2

)a
a. (8)

Using Lemma 1, we have for (8)

n−b∑

a=0

(
n − b
a

) (
p1

1 − p1 − p2

)a
a = (n − b)

p1
1 − p1 − p2

(
1 − p2

1 − p1 − p2

)n−b−1
.

By putting this back to E(Z1) and after some rearrangement of the terms, we get

E(Z1) = (1 − p2)n
(

p1
1 − p2

) n∑

b=0

(n
b

) (
p2

1 − p2

)b n − b
b + 1

. (9)

We continue by splitting the following fraction into two terms

n − b
b + 1

= n + 1
b + 1

− 1.

By this, the sum in (9) splits into two parts

E(Z1) = A + B,
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where

A = (1 − p2)n
(

p1
1 − p2

) n∑

b=0

(n
b

) (
p2

1 − p2

)b n + 1
b + 1

,

B = (1 − p2)n
(

p1
1 − p2

) n∑

b=0

(n
b

) (
p2

1 − p2

)b
(−1).

With
(n
b
) n+1
b+1 =

(
n+1
b+1

)
and some rearrangement of the terms, we obtain

A = p1
p2

(
1

1 − p2
− (1 − p2)n

)

,

and a straightforward calculation of B yields

B = − p1
1 − p2

.

Finally, after putting A and B together, we get

E(Z1) = A + B = p1
p2

− p1
p2

(1 − p2)n = p1
p2

(
1 − (1 − p2)n

)
.

Proof of Theorem 2

The proof of Theorem 2 relies on a series of lemmas and corollaries. For a better
navigation through the proof, see Fig. 5 for the proof scheme.

Lemma 2 Let n ∈ N and R ∈ R. Then it holds

n∑

k=0

(n
k

)
Rkk2 = n(n − 1)R2(1 + R)n−2 + nR(1 + R)n−1.

Proof From
(n
k
) = n

k

(
n−1
k−1

)
and Lemma 1 it follows that

n∑

k=0

(n
k

)
Rkk2 = nR

n−1∑

k=0

(
n − 1
k

)

Rk(k + 1)

= nR
n−1∑

k=0

(
n − 1
k

)

Rkk + nR
n−1∑

k=0

(
n − 1
k

)

Rk

= n(n − 1)R2(1 + R)n−2 + nR(1 + R)n−1.

Lemma 3 Let n ∈ N and R ∈ R\{0}. Then, for any N ∈ N it holds

n∑

b=1

(n
b

) Rb

b
=

N∑

k=0
(A2k − B2k) + A2N+1,
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Fig. 5 Scheme of the proof of Theorem 2

where

A2k =
⎛

⎝
k+1∏

i=1

1
n + i

⎞

⎠ k!
Rk+1 (1 + R)n+k+1 ,

B2k =
⎛

⎝
k+1∏

i=1

1
n + i

⎞

⎠ k!
Rk+1

k+1∑

b=0

(
n + k + 1

b

)

Rb,

A2k+1 =
⎛

⎝
k+1∏

i=1

1
n + i

⎞

⎠ (k + 1)!
Rk+1

n+k+1∑

b=k+2

(
n + k + 1

b

)
Rb

b − (k + 1)
.

Proof By induction on N. Let N = 0. Then, it follows

n∑

b=1

(n
b

) Rb

b
=

n∑

b=1

(n
b

) Rb

b + 1

(

1 + 1
b

)

=
n∑

b=1

(n
b

) Rb

b + 1
+

n∑

b=1

(n
b

) Rb

b(b + 1)
.
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By using n+1
k+1

(n
k
) =

(
n+1
k+1

)
and the binomial theorem, we can write

n∑

b=1

(n
b

) Rb

b
= 1

n + 1
1
R

n∑

b=1

(
n + 1
b + 1

)

Rb+1 + 1
n + 1

1
R

n∑

b=1

(
n + 1
b + 1

)
Rb+1

(b + 1) − 1

= 1
n + 1

1
R

n+1∑

b=2

(
n + 1
b

)

Rb + 1
n + 1

1
R

n+1∑

b=2

(
n + 1
b

)
Rb

b − 1

= A0 − B0 + A1.

The base of the induction holds. Assume that the lemma holds up to some natural N.
We prove that it holds for N + 1 as well. Consider the term A2N+1. We have

A2N+1 =
(N+1∏

i=1

1
n + i

)
(N + 1)!
RN+1

n+N+1∑

b=N+2

(
n + N + 1

b

)
Rb

b + 1

(

1 + N + 2
b − (N + 1)

)

= X1 + X2,

where

X1 =
(N+1∏

i=1

1
n + i

)
(N + 1)!
RN+1

n+N+1∑

b=N+2

(
n + N + 1

b

)
Rb

b + 1
,

X2 =
(N+1∏

i=1

1
n + i

)
(N + 1)!
RN+1

n+N+1∑

b=N+2

(
n + N + 1

b

)
Rb

b + 1
N + 2

b − (N + 1)
.

