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Abstract
In this paper, a new extension of the generalized half-normal distribution is introduced
and studied. We assess the performance of the maximum likelihood estimators of the
parameters of the new distribution via simulation study. The flexibility of the new
model is illustrated by means of four real data sets. A new log-location regression
model based on the new distribution is also introduced and studied. It is shown that
the new log-location regression model can be useful in the analysis of survival data and
provides more realistic fits than other competitive regression models.
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Introduction
The generalized half-normal (GHN) distribution has been widely modified and stud-
ied in recent years and various authors developed new generalizations of it. Following
an idea due to Eugene et al. (2002), Pescim et al. (2017) introduced the beta general-
ized half-Normal (BGHN) distribution with applications to myelogenous leukemia data.
Cordeiro et al. (2012) defined the Kumaraswamy generalized half-normal (KwGHN) dis-
tribution for censored data. More recently, Cordeiro et al. (2013) studied some of the
mathematical properties of the BGHN distribution proposed by Pescim et al. (2010b).
Pescim et al. (2013) proposed the log-linear regression model based on the BGHN dis-
tribution, while Ramires et al. (2013) defined the beta generalized half-normal geometric
(BGHNG) distribution in order to achieve wider diversity among the density and failure
rate functions.
The GHN density function (Cooray and Ananda 2008) with shape parameter λ > 0 and

scale parameter θ > 0 is given (for x > 0) by
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and its cumulative distribution function (cdf) depends on the error function
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The nth moment of the random variable X with cdf (2) is
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where � (.) is the gamma function. The HN distribution is a sub-model of GHN when
λ = 1.
The goal of this paper is to propose the first generalization of the generalized half-

normal distribution using the Zografos–Balakrishnan Odd Log-Logistic-G (“ZBOLL-G”
for short) family of distributions. For an arbitrary baseline cdf G(x), Cordeiro et al. (2015)
proposed the probability density function (pdf) f (x) and the cdf F(x) of the ZBOLL-G
family of distributions with two additional shape parameters β > 0 and α > 0 as

f (x;β ,α, ξ) = α

� (β)
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]}β−1

(3)

and

F(x;β ,α, ξ) = 1
� (β)

γ

(
β ,− log

[
1 − Gα(x; ξ)

Gα(x; ξ) + Ḡα(x; ξ)
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where ξ denotes the parameter vector of the baseline distribution. We use Eqs. (1), (2)
and (3) to obtain the four-parameter ZBOLLGHN pdf (for x > 0)
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where α > 0, β > 0, λ > 0 are shape parameters and θ is the scale parameter. The
corresponding cdf is given by

F(x) = 1
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(6)

where γ (β , z) =
∞∫
z
tβ−1 exp (−t) dt denotes the complementary incomplete gamma

function. Henceforth, we denote a random variable X with pdf (5) by X ∼ ZBOLL-
GHN(β ,α, λ, θ ). The sub-models of (5) are given in Table 1.
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Table 1 Submodels of ZBOLL-GHN distribution

Distribution β α λ θ Author

Gamma-GHN β 1 λ θ New

Gamma-HN β 1 1 θ New

OLL-GHN 1 α λ θ Cordeiro et al. (2016b)

OLL-HN 1 α 1 θ Cordeiro et al. (2016b)

GHN 1 1 λ θ Cooray and Ananda (2008)

HN 1 1 1 θ Cooray and Ananda (2008)

We investigate the possible hazard rate function (hrf ) and pdf shapes of ZBOLL-GHN
distribution. Figure 1 displays the pdf shapes of ZBOLL-GHN distribution. Based on the
Fig. 1, ZBOLL-GHN pdf has the following shapes: left-skewed, right-skewed, symmetric
and bimodal. Figure 2 displays the hrf shapes of ZBOLL-GHN distribution. From Fig. 2,
we conclude that the ZBOLL-GHN hrf has the following shapes: increasing, decreasing,
upside-down and bathtub.
Following Cordeiro et al. (2016a), equation (6) can be expressed as

