
Huber and Marić Journal of Statistical Distributions and
Applications             (2019) 6:2 
https://doi.org/10.1186/s40488-019-0091-5

RESEARCH Open Access

Admissible Bernoulli correlations
Mark Huber1† and Nevena Marić2*†
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Abstract
A multivariate symmetric Bernoulli distribution has marginals that are uniform over the
pair {0, 1}. Consider the problem of sampling from this distribution given a prescribed
correlation between each pair of variables. Not all correlation structures can be
attained. Here we completely characterize the admissible correlation vectors as those
given by convex combinations of simpler distributions. This allows us to bijectively
relate the correlations to the well-known CUTn polytope, as well as determine if the
correlation is possible through a linear programming formulation.
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Introduction
Consider the admissible correlations among n random variables (X1, . . . ,Xn) for given
marginal distributions. This topic has a long history, dating back to de Finetti (1937)
where the problem of maximum negative achievable correlation among n random vari-
ables was studied. Fréchet (1951) and Hoeffding (1940) studied the general form of the
question, which grew out questions posed by Lévy (1937).
The big question is: can we completely describe set of correlation matrices for a given

set of marginal distributions? When n = 2 the answer is completely known in terms of
Fréchet-Hoeffding bounds. This two dimensional problem was also studied in (Leonov
and Qaqish B) for a wide range of distributions.
Therefore we consider dimensions greater than two here. We show for general

marginals that if a particular vector calculated from the target correlations and marginals
falls into the CUTn polytope (the convex hull of cut vectors in a complete graph with
vertices {1, . . . , n}), then there does exist such a joint distribution. This condition is both
necessary and sufficient in the case of symmetric Bernoulli marginals.
Correlationmatrices are symmetric positive semi-definite and have all ones on the diag-

onal, denote this set of matrices (of size n by n) as En. This convex compact set is called
the elliptope (see Laurent and Poljak 1995).
For Gaussian marginals, the entirety of En is admissible as correlations, but this is

the only nontrivial set of marginals for which the question has been settled. Even for
other common distributions surprisingly little is known. One case that has been partially
explored is that of copulas. A probability measure on [ 0, 1]n is a copula if all its marginals
are uniformly distributed on [ 0, 1]. Devroye and Letac (2015) have shown that every
element in En is a correlation matrix for some copula, for n ≤ 9, but they believe that the
statement does not hold for n ≥ 10.
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Here we focus on symmetric Bernoulli variables, that is marginals Xi where P(Xi =
1) = P(Xi = 0) = 1/2. (Write Xi ∼ Bern(1/2)). In Huber and Marić (Huber and Marić
2015) this distribution was shown to be in a certain sense the most difficult marginal: for
general marginals it is often possible to transform the problem into symmetric Bernoulli
marginals.
This problem, in different guises, appears in numerous fields: physics (Smith and

Adelfang 1981), engineering (Lampard 1968), ecology (dos Santos Dias et al. 2008), and
finance (Lawrance and Lewis 1981), to name just a few. Due to its applicability in the gen-
eration of synthetic optimization problems, it has also received special attention by the
simulation community (Hill and Reilly 1994; Henderson et al. 2000).
It should be noted that the answer for symmetric Bernoulli marginals will be a strict

subset of En, even when n is small. As a simple example consider
⎛
⎜⎝

1 −0.4 −0.4
−0.4 1 −0.4
−0.4 −0.4 1

⎞
⎟⎠ .

While thismatrix is in the elliptope E3, it cannot be the correlationmatrix of three random
variables with symmetric Bernoulli marginals. This follows from the results given in the
next section (see also Huber and Marić 2015).
Let us note also that knowing the admissible correlations allows us to place the corre-

lation estimates in perspective, which is of great significance in empirical data analysis.
Chaganty and Joe (2006) write about errors caused by the belief that any matrix in En
is a possible correlation matrix for a set of binary random variables. In the same paper
they were able to characterize the achievable correlation matrices when the marginals
are Bernoulli. When the dimension is 3 their characterization is easily checkable (as for
the 3 by 3 matrix given above), in higher dimensions they give a number of inequalities
that grows exponentially in the dimension. They also give an approximate method for
checking attainability of the correlation matrix in higher dimensions.
In this paper we give a complete characterization of the correlation matrices for

multivariate symmetric Bernoulli distributions by explicitely identifying vertices of the
corresponding polytope. This approach leads also to a novel sampling method from the
desired marginals and correlations.
The rest of the paper is organized as follows. In the next section it is shown that the

question of admissible correlations of multivariate symmetric Bernoulli random variables
can be reduced to a subset of distributions that has even more symmetry. This also allows
us to bijectively relate the admissible correlations to the well-known CUTn polytope. In
the following section this idea is then used to give a method for construction of a multi-
variate exponential distribution with prescribed correlation structure. In the last section
we discuss our findings in a larger context.