Furthermore, by the same trick with the binomial coefficient as above, we rewrite the
terms X1 and X2 as

X1 =
(N+1∏

i=1

1
n + i

)
(N + 1)!
RN+1

1
n + N + 2

1
R

n+N+1∑

b=N+2

(
n + N + 2

b + 1

)

Rb+1,

X2 =
(N+1∏

i=1

1
n + i

)
(N + 1)!
RN+1

1
n + N + 2

1
R

n+N+1∑

b=N+2

(
n + N + 2

b + 1

)
Rb+1(N + 2)

(b + 1) − 1 − (N + 1)
.

After some rearrangement, we finally get (again using the binomial theorem)

X1 =
(N+2∏

i=1

1
n + i

)
(N + 1)!
RN+2

n+N+2∑

b=N+3

(
n + N + 2

b

)

Rb = A2(N+1) − B2(N+1),

X2 =
(N+2∏

i=1

1
n + i

)
(N + 2)!
RN+2

n+N+2∑

b=N+3

(
n + N + 2

b

)
Rb

b − (N + 2)
= A2(N+1)+1.

Remark 1 We will often use Lemma 3 with n + 1 instead of n. Therefore, we restate the
Lemma 3 with this change. Let n ∈ N and R ∈ R\{0}. Then, for any N ∈ N it holds

n+1∑

b=1

(
n + 1
b

)
Rb

b
=

N∑

k=0
(A2k − B2k) + A2N+1,
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where

A2k =
⎛

⎝
k+2∏

i=2

1
n + i

⎞

⎠ k!
Rk+1 (1 + R)n+k+2 ,

B2k =
⎛

⎝
k+2∏

i=2

1
n + i

⎞

⎠ k!
Rk+1

k+1∑

b=0

(
n + k + 2

b

)

Rb,

A2k+1 =
⎛

⎝
k+2∏

i=2

1
n + i

⎞

⎠ (k + 1)!
Rk+1

n+k+2∑

b=k+2

(
n + k + 2

b

)
Rb

b − (k + 1)
.

Lemma 4 Let p1, p2 ∈ (0, 1) be some real constants. Let k, n be some non-zero natural
numbers. Let A2k+1 be the term from Remark 1. Furthermore, let R = p2/(1 − p2), and let

A = (n + 1)n
(

p1
1 − p2

)2
+ (n + 1)

p1
1 − p2

,

D = (1 − p2)n

n + 1
1 − p2
p2

.

Then, for α ∈[ 1, k + 2], it holds

ADA2k+1 ≤ α
n

(k + 2)
(
n+k+3
k+2

)
p1

pk+3
2 (1 − p2)

(
p1

1 − p2
+ 1

n

)

= O
(

1
nk+1

)

.

Proof First of all, for α ∈[ 1, k + 2] we have

A2k+1 = α

⎛

⎝
k+3∏

i=2

1
n + i

⎞

⎠ (k + 1)!
Rk+2

n+k+3∑

b=k+3

(
n + k + 3

b

)

Rb.

This follows easily by applying the inequality
k + 2
b + 1

≥ 1
b − (k + 1)

≥ 1
b + 1

to the term A2k+1 from Remark 1, which holds for any natural b, k except for pairs b =
k + 1 (in our case b > k + 1). We can see this by solving the inequality

1 + x
b + 1

≥ 1
b − (k + 1)

for x. By this, we get an upper and lower bound on the term A2k+1, which differ by a
multiplicative constant k + 2. Finally, the lemma follows by extending the summation
through index b in the term A2k+1 to a full range from 0 to n + k + 3, by applying the
binomial theorem and some simple rearrangement of the terms. The O bound follows
from the fact that

(n
k
) ≥ (n

k
)k .

Lemma 5 Let p1, p2 ∈ (0, 1) be some real constants. Let k, n be some non-zero natural
numbers. Let A2k be the term from Remark 1. Furthermore, let R = p2/(1 − p2), and let

A = (n + 1)n
(

p1
1 − p2

)2
+ (n + 1)

p1
1 − p2

,

D = (1 − p2)n

n + 1
1 − p2
p2

.
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Then, it holds

ADA2k =
(

p1
p2(1−p2)

)2

(
n+k+1

k

)
pk2

⎛

⎝1 −
k + 2 − 1−p2

p1
n + k + 2

⎞

⎠ .

Proof The lemma follows easily by a straightforward multiplication of the terms A, D
and A2k , and some rearrangement of the terms.

The following lemma is an extension of one borrowed from Graham et al. (1994).

