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both theoretically and computationally challenging, and this issue is rarely discussed in
the literature. We propose nature-inspired metaheuristic algorithms, like particle swarm
optimization (PSO) and its variants, to solve such optimization problems. We
demonstrate that such techniques, which are easy to implement, can find different
types of optimal designs for models with several factors efficiently. To facilitate use of
such algorithms, we provide computer codes to generate tailor made optimal designs
and evaluate efficiencies of competing designs. As applications, we apply PSO and find
Bayesian optimal designs for Exponential models useful in HIV studies and re-design a
car-refuelling study for a Logistic model with ten factors and some interacting factors.
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Introduction
Statistical models are getting increasingly complex to capture the finer features of a
problem. Models incorporate more factors as data becomes high-dimensional and het-
erogeneous. When the model assumptions are tenable, it is important to develop and
implement efficient design strategies to realize the most reliable statistical inference at
minimal cost.

In the optimal design literature, we typically assume that the statistical model is
fully parametrized, known and defined on a user-selected design space, apart from the
unknown parameters in the model. An optimal design is found under a given criterion
and the optimization is usually over all designs in the design space. Frequently, the goal is
to estimate one or more parameters, the response surface or a couple of meaningful func-
tions of the model parameters. Unless the model is relatively simple, closed form formulae
for the optimal designs rarely exist. Sometimes, additional assumptions are imposed to
derive the optimal designs analytically and some of the assumptions may be unrealis-
tic. Further, the bulk of the work in the optimal design literature assumes models have a
couple of explanatory factors only and when there are several of them, they are usually
assumed to be additive to simplify the derivation. A practical and useful way to handle
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design problems with many interacting explanatory factors is to develop efficient compu-
tational tools that find various types of optimal designs for a broad class of models under
realistic assumptions.

We propose a state-of-the-art class of algorithms called nature-inspired metaheuristic
algorithms for solving high dimensional design problems. We call them high dimensional
design problems because there are many variables to optimize. Our experience is that tra-
ditional design algorithms tend to have problems finding optimal designs when there are
several variables to optimize. They are likely to stall at a local optimum or break down
because of the huge computational burden when there are many variables to optimize.
Several researchers had reported similar experiences with traditional algorithms for find-
ing optimal designs. An early one is Chaloner and Larntz (1989) who found both the
(Wynn 1972) and (Fedorov 1972) algorithms very slow when they tried to find A- and
c-Bayesian optimal designs for the two-parameter logistic model. They then used the
general optimization algorithm proposed by (Nelder and Mead 1965) and found it to be
adequate. Similarly, (Broudiscou et al. 1996) claimed that traditional algorithms, such as
Fedorov-Wynn types of algorithms or exchange algorithms for finding optimal designs
cannot be used to find non-standard designs, such as asymmetrical D-optimal designs.
They found the algorithms performed poorly and difficult to handle and so not effective;
they used genetic algorithms instead. Similarly, (Royle 2002) reported that the traditional
exchange algorithms are not practical for finding large spatial designs when the criterion
is computationally expensive to evaluate or the discretized design space is large. These
may be reasons why the bulk of the optimal experimental designs reported in the literature
concern a small number of factors.

Nature-inspired metaheuristic algorithms, such as particle swarm optimization (PSO)
or one of its enhanced versions, such as competitive swarm optimizer (CSO), are more
likely to solve optimization problems with a large number of variables to optimize. These
algorithms are general purpose optimization tools and by construction, do not require
any assumptions on the optimization problem. For example, these algorithms can solve
optimization problems when the objective function is non-differentiable or even when the
criterion cannot be written down explicitly. This article describes PSO, its variant CSO
briefly and demonstrates their capability for finding optimal designs for a broad class of
models with multiple factors, including Bayesian optimal designs.

The next section reviews the optimal design setup and “Particle swarm optimization
based algorithms for generating optimal designs” section presents the particle swarm
optimization algorithm. In “Websites for finding optimal designs” section, we present
websites where codes for finding optimal designs are available and demonstrate with a
simple example. In “Optimal designs for high dimensional models” section, we apply
CSO to find high-dimensional D-optimal designs for Logistic and Poisson models. In
“Bayesian optimal designs for biomedical studies” section, we apply PSO to find Bayesian
D-optimal designs for Exponential models useful in HIV studies. We then conclude with a

discussion on future work and a cautionary remark on use of optimal designs in practice.