Themain result
Consider a vertex of the n-dimensional cube v ∈ {0, 1}n. For instance, when n = 5, v =
(0, 0, 1, 0, 1) is such a vertex. Let 1 denote the vector of all 1’s. Then for any v ∈ {0, 1}n, the
distribution Unif({v, 1 − v}) (discrete uniform distribution over two points: v and 1 − v)
has marginals that are all uniform over the pair {0, 1}. Hence all such distributions are
multivariate symmetric Bernoulli.
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Any convex combination of multivariate symmetric Bernoulli distributions will also
be multivariate symmetric Bernoulli. Our main result is that any admissible correlation
structure can also be realized as the correlation structure of such a convex combination.

Theorem 1 Let ρ be the correlation structure for a multivariate symmetric Bernoulli
distribution P. Then there exists P′ that is the convex combination of distributions of the
form Unif({v, 1 − v}) such that the correlation structure of P′ is ρ.

Let Bn denote the set of all n-variate symmetric Bernoulli distributions, En the vector
containing ordered pairs {(i, j) : 1 ≤ i < j ≤ n}, and let R : Bn →[−1, 1]En map a
distribution to its correlation structure. So for a distribution P ∈ Bn, the correlation vector is

R(P) = (ρ12, ρ13, . . . , ρn−1,n).

The set of all admissible correlation structures is then just R(Bn).
Let Pv ∼ Unif({v, 1− v}) for v ∈ {0, 1}n and conv{Pv : v ∈ {0, 1}n} be the set of all convex

combinations of Pv. With this notation, Theorem 1 can be stated as

R(Bn) = R
(
conv

{
Pv : v ∈ {0, 1}n}) .

Proof (Proof of Theorem 1) Since each Pv is in Bn, and Bn is a convex set, we
immediately have R (conv {Pv : v ∈ {0, 1}n}) ⊆ R(Bn).
For the other direction, let P ∈ Bn. So for X = (X1, . . . ,Xn) ∼ P, Xi ∼ Bern(1/2) for all

i. Note that Xi ∼ 1−Xi, so the distribution of (1−X1, . . . , 1−Xn) is also in Bn and since
Cor(Xi,Xj) = Cor(1−Xi, 1−Xj) the vector (1−X1, . . . , 1−Xn) has the same correlation
structure as (X1, . . . ,Xn). Let P− be the distribution of (1 − X1, . . . , 1 − Xn).
Now for any two multivariate symmetric Bernoulli distributions with the same cor-

relation structure, any convex combination of the distributions will have the same
covariances, and so the same correlation structure. This convex combination will also
still be in Bn. In particular, P′ = (1/2)P + (1/2)P− ∈ Bn and R(P′) = R(P). For
Y = (Y1, . . . ,Yn) ∼ P′ and vector v ∈ {0, 1}n,

P(Y = v) = 1
2
P(X = v) + 1

2
P(X = 1 − v) = P(Y = 1 − v).

So we can write

P′ =
∑

v∈{0,1}n:v(1)=0
[P(Y = v) + P(Y = 1 − v)]Pv,

where Pv ∼ Unif({v, 1 − v}). Hence P′ ∈ conv{Pv : v ∈ {0, 1}n} and since R(P′) = R(P) we
are done.

Since the correlation mapping R is affine, the above theorem says that ρ can be a corre-
lation for an n-variate symmetric Bernoulli distribution if and only if it can be written as
a convex combination of R(Pv), for v ∈ {0, 1}n.
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The CUTn polytope

Related to this is the notion of a cut vector. For a vector v ∈ {0, 1}n, let s(v) = {i : vi = 1}
be a subset of [n]= {1, 2, . . . , n}. Then the partition

{
s(v), s(v)C

}
is a cut of Kn, the

complete graph with nodes [n].
To any cut can be associated a function on the edges of Kn that will assign 1 to an

edge that crosses the cut and 0 otherwise, called cut vector, and this correspondence is
one-to-one.