Lemma 6 Let 0 < α < R/(1 + R) for some real R > 0. Then, it holds
∑

k≤αn

(n
k

)
Rk = Rm2nH(α)− 1

2 lg n+O(1),

where m = αn� and

H(α) = α lg
1
α

+ (1 − α) lg
1

1 − α
.

Proof First of all, we have
(

n
k−1

)
Rk−1

(n
k
)
Rk = k

n − k + 1
1
R

≤ αn
n − αn + 1

1
R

<
α

1 − α

1
R
.

Letm = αn� = αn − ε. It holds
( n
m

)
Rm <

∑

k≤m

(n
k

)
Rk <

( n
m

)
Rm

(

1 + α

1 + α

1
R

+
(

α

1 − α

1
R

)2
+ . . .

)

=
( n
m

)
Rm (1 − α)R

(1 − α)R − α

because
α

1 − α

1
R

< 1,

which follows from α < R/(1 + R). Thus,
∑

k≤m

(n
k

)
Rk =

( n
m

)
RmO(1).

By Stirling’s approximation, we have

log
( n
m

)
= −1

2
log n − (αn − ε) log

(
α − ε

n

)
− ((1 − α)n + ε) log

(
1 − α + ε

n

)
+ O(1)

= −1
2
log n − nα logα − n(1 − α) log(1 − α) + O(1),

and the lemma follows.

Lemma 7 Let p1, p2 ∈ (0, 1) be some real constants. Let k, n be some non-zero natural
numbers such that

n >
1 − p2
p2

k + 1 − 2p2
p2

.
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Let B2k be the term from Remark 1. Furthermore, let R = p2/(1 − p2), and let

A = (n + 1)n
(

p1
1 − p2

)2
+ (n + 1)

p1
1 − p2

,

D = (1 − p2)n

n + 1
1 − p2
p2

.

Then, it holds

ADB2k = n(1−p2)n
p1

p2(1 − p2)

(

p1 + 1 − p2
n

)
2k+1O(1)

(k + 1)(n + k + 2)
1
2

= O
(
n

1
2 (1 − p2)n

)
.

Proof Let α = (k+1)/(n+k+2). One can easily verify that α < R/(1+R) = p2 because
of the choice of n. Thus, we can apply Lemma 6 to the sum from the term B2k . From this,
it follows that
k+1∑

b=0

(
n + k + 2

b

) (
p2

1 − p2

)b
=

(
p2

1 − p2

)k+1
2(n+k+2)H(α)− 1

2 lg(n+k+2)+O(1), (10)

where

H(α) = α lg
1
α

+ (1 − α) lg
1

1 − α
.

Moreover, for H(α) we have

H(α) = k + 1
n + k + 2

lg
(
2(n + k + 2)

k + 1

)

− O
(

1
n2

)

,

which follows from

lg(1 − α) = −
∞∑

i=1

αi

i
.

Plunging this into (10), we get

k+1∑

b=0

(
n + k + 2

b

) (
p2

1 − p2

)b
=

(
p2

1 − p2

)k+1
(
2(n+k+2)

k+1

)k+1
O(1)

(n + k + 2)
1
2

.

With this, we can write for the whole B2k term from Remark 1

B2k =
(
2(n+k+2)

k+1

)k+1
O(1)

(
n+k+1

k

)
(n + k + 2)

3
2

≤
2k+1

(
n+k+2
k+1

)
O(1)

(
n+k+1

k

)
(n + k + 2)

3
2

= 2k+1O(1)
(k + 1)(n + k + 2)

1
2

(11)

because
(n
k
)k ≤ (n

k
)
. Similarly, with

(n
k
)

<
(ne
k

)k , we have for B2k

B2k ≥
( 2
e
)k+1O(1)

(k + 1)(n + k + 2)
1
2
,

if we use
(
n + k + 1

k

)

(n + k + 2)
3
2 =

(
n + k + 2
k + 1

)

(k + 1)(n + k + 1)
1
2 .

Thus, we have

B2k = 2k+1O(1)
(k + 1)(n + k + 2)

1
2
,

and the lemma easily follows by multiplying B2k with the term AD.
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Corollary 2 Let p1, p2 ∈ (0, 1) be some real constants. Let n,N be some non-zero natural
numbers such that

n >
1 − p2
p2

N + 1 − 2p2
p2

.

Let A2k ,B2k, k = 0, ...,N, and A2N+1 be terms from Remark 1. Furthermore, let
R = p2/(1 − p2), and let

A = (n + 1)n
(

p1
1 − p2

)2
+ (n + 1)

p1
1 − p2

,

D = (1 − p2)n

n + 1
1 − p2
p2

.

Then, it holds

AD
n+1∑

b=1

(
n + 1
b

) (
p2

1 − p2

)b 1
b

=
(

p1
p2(1 − p2)

)2 N∑

k=0

1 − k+2− 1−p2
p1

n+k+2(
n+k+1

k

)
pk2

+ O
(

1
nN+1

)

.