Background
The statistical model of interest has the form

Ey=f(x0), xeX,
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where f(x, 6) is the mean response of the univariate response y and assumed to be known,
apart from the m x 1 vector 6 of model parameters. There are p possibly interacting
factors in the model and so X is p-dimensional. Given a design criterion and a pre-
determined 7 of independent observations to take for the study, the design questions are
the optimal number (k) of design points to take from X, the optimal locations x1, . . ., xx’s
in X to observe the responses, and the optimal proportion (w;) of observations to take
at x;,i = 1,...,k. This results in an approximate design and is implemented by first
rounding each nw; to the nearest positive integer [nw;“] and subject to the constraint that
[nw}i] + [nwh] + - - + [nw}] = n. There is a theoretical framework for finding optimal
approximate designs, including established algorithms for finding many of them and eval-
uating the proximity of a design to the optimum design even when the latter is unknown;
for details on calculating the efficiency lower bound, see (Kiefer et al. 1985).

Following convention, the worth of a design £ is gauged by its Fisher information matrix.
For nonlinear models, the information matrix depends on the unknown values of the
parameters 6 and we denote this matrix by M(§, 0). The design criterion is then expressed
as a function of this matrix and as a first step, we typically replace the unknown 6 in
the matrix by its nominal value, 6p. The resulting optimal design is called locally optimal
design since it depends on 6y, which may come from a pilot study or from previous similar
studies (Chernoff 1972).

The D-optimal design for estimating all model parameters using 6y as nominal values is

the design &p that minimizes the negative of the log-determinant of information matrix

ép = argmin(— log(det[ M(&, ¢0)])} ()

—

where E is the set of all designs on X. The smaller the criterion value is, the better is
the design. When prior information on the model parameter 6 is available in the form of
a density (), a Bayesian D-optimal design &pyesp minimizes the same criterion after
averaging out the model parameters with respect to the prior density. It is defined by

5BayesD = arg?g}_}/ {_ log (det[M(E: 9)] )} 7 (9) do, (2)

and as before, the smaller the Bayesian D-optimality criterion value is, the better is the
design. Clearly, when the prior density is degenerate, the resulting design becomes locally
D-optimal. Both criteria are appropriate for estimating model parameters.

When the design criterion is convex in &, as in the above two cases, an equivalence
theorem is available to verify optimality of a design over all designs on X. Such a theorem
comes from directional derivative considerations of a convex functional and is discussed
in design monographs like (Fedorov 1972; Berger and Wong 2005). For example, if m is
the dimension of § and &, is the design that takes all observations at x, it can be shown
that the design &p is locally D-optimal designs if and only if

tr {M(p,0) "' M(5,,0)} —m <0, forallx € X, 3)

with equality at the support points of £p. The function on the left is sometimes called
the sensitivity function. Different convex design criteria lead to different sensitivity func-
tions but they all have a similar form. In practice, the optimality of a design is verified by
plotting the sensitivity function against the design space (equivalence plot) and checking
whether the equivalence theorem is satisfied. If it is not, the design is not D-optimal. Sim-
ilarly, £payesp is Bayesian D-optimal with respect to the prior density 7 (9) if and only if
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f tr {M(Egayesn, 0) " M(8,,0)} w(8)d6 — m < 0, for all x € X, (4)
0

with equality at the support points of £ggyesp.

We compare designs using relative efficiency, which is commonly defined as the ratio
of the two criteria values, or a function thereof. When one of the designs been compared
is the optimal design, relative efficiency becomes the design efficiency. Specifically, for D-
optimality, we compare two designs &; and & with nominal values 6y via the mt" root of
the ratio of the determinants of their information matrices:

{ IM(&1,60)| }”m
|M(&2,6p)| '

The relative efficiency ratio compares performance of the two designs for estimating

(5)

the model parameters. If the above ratio 0.5 or 50% efficiency, this means that the design
&1 needs twice as many observations for it to do as well as the design &. When &, is the
D-optimal design, the above ratio is simply the D-efficiency of the design &;.

The next section describes a nature-inspired metaheuristic algorithm and one of its
variants for finding D-optimal designs for the Poisson regression models, Bayesian D-
optimal designs for Exponential models and D-optimal designs for high-dimensional
Logistic and Poisson models.

Particle swarm optimization based algorithms for generating optimal designs
Metaheuristic algorithms are increasingly common, and a key appeal of such algorithms
is that there is no or minimum assumptions required for them to work well. Metaheuristic
algorithms usually involve some randomization and local searches. In particular, they go
through slightly different processes and end up with frequently not too different results
(Yang 2010).