F(x) =
∞∑
w=0

bw�w (x; λ, θ) ,

where
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)

and �w (x; λ, θ) = [G(x; λ, θ)]w denotes the cdf of the exp-GHN distribution with the
power parameter w. The pdf (5) reduces to

f (x) =
∞∑
w=0

bw+1πw+1 (x; λ, θ) , (7)

where πw+1 (x; λ, θ) = (w + 1) g(x; λ, θ) [G(x; λ, θ)]w denotes the pdf of the exp-GHN dis-
tribution with the power parameter w + 1. For the definitions of pj,k and aw (β ,α, i, k),
please see Cordeiro et al. (2016a). Equation (7) reveals that the density function of X is a
linear combination of the exp-GHN densities. Thus, some of the structural properties of
the ZBOLL-GHN distribution such as ordinary and incomplete moments and generating
function can be obtained from well-established properties of the exp-GHN distribution.

Fig. 1 The pdf plots of ZBOLL-GHN distribution for selected parameter values
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Fig. 2 The hrf plots of ZBOLL-GHN distribution for selected parameter values

We are motivated to introduce the ZBOLL-GHN distribution since it contains a
number of aforementioned known lifetime models as illustrated in Table 1. The new
distribution exhibits increasing, decreasing, upside-down as well as bathtub hazard rates
as illustrated in Fig. 2. It is shown that the new distribution can be viewed as a mixture
of the two-parameter GHN model. It can also be viewed as a suitable model for fitting
the left-skewed, right-skewed, symmetric and bimodal data. The ZBOLL-GHN distribu-
tion outperforms several of the well-known lifetime distributions with respect to four real
data applications as illustrated in “Applications” section. The new log-location regression
model based on the ZBOLL-GHN distribution provides better fits than log BGHN, log
GHN and log-Weibull models for volatage data set. Based on the residual analysis (mar-
tingale and modified deviance residuals) for the new log-location regression model (log
ZBOLL-GHN), we conclude that none of the observed values appear as possible outliers.
Thus, it is clear that the fitted model is appropriate for the voltage data set.
The rest of the paper is organized as follows. In “Estimation” section, the maximum

likelihood method is used to estimate the model parameters. The performance of maxi-
mum likelihood estimators of the model parameters are investigated by means of aMonte
Carlo simulation study when n is finite. A new log-location regression model as well as
residual analysis are presented in “A new log-location regression model” section. Four
applications to real data sets illustrate empirically the importance of the new model in
“Applications” section. Finally, a summary is provided in “Summary” section.

Estimation
If X follows the ZBOLL-GHN distribution with vector of parameters � = (β ,α, λ, θ)T .
The log-likelihood function for a single observation x of X is given by
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The components of the unit score vector U = U(�) = (∂β/∂
, ∂α/∂
, ∂λ/∂
, ∂θ/∂
)T

are available if needed. For a random sample x = (x1, ..., xn)T of size n from X, the total
log-likelihood is


n(�) =
n∑

i=0

(i)(�),

where 
(i)(�) is the log-likelihood for the ith observation. The total score function is

Un =
n∑

i=0
U(i),

where U(i) has the form given before. Maximization of 
(�) (or 
n(�)) can be easely
performed using well-established routines such as the nlm or optim in the R statistical
package. Setting these equations equal to zero, U(�) = 0, and solving them simultane-
ously gives the MLE �̂ of � . These equations cannot be solved analytically and statistical
software can be used to evaluate them numerically using iterative techniques such as the
Newton-Raphson algorithm.
The parameter estimation procedure of ZBOLL-GHN model can be summarized as

follows:

• The optim function of R software is used to minimize the minus log-likelihood
function of GHN model by means of the Nelder-Mead (NM) optimization method.
There is no need to provide the derivatives of the objective function for NMmethod.