Proof Follows from Lemmas 4, 5 and 7.

Lemma 8 Let p1, p2 ∈ (0, 1) be some real constants and n some non-zero natural
number. Let

B = (2n + 1)
(

p1
1 − p2

)2
+ p1

1 − p2
,

D = (1 − p2)n

n + 1
1 − p2
p2

.

Then, it holds

BD
n+1∑

b=1

(
n + 1
b

) (
p2

1 − p2

)b
= 2

(
p1

1 − p2

)2 1
p2

+ 1
n + 1

p1
p2(1 − p2)

(

1 − p1
1 − p2

)

+ O
(
(1 − p2)n

)
.

Proof Straightforward by binomial theorem.

Lemma 9 Let p1, p2 ∈ (0, 1) be some real constants and n some non-zero natural
number. Let

C =
(

p1
1 − p2

)2
,

D = (1 − p2)n

n + 1
1 − p2
p2

.

Then, it holds

CD
n+1∑

b=1

(
n + 1
b

) (
p2

1 − p2

)b
b =

(
p1

1 − p2

)2
.

Proof Straightforward by Lemma 1 and binomial theorem.



Duris et al. Journal of Statistical Distributions and Applications  (2018) 5:2 Page 18 of 20

Proof of Theorem 2 The variance of the random variable Z1 can be calculated as

var(Z1) = E(Z2
1) − E2(Z1).

By Theorem 1, we have

E(Z1) = p1
p2

(
1 − (1 − p2)n

)
.

So, we only need to determine the value of E
(
Z2
1
)
. From the definition of the expected

value, we have

E
(
Z2
1
) =

n∑

b=0

n−b∑

a=0

(n
b

) (
n − b
a

)

pa1p
b
2(1−p1−p2)n−a−b

(
a

b + 1

)2
= (1−p1−p2)nV1V2,

where

V1 =
n∑

b=0

(n
b

) (
p2

1 − p1 − p2

)b (
1

b + 1

)2
,

V2 =
n−b∑

a=0

(
n − b
a

) (
p1

1 − p1 − p2

)a
a2.

By application of Lemma 2 to V2, we obtain

E(Z2
1) = (1 − p2)n

n∑

b=0

(n
b

) (
p2

1 − p2

)b (
1

b + 1

)2
W ,

W = (n − b)(n − b − 1)
(

p1
1 − p2

)2
+ (n − b)

p1
1 − p2

.

By using the equality
(n
b

) (
1

b + 1

)2
=

(
n + 1
b + 1

)
1

n + 1
1

b + 1
and adjustment of the summation borders, we get

E
(
Z2
1
) = (1 − p2)n

n + 1
· 1 − p2

p2
·
n+1∑

b=1

(
n + 1
b

) (
p2

1 − p2

)b 1
b
W ,

W = (n − b + 1)(n − b)
(

p1
1 − p2

)2
+ (n − b + 1)

p1
1 − p2

.

Next, we split the termW according to powers of b, thus obtaining

W = A − Bb + Cb2,

where

A = (n + 1)n
(

p1
1 − p2

)2
+ (n + 1)

p1
1 − p2

,

B = (2n + 1)
(

p1
1 − p2

)2
+ p1

1 − p2
,

C =
(

p1
1 − p2

)2
.

If we set

D = (1 − p2)n

n + 1
· 1 − p2

p2
,
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then we can write

E
(
Z2
1
) = D

n+1∑

b=1

(
n + 1
b

) (
p2

1 − p2

)b (
A
b

− B + Cb
)

= S1 + S2 + S3,

where

S1 = AD
n+1∑

b=1

(
n + 1
b

) (
p2

1 − p2

)b 1
b
,

S2 = −BD
n+1∑

b=1

(
n + 1
b

) (
p2

1 − p2

)b
,

S3 = CD
n+1∑

b=1

(
n + 1
b

) (
p2

1 − p2

)b
b,

and by Corollary 2 (S1) and Lemmas 8 (S2) and 9 (S3) we get

E(Z2
1) =

N∑

k=0

(
p1

p2(1 − p2)

)2 1
(
n+k+1

k

)
pk2

⎛

⎝1 −
k + 2 − 1−p2

p1
n + k + 2

⎞

⎠ −

− 2
(

p1
1 − p2

)2 1
p2

− 1
n + 1

p1
p2(1 − p2)

(

1 − p1
1 − p2

)

+
(

p1
1 − p2

)2
+ O

(
1

nN+1

)

.

The rest of the proof follows from adding the term −E2(Z1) to the derived expression for
E

(
Z2
1
)
, separating the term for k = 0 from the rest of the sum, and simple rearrangement

of the resulting terms.
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