We focus on particle swarm optimization (PSO), which is a member of the class of
metaheuristic algorithms. It is now widely and routinely used in the engineering field.
PSO was first developed in 1995 by Eberhart and Kennedy (1995). Motivated by swarm
intelligence, they simulated candidate designs for the optimum using them as birds in a
swarm looking for food on the ground. The swarm collectively acts and communicates to
update where each bird believes where the food is (personal best) and flies toward it in the
direction of the group best, which is where the flock believes the food lies after sharing
information within the flock. The objective function gets updated at each iteration as the
bird flies over time in search of a quality solution. Many have reported that PSO can sig-
nificantly outperform genetic algorithms (GA) in terms of number of function evaluations
required (Hassan et al. 2005).

To initiate the PSO algorithm, the user first selects a swarm size where each particle in
the swarm represents a randomly generated candidate design. Below is the pseudo-code
for PSO (Kennedy 2006):

Begin

Initialize particle position and velocity

While maximum iterations or minimum error criteria is not attained

Do

For each particle

Evaluate objective function
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Update particle personal best
End
Set particle with the best objective function value as the group best
For each particle

Update particle velocity: Vf;rl =wvl, + (pfd — xfd) + 2y (pi,d — xfd>

Update particle position: x;‘;l =i, + vgl
End
End

In the pseudo-code, w is inertia weight, v/, and &, are velocity and position of av
dimension of i particle at iteration step t, c1, ¢y are weight constants, ¥ and ¥, are ran-
dom values from uniform [0, 1] distribution, p;; is the personal best of d" dimension of
particle i (the best position particle i ever visited), pgy is the group best of d" dimension
of the swarm (the best position the group ever visited). Each particle represents a candi-
date design with k support points, and k (> m) is user selected. The dimension of each
particle is therefore 2k — 1 because we need to optimize the locations of the k support
points and their corresponding weights. The dimension is one smaller since the weights
sum to unity.

For solving high-dimensional optimization problems, it is helpful to use a variant of
PSO because research shows that PSO can be prone to premature convergence (Yang and
Pedersen 1997). This means that particles can quickly converge to a local optimum with-
out enough space exploration. This phenomenon decreases the quality of the solution
provided by PSO. Many strategies have been proposed to alleviate such premature con-
vergence, and one successful PSO variant that shows great potential for solving complex
optimization problems is the competitive swarm optimizer (CSO) algorithm (Cheng and
Jin 2015). The researchers found that PSO premature convergence has strong connection
with particle personal best and swarm group best, which seem to have too much influence
on the convergence of each particle. They proposed CSO by removing those two “black
holes" (namely, personal best and group best) and recast the updating formulas. Further,
CSO pairs up particles and let the “loser” (particle with inferior objective function value)
to learn from “winner” (particle with superior objective function value). The main change
compared to PSO is that the updating mechanism for the “loser” particle velocity becomes

Vid | = Vvig + v <x;d - xfd) + V3¢ (¥ — %)

where v/ and x!, are velocity and position of @ dimension of i’" particle at iteration step
t x}t , is the position of d™ dimension of the paired j particle at iteration step ¢, ¢ is a
tuning parameter, V1, ¥, Y3 are random values from uniform[ 0, 1] distribution, 56; is the
d" dimension of swarm center at iteration £. CSO makes the swarm more diverse without
increasing much computational cost and shows that it is less likely to be trapped in local
optimum (Cheng and Jin 2015).

We now show how PSO can find different types of optimal designs effectively for dif-
ferent types of generalized linear models. The examples are meant to be illustrative with
some details for those new to the area; others may use our codes directly from the fol-
lowing websites that contain codes for finding optimal designs for more complicated
situations.
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Websites for finding optimal designs

There are websites with MATLAB PSO codes that we have written for finding vari-
ous optimal designs for commonly used models. They include http://wkwong.bol.ucla.
edu/podpack/index.html, http://www.math.ntu.edu.tw/~optdesign/ and http://www.stat.
ncku.edu.tw/optdesign/. Each code is for a specific design problem for a particular model.
The user inputs the required information for their design problem and the PSO code
searches iteratively for the optimum.

The available codes on our website find optimal designs for different models under
different criteria. Models include commonly used linear, Michaelis-Menten, mixture
polynomial, logistic, compartmental, Hill’s, double-exponential, exponential, Poisson, etc.
Criteria include D-, Ds-, A-, G-, E-, minimax, etc.

The aim in many toxicity studies is to ascertain the joint toxicity effects from several
toxicants on the number of organisms or cells that survive when we apply different dose
combinations of the toxicants. There is limited work to address design issues for such
studies and when they are available, they usually have one or two explanatory variables in
the model (Russell et al. 2009; Wang et al. 2006; Qiu 2014). To fix ideas, we use a Poisson
model with two toxicants to illustrate how our sites facilitate search for a locally D-optimal
design for a Poisson regression model. The website has codes that are able to find designs
with more interacting toxicants.