• The estimated parameters of GHN distribution are used as initial values of the
ZBOLL-GHN model. The initial values of the additional parameters α and β are
chosen as 1. Note that the ZBOLL-GHN model reduces to GHN model when the
parameters α = β = 1. Then, the parameter estimation of ZBOLL-GHN model are
obtained with the optim function as given in the first step.

• The inverse of estimated Hessian matrix is used to obtain the corresponding
standard errors.

Simulation study

In this subsection, the performance of the maximum likelihood estimators of the ZBOLL-
GHN parameters are evaluated via a Monte Carlo simulation study with 10,000 replica-
tions. The coverage probabilities (CPs), mean square errors (MSES) and the bias of the
parameter estimates, estimated average lengths (ALs) are calculated by means of R soft-
ware.We generateN = 10, 000 samples of sizes n = 50, 55, ..., 500 from the ZBOLL-GHN
distribution with α = 0.8,β = 7, λ = 9, θ = 4. Let

(̂
α, β̂ , λ̂, θ̂

)
be the MLEs of the new

model parameters and (sα̂ , sβ̂ , ŝλ, sθ̂ ) be the standard errors of the MLEs. The estimated
biases and MSEs are given by
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B̂iasε(n) = 1
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N∑
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)

and

̂MSEε(n) = 1
N

N∑
i=1

(
ε̂i − ε

)2 ,
for ε = α,β , λ, θ . The CPs and ALs are given, respectively, by

CPε(n) = 1
N

N∑
i=1

I
(
ε̂i − 1.95996sε̂i , ε̂i + 1.95996sε̂i

)

and

ALε(n) = 3.919928
N

N∑
i=1

sε̂i .

Figure 3 displays the numerical results for the above measures. We list below the results
from these plots:

� The estimated biases decrease when the sample size n increases,
� The estimated MSEs decay toward zero as n increases,
� The CPs are near 0.95 and approach the nominal value when the sample size n

increases,
� The ALs decrease for all parameters when the sample size n increases.

These results reveal the consistency property of the MLEs.

Fig. 3 Estimated CPs, biases, MSEs and ALs for the selected parameter values
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A new log-location regressionmodel
Let X denote a random variable following the ZBOLL-GHN distribution (5) and let Y =
log(X). The density function of Y (for y ∈ �) and replacing μ = log (θ), σ = √
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be expressed as
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whereμ ∈ � is the location parameter, σ > 0 is the scale parameter and α > 0 and β > 0
are the shape parameters.We refer to Eq. (8) as the pdf of LZBOLL-GHN distribution, say
Y ∼ LZBOLL-GHN(α,β ,μ, σ). The survival function corresponding to (8) is given by
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The hrf is simply h(y) = f (y)/S(y). The standardized random variable Z = (Y − μ)/σ

has density function
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Figure 4 provides some plots of the density function (8) for selected parameter values.
They reveal that this distribution is a good candidate to model left skewed and symmetric
data sets.
Based on the LZBOLL-GHN density, we propose a linear location-scale regression

model linking the response variable yi and the explanatory variable vector vᵀi =
(vi1, . . . , vip) given by

yi = vᵀi β + σ zi, i = 1, . . . , n, (11)

where the random error zi has density function (10), β = (β1, . . . ,βp)ᵀ, and σ > 0, α > 0
and β > 0 are unknown parameters. The parameter μi = vᵀi β is the location of yi. The
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Fig. 4 Plots of the LZBOLL-GHN density function for selected parameter values

location parameter vector μ = (μ1, . . . ,μn)ᵀ is represented by a linear model μ = Vβ ,
where V = (v1, . . . , vn)ᵀ is a known model matrix.
The LZBOLL-GHN model (11) provides new opportunities for modeling several types

of data sets. This model contains two important regression models as its sub-models: (i)
for β = 1, the LZBOLL-GHN model reduces to log-OLL-GHN regression model intro-
duced by Pescim et al. (2017); (ii) for α = β = 1, the LZBOLL-GHN model reduces to
log-GHN regression model.
Let F and C be the sets of individuals for which yi is the log-lifetime or log-censoring,