Definition 1 For every A ⊆ [n] the vector cA ∈ {0, 1}En defined as

cAij =
{
1, if |A ∩ {i, j}| = 1
0, otherwise

for (1 ≤ i < j ≤ n), is called a cut vector of Kn.
For such a cut vector cA, let t

(
cA

) = A if 1 ∈ A, otherwise t
(
cA

) = AC(
note that cA = cAC

)
.

Example: take n = 3 and v = (1, 1, 0). Then s(v) = {1, 2} and the partition {{1, 2}, {3}}
is a cut of K3. Now, for A = {1, 2}, AC = {3}, and cA12 = 0, cA13 = 1, cA23 = 1. Also
t
(
c{1,2}

) = t
(
c{3}

) = {1, 2}.
For a distribution P over {0, 1}n, let C(P) denote the concurrence vector, where if

(X1, . . . ,Xn) ∼ P, C(P)({i, j}) = P(Xi = Xj). The set of concurrence vectors are related to
the set of cut vectors as follows.

Lemma 1 Let P be a probability distribution on {0, 1}n. Then the concurrence vector
C(P) is in the convex hull of the set {1 − c : c is a cut vector of Kn}.

Proof Let (X1, . . . ,Xn) ∼ P. Then

P(Xi = Xj) =
∑

A:{i,j}⊆A or {i,j}⊆AC

P(s(X) = A)

=
∑

cut vector c:cij=0

[
P(s(X) = t(c)) + P

(
s(X) = t(c)C

)]

=
∑

c a cut vector

[
P(s(X) = t(c)) + P

(
s(X) = t(c)C

)]
(1 − cij)

Since P(s(X) = t(c))+P
(
s(X) = t(c)C

)
are nonnegative and sum to 1 over all cut vectors

c of Kn, the proof is finished.

The convex hull of the cut vectors c is known as the CUTn polytope (see (Deza and
Laurent 1997) for details). So another way to state the lemma is that the set of concurrence
vectors lies in 1 − CUTn.
For symmetric Bernoullis, the concurrence vector and the correlation structure are

directly connected. It is easy to show that ρij := Cor(Xi,Xj) = 4P(Xi = Xj = 1) − 1.
Since each Xi ∼ Unif({0, 1}), 2P(Xi = Xj = 1) = P(Xi = Xj). Hence ρ = 2C(P) − 1, so
(1 + ρ)/2 = C(P) ∈ 1 − CUTn. Finally we have the following.
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Theorem 2 The vector ρ ∈ [−1, 1]En is an admissible correlation for the multivariate
symmetric Bernoulli family, that is, ρ ∈ R(Bn) if and only if (1 − ρ)/2 ∈ CUTn.

This result is similar in spirit to work of Avis (1977), and in fact can also be derived from
his results.

Simulation frommultivariate distributions with given correlations
In general, creating a multivariate symmetric Bernoulli distribution with specified corre-
lations can be done by testing feasibility of a linear program. The program contains 2n

decision variables, one for each v ∈ {0, 1}n, and xv represents the probability that X = v.
There is one equality constraint for each i ∈ {1, . . . , n}:

∑
v:v(i)=1

xv = 1/2.

There are
(n
2
)
equality constraints for each of the correlations:

∑
v:v(i)=v(j)

xv −
∑

v:v(i)
=v(j)
xv = ρij,

and a final equality constraint
∑
v

xv = 1.

Last, the xv must be nonnegative.
By employing Theorem 1, we can cut the number of decision variables in the linear

program in half, since each diagonal of [ 0, 1]n is described by a vector v ∈ {0, 1}n with
v(1) = 0. Let αv denote these decision variables. Then because we are mixing uniforms
over {v, 1 − v}, the ∑

v:v(i)=1 xv = 1/2 constraints are automatically satisfied. All that
remain are the correlation, total sum, and nonnegativity constraints.

(∀i, j)
⎛
⎝ ∑

v:v(i)=v(j)
αv −

∑
v:v(i)
=v(j)

αv = ρij

⎞
⎠ ,

∑
v

αv = 1, and (∀v)(αv ≥ 0).

To illustrate this procedure, suppose that we wish to simulate draws from (T1,T2,T3)

where the Ti are exponential random variables with rate 1 and correlation structure

Cor(T1,T2) = 0.7, Cor(T1,T3) = −0.4, Cor(T2,T3) = −0.2.