Let y; be the observed number of organisms or cells that survive when we apply the i
dose combination of the two interacting toxicants x; = (x;1, x)7. Let the mean response
of the Poisson regression model be A;, which is the same as its variance Var(y;|x;). Further,

we assume the mean structure in our statistical model is
Ai = exp(Bp + O1xi1 + Ooxip + O1oxi1%2) = exp (0 Ty (xi)> , (6)

where 07 = (B9, 61, 02, 012) andfT(x,-) = (1,%1,%i2,%;1%i2). The Fisher information for
a design with k support points £ = (x1,...,%; Wi,...,wg) with Poisson rate A;, i =
1,2,...,k has the form

1(£,0) = FTWF, )

where F = (f(x1), ... ,f(xk))T and W = diag(wir1, ..., wiky). We consider a synergism
effect in this example, and set the nominal values for 6y, 61, 6, and the interaction term
012 to be -0.1, -0.1, -0.1, and -0.01. The values are non-positive because we expect the
effect of each toxicant is such that fewer cells will survive when the dose of the toxicant
is increased. We also set the nominal value of 61 to be smaller than the additive effects,
which is usually the case in practice (Wang et al. 2006). Another restriction on the feasible
design region representing doses or concentrations of the toxicants is that their values are
non-negative.

Our environment for this demonstration uses a x86_64-win64 (64 bit) 3.6GHz, 16GB
RAM computer with Intel i7-4790 CPU on Windows 10 Enterprise OS. The version of
MATLAB we used is R2015b. We first download the codes from “Part H1: Locally D-
optimal design for Poisson regression model with M = 2” from the website. Upon typing
“run” in the command window, a Graphic User Interface (GUI) pops up as is shown
in Fig. 1, whereupon the user inputs the nominal values of parameters, the anticipated
number of support points for the optimal design and parameters for the PSO algorithm.
The user can change the tuning parameters in PSO or change the nominal values for
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Fig. 1 Poisson regression model MATLAB Graphic User Interface (GUI)

the parameters. We assume there are 4 support points for the optimal design (minimally
supported). For our demonstration, we set PSO tunning parameters as ¢; = ¢ = 2, w
linearly decreasing from 0.9 to 0.4 (Shi and Eberhart 1999) and use 100 particles and 1000
iterations as tuning parameters for PSO. When the “Run!” button is clicked, the program
runs and the search begins. The design found by the algorithm is displayed in the com-
mand window, as is shown in Fig. 2, with the dose levels of toxicant 1, toxicant 2 and their
corresponding weights. We observe that the four support points are equally supported at
(0.3,1),(0.368,0.368), (1, 0.3), and (1, 1). Additionally, the output displays the D-efficiency
lower bound and the criterion value of the log-determinant of the Fisher information
matrix. The generated design has a D-efficiency lower bound of 1, confirming that the
design is locally D-optimal. The sub-window of Fig. 1 shows the sensitivity function plot
of the PSO-generated design and visually also confirms optimality of the generated design
among all designs. In this experiment we observe that the the criterion values become sta-
ble after about 100 iterations. This is typical of PSO where it tends to get to the proximity
of the optimum quickly and afterwards exploits the locality to determine the optimum.

--—-Iterations 1000---

|Agent1l 0.3000 0.3680 1.0000 1.0000;
1

EAgentZ 1.0000 0.3680 0.3000 1.0000!

Weights 02500 ... 02500 ] 0.2500 _____0.2500:

Log (Det) 7.810065

Number of support points: 4

Checking equivalence theory...

R R i e e e |

\The D-efficiency lower bound is: 1.00000}
iThe log of det is: 7.81006

Finished.

Fig. 2 The command window with the optimal designs, D-efficiency lower bound, and the criterion value
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Optimal designs for high dimensional models

In practice, models are likely to have several explanatory factors. This is because a few
explanatory factors may not capture the complex structure of the full data adequately.
This section shows that CSO, a variant of PSO can tackle high-dimensional optimal
design problems for the Logistic and Poisson models.

Locally D-optimal designs for 5-factor Logistic and Poisson regression models

Our models are generalized linear models and to fix ideas, consider the more popular
Logistic model and a Poisson model, each with five explanatory factors and all pairwise
interactions. The Logistic model is given by

logitE(y) = 0 + 01%1 + - - - + O5%5 + Oex102 + - - - + O15%4%5, (8)

where the outcome y is Bernoulli-distributed, and each factor x; resides in the design
space [ —1,1]. For the Poisson model, its mean response is A;, which is the same as its
variance Var(y