respectively. Assume that the observed lifetimes and censoring times are indepen-
dent. The log-likelihood function for the vector of parameters � = (α,β , σ ,βᵀ)ᵀ

from model (11) is given by l(�) = ∑
i∈F

li(�) + ∑
i∈C

l(c)i (�), where li(�) = log[ f (yi)],

l(c)i (�) = log[ S(yi)]. The f (yi) and S(yi) are defined in(8) and (9), respectively. The total
log-likelihood function for � is given by


 (�) =r log
(
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)
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,

(12)

where ui = 2�[ exp(zi
√
2/2)], zi = (yi − μi)/σ , and r is the number of uncensored

observations (failures). The MLE �̂ of the vector of unknown parameters can be evalu-
ated by maximizing the log-likelihood (12). The R software is used to estimate unknown
parameters of LZBOLL-GHN regression model
The likelihood ratio (LR) statistic can be used for comparing some sub-models of

LZBOLL-GHN regression model. For example, the LR statistic can be used to dis-
criminate between the LZBOLL-GHN and LGHN regression models since they are
nested models, or equivalently to test H0 : α = β = 1. The LR statistic reduces to
w = 2

[

(α̂, β̂ , σ̂ , β̂) − 
(1, 1, σ̃ , β̃)

]
, where

(
α̂, β̂ , σ̂ , β̂

)
are the unrestricted MLEs and

(1, 1, σ̃ , β̃) are the restricted estimates under H0. The statistic w is asymptotically (as



Altun et al. Journal of Statistical Distributions and Applications             (2018) 5:7 Page 9 of 16

Table 2MLEs and their SEs of the fitted models and goodness-of-fit statistics for first data set

Models α β λ θ −
 AIC A* W* K-S p-value

ZBOLL-GHN 0.143 1.360 4.049 8.243 73.053 154.107 0.620 0.098 0.160 0.383

0.022 0.177 0.003 0.003

B-GHN 0.233 1.327 4.876 13.924 81.868 171.737 2.157 0.348 0.315 0.004

0.047 0.439 0.004 0.004

Gamma-GHN 0.238 4.945 13.941 81.851 169.702 2.193 0.354 0.305 0.005

0.042 0.003 0.003

OLL-GHN 0.165 4.016 8.488 75.522 157.043 0.750 0.117 0.294 0.008

0.032 0.141 0.133

GHN 1.491 10.226 87.927 179.853 3.074 0.521 0.278 0.014

0.255 0.903

n → ∞) distributed as χ2
k , where k is difference of two parameter vectors of nested

models. For example, take k = 2 for the above hypothesis test.

Residual analysis

Residual analysis has critical role to check the adequacy of the fitted model. In order
to analyze departures from error assumption, two types of residuals are considered:
martingale and modified deviance residuals.

Martingale residual

The martingale residuals is defined in counting process and takes values between +1
and−∞ (see for details, Fleming and Harrington (1994)). The martingale residuals for
LZBOLL-GHNmodel is,

rMi =
⎧⎨
⎩
1 + log

{
1 − 1

�(β)
γ
(
β ,− log

[
1 − [ui−1]α

[ui−1]α+(2−ui)α
])}

if i ∈ F ,

log
{
1 − 1

�(β)
γ
(
β ,− log

[
1 − [ui−1]α

[ui−1]α+(2−ui)α
])}

if i ∈ C,
(13)

where ui = 2�
[
exp

(
zi

√
2/2

)]
and zi = (yi − μi)/σ .