The following procedure is given in Huber and Marić (2015). Recall that for U ∼
Unif([ 0, 1] ), the inverse transform method gives that both − ln(U) and − ln(1 − U) have
an exponential distribution with rate 1.
Suppose that Cor(B1,B2) = 0.635244. Then draw U ∼ Unif([ 0, 1] ), and let Ti =

− ln(U)Bi+− ln(1−U)(1−Bi). Then it is an easy calculation to show that Cor(T1,T2) =
0.7. Similarly, by generating

Cor(B1,B2) = 0.635244, Cor(B1,B3) = −0.70220, Cor(B2,B3) = −0.45903.

and calculating the Ti in the same fashion, the complete correlation structure for
(T1,T2,T3) can be replicated.
Because for symmetric Bernoullis Cor(Bi,Bj) = 4Cov(Bi,Bj) and covariance is an inner

product, the correlation of a convex combination of variables is the convex combina-
tion of the correlations. By the symmetry of {0, 1}n, we need only consider vectors with
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first component 0. Hence the vectors to consider are (v1, v2, v3, v4) = ((0, 0, 0), (0, 0, 1),
(0, 1, 0), (0, 1, 1)). For a draw from the distribution where Unif({vi, 1 − vi}) has coefficient
αi, the correlations would be

α1 + α2 − α3 − α4 = Cor(B1,B2) = 0.635244

α1 − α2 + α3 − α4 = Cor(B1,B3) = −0.70220

α1 − α2 − α3 + α4 = Cor(B2,B3) = −0.45903

Finally,
∑

i αi = 1.
In general, to determine if these equations have a solution we would determine feasibil-

ity of a linear program with the additional nonnegativity constraint that all αi ≥ 0. In this
case, since

(3
2
) + 1 = 23−1 there is but one unique solution:

(α1,α2,α3,α4) = (0.1185035, 0.6991185, 0.0303965, 0.1519815).

Since these all lie in [ 0, 1], these correlations are admissible.
Our procedure then is to draw a random variable N using P(N = i) = αi. Next draw

U ∼ Unif([ 0, 1] ). If the i-th component of vN is 1, then Ti = − ln(U). Otherwise Ti =
− ln(1 − U). As shown in Huber and Marić (2015), this creates a vector (T1,T2,T3) with
the desired marginals.

Discussion
Characterizing R(Bn) via its extreme points naturally raises the same question about
the convex set Bn. Even though clearly every Pv is an extreme point of Bn, it should be
noted that Bn 
= conv{Pv : v ∈ {0, 1}n}. Gérard Letac (private communication) gives
an example in n = 3 that confirms this statement: a measure that assigns weight 1/4 to
(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1) is not a convex combination of Pv’s but it clearly belongs
to B3 and moreover is also an extreme point of that set. Characterization of Bn is still an
open problem.
It should be noted that the relation between CUTn and Bn does not extend to asym-

metric multivariate Bernoulli distributions. It is enough to analyze the bivariate case with
equal marginals. The correlation between two Bern(p) random variables belongs to the
interval [ ρmin, 1]. Maximum correlation in case of equal marginals, always equals to 1
and the minimum correlation ρmin can be calculated using Fréchet-Hoeffding bounds
(Fréchet 1951; Hoeffding 1940)

ρmin =
{

−(1 − p)/p, for p ≥ 1/2
−p/(1 − p), for p ≤ 1/2.

It is clear now that only for p = 1/2, ρmin = −1 and possible correlations equal to the
entire interval [−1, 1], while for any other value of p it is a strict subinterval of [−1, 1].
For example, for p = 3/4, −1/3 ≤ ρ ≤ 1.
In two dimensional case the cut polytope is known to be CUT2 =[ 0, 1] so it corre-

sponds to R(B2) only in the symmetric case.
It should be noted also a relation with the elliptope En. The set of n×n correlationmatri-

ces is a nonpolyhedral convex set with a nonsmooth boundary and its extreme points
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of have not been explicitly determined, but there exist characterization results on the
rank one and two extreme points, done by Ycart (1985) (see also Li and Tam (1994) and
Parthasarathy (2002)). Laurent and Poljak (1995) proved that cut matrices (analogous to
cut vectors) are actually vertices-rank one extreme point of the elliptope and that En can
be seen as a nonpolyhedral relaxation of the cut polytope. In view of theorems proved here
it follows that the vertices of En correspond precisely to symmetric Bernoulli correlations.
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