Modified deviance residual

The main drawback of martingale residual is that when the fitted model is correct, it is
not symmetrically distributed about zero. To overcome this problem, modified deviance

(a) (b)

Fig. 5 a Fitted densities of models and b fitted hrf and P-P plot of the ZBOLL-GHN model for first set
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Table 3 The LR test results for first data set

Hypotheses LR p-value

ZBOLL-GHN versus OLL-GHN H0 : β = 1 4.936 0.0262

ZBOLL-GHN versus Gamma-GHN H0 : α = 1 17.595 < 0.0001

ZBOLL-GHN versus GHN H0 : α = β = 1 29.746 < 0.0001

residual was proposed by Therneau et al. (1990). The modified deviance residual for
LZBOLL-GHNmodel is,

rDi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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2
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])}]} 1

2 if i ∈ C,

(14)

where r̂Mi is the martingale residual.

Applications
In this section, four real data sets are used to compare ZBOLL-GHN model with its sub-
models and beta-GHNmodel introduced by Pescim et al. (2013). The first three data sets
are used to demonstrate the univariate data fitting performance of ZBOLL-GHNdistribu-
tion. The fourth data set is used to investigate the usefulness of the proposed distribution
in survival analysis. The optim function is used to estimate the unknown model parame-
ters. The MLEs and corresponding standard errors, estimated −
, Kolmogorov-Smirnov
(K-S) statistic and corresponding p-value, Cramér-von Mises (W*), Anderson-Darling
(A*) statistics and Akaike Information Criteria (AIC) are reported in Tables 2, 4 and 6.
The lower the values of these criteria show the better fitted model on the data sets. The

Fig. 6 The profile log-likelihood plots of ZBOLL-GHN for lifetime of a certain device data



Altun et al. Journal of Statistical Distributions and Applications             (2018) 5:7 Page 11 of 16

Table 4MLEs and their SEs of the fitted models and goodness-of-fit statistics for second data set

Models α β λ θ −
 AIC A* W* K-S p-value

ZBOLL-GHN 0.531 0.387 7.807 4.079 126.286 260.573 0.566 0.069 0.066 0.847

0.065 0.059 0.003 0.003

B-GHN 0.240 1.704 6.370 4.527 128.668 265.336 1.005 0.164 0.091 0.476

0.029 0.375 0.057 0.056

Gamma-GHN 0.356 4.438 4.153 128.774 263.548 0.895 0.141 0.085 0.569

0.472 5.055 0.833

OLL-GHN 0.868 2.145 3.080 129.197 264.394 0.656 0.089 0.072 0.758

0.231 0.487 0.137

GHN 1.917 3.107 129.328 262.656 0.600 0.078 0.067 0.834

0.175 0.135

histograms with fitted pdfs are provided for visual comparison of the fitted distribution
functions. Moreover, fitted hrfs and P-P plots of the best fitted models are displayed in
Figs. 5, 7 and 9.

Lifetime of device data

The first data set is given by Sylwia (2007) on the lifetime of a certain device. Table 2 shows
the estimated parameters and their standard errors,−
, A*,W*, K-S and its corresponding
p-value and AIC values. Based on the figures in Table 2, it is clear that ZBOLL-GHN
model provides the best fit for this data set. Figure 5a displays the estimated pdfs of the
fitted models. Figure 5b displays the P-P plot of ZBOLL-GHN distribution and its fitted
hrf. Figure 5 shows that ZBOLL-GHN distribution provides superior fit to the left-skewed
data set.
Table 3 shows the LR statistics and the corresponding p-values for the first data set.

From Table 3, the computed p-values are smaller than 0.05, so the null hypotheses are
rejected for all sub-models. We conclude that the ZBOLL-GHN model fits the first data
better than its sub-models according to the LR test results.
In addition, the profile log-likelihood functions of the ZBOLL-GHN distribution are

plotted in Fig. 6. These plots reveal that the likelihood functions of the ZBOLL-GHN
distribution have solutions that are maximizers.

(a) (b)

Fig. 7 a Fitted densities of the models and b fitted hrf and P-P plot of the ZBOLL-GHN model for second data
set
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Table 5 The LR test results for second data set

Hypotheses LR p-value

ZBOLL-GHN versus OLL-GHN H0 : β = 1 5.822 0.016

ZBOLL-GHN versus Gamma-GHN H0 : α = 1 4.976 0.026

ZBOLL-GHN versus GHN H0 : α = β = 1 6.084 0.047

Failure times of wind-shield data

The second data set represents the failure times for a particular wind-shieldmodel includ-
ing 85 observations that are classified as failed times of wind-shields (Murthy et al. 2004).
Table 4 shows the estimated parameters and their standard errors, −
 and AIC values.
Based on the figures in Table 4, ZBOLL-GHN distribution provides the best fit among
others. Figure 7a displays the histogram with fitted pdfs and Fig. 7b displays the fitted hrf
and P-P plot of ZBOLL-GHN distribution. These figures reveal that ZBOLL-GHNmodel
provides superior fit to the second data set.
Table 5 shows the LR statistics and the corresponding p-values for the second data set.

From Table 5, the computed p-values are smaller than 0.05, so the null hypotheses are
rejected for all sub-models. We conclude that the ZBOLL-GHN model fits the first data
better than its sub-models according to the LR test results.
The profile log-likelihood functions of the ZBOLL-GHN distribution are plotted but

not included here. These plots reveal that the likelihood functions of the ZBOLL-GHN
distribution have solutions that are maximizers.

Strengths of glass fibres data

The third data set obtained from Smith and Naylor (1987) represents the strengths of 1.5
cm glass fibres, measured at the National Physical Laboratory, England. Unfortunately,
the units of measurement are not given in the paper. This data set have been analyzed
recently with the beta generalized exponential distribution, which was introduced and
studied by Barreto-Souza et al. (2010). Table 6 shows the estimated parameters and their
standard errors, −
 and AIC values. Based on the figures in Table 6, ZBOLL-GHN dis-
tribution provides the best fit among others. Figure 8a displays the histogram with fitted
pdfs and Fig. 8b displays the fitted hrf and P-P plot of ZBOLL-GHN distribution. These
figures reveal that ZBOLL-GHNmodel provides superior fit to the third data set.
Table 7 shows the LR statistics and the corresponding p-values for the third data set.

From Table 7, the computed p-values are smaller than 0.05, so the null hypotheses are

Table 6MLEs and their SEs of the fitted models and goodness-of-fit statistics for third data set

Models α β λ θ −
 AIC A* W* K-S p-value

ZBOLL-GHN 5.820 0.340 1.723 2.240 11.627 31.254 0.529 0.094 0.115 0.373

6.976 0.134 1.902 0.611

B-GHN 1.131 0.298 3.592 1.324 14.113 36.227 0.973 0.174 0.137 0.186

0.445 0.362 0.529 0.256

Gamma-GHN 1.316 3.670 1.579 14.513 35.026 1.084 0.195 0.144 0.144

0.545 1.096 0.172

OLL-GHN 1.290 3.761 1.709 14.163 34.328 1.065 0.192 0.136 0.188

0.328 0.775 0.048

GHN 4.414 1.682 14.740 33.481 1.052 0.187 0.145 0.141

0.429 0.036
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Table 7 The LR test results for third data set

Hypotheses LR p-value

ZBOLL-GHN versus OLL-GHN H0 : β = 1 5.0716 0.0243

ZBOLL-GHN versus Gamma-GHN H0 : α = 1 5.7716 0.0162

ZBOLL-GHN versus GHN H0 : α = β = 1 6.2264 0.0444

rejected for all sub-models. We conclude that the ZBOLL-GHN model fits the first data
better than its sub-models according to the LR test results.
The profile log-likelihood functions of the ZBOLL-GHN distribution are plotted but

not included here. These plots reveal that the likelihood functions of the ZBOLL-GHN
distribution have solutions that are maximizers (Fig. 8).

Voltage data

Lawless (2003) reported an experiment in which specimens of solid epoxy electrical-
insulation were studied in an accelerated voltage life test. The sample size is n = 60, the
percentage of censored observations is 10% and there are three levels of voltage: 52.5,
55.0 and 57.5. The variables involved in the study are: xi- failure times for epoxy insula-
tion specimens (in min); ci - censoring indicator (0 =censoring, 1 =lifetime observed); vi1
- voltage (kV).
The data set was used by Pescim et al. (2013) for illustrating the log-B-GHN (LBGHN)

regression model. Pescim et al. (2013) compared the log-B-GHN (LBGHN) regression
model with LOLLGHN and log-GHN (LGHN) models. In this section we compare the
LZBOLL-GHN regression model with models reported in Pescim et al. (2013). The
regression model fitted to the voltage data set is given by

yi = β0 + β1xi1 + σ zi, (15)

where the random variable yi follows the LZBOLL-GHN distribution given in (8). The
results are presented in Table 8. TheMLEs of the model parameters and their SEs and the
values of the AIC and BIC statistics are listed in Table 8.
Based on the figures in Table 8, we conclude that the fitted LZBOLL-GHN regression

model has the lowest AIC and BIC values. Figure 9 provides the plots of the empirical and

(a) (b)

Fig. 8 a Fitted densities of the models and b fitted hrf and P-P plot of the ZBOLL-GHNmodel for third data set
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Table 8MLEs of the parameters to the voltage data for LZBOLL-GHN, LBGHN, LGHN and log-Weibull
regression models, the corresponding SEs in second line, p-values in third line and the AIC and BIC
statistics

Model α β σ β0 β1 AIC BIC

LZBOLL-GHN 41.488 10.857 16.021 21.865 -0.177 166.264 176.735

49.967 11.306 18.828 11.003 0.063

0.047 0.005

LBGHN 102.140 1.564 5.306 10.632 -0.201 167.100 177.500

3.989 0.672 0.666 3.304 0.056

0.002 0.001

LGHN 0.778 23.637 -0.301 178.800 185.100

0.089 2.928 0.053

<0.001 <0.001

Log-Weibull 0.845 22.032 -0.275 173.400 179.700

0.090 3.046 0.055

<0.001 <0.001

estimated survival function for the LZBOLL-GHN regression model. We can conclude
from these plots that LZBOLL-GHN regression model provides a good fit to the data.

Residual Analysis of LZBOLL-GHNmodel

Figure 10 displays the index plot of the modified deviance residuals and its Q-Q plot
against N(0, 1) quantiles. Based on the Figure 10, we conclude that none of the observed
values appears as a possible outlier. Thus, it is clear that the fitted model is appropriate
for these data set (Fig. 10).

Fig. 9 Estimated survival function of LZBOLL-GHN regression model and empirical survival for the voltage
data considering the voltage levels: xi1 = 52.5; 55.0 and 57.5
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(a) (b)

Fig. 10 a Index plot of the modified deviance residual and b Q-Q plot for modified deviance residual

Summary
A new model called Zografos-Balarkishnan odd log-logistic generalized half-normal is
introduced and studied. We assess the performance of the maximum likelihood estima-
tors of the parameters of the new distribution with respect to the sample size n. The
assessment is based on a graphical simulation study. The flexibility of the new model is
illustrated by means of the three real data sets. The new model performs much better
than beta generalized half-normal, generalized half-normal, odd log-logistic generalized
half-normal and the generalized half-normal models. Additionally, a new log-location
regression model based on the new distribution is introduced and studied. The martin-
gale residual and themodified deviance residuals to detect outliers and evaluate themodel
assumptions are defined.We demonstrate that the new log-location regression model can
be very useful in the analysis of real data and provide more realistic fits than other regres-
sion models such as the log beta generalized half-normal, the log generalized half-normal
and the log-Weibull regression models. The potentiality of the new regression model is
illustrated by means of a real data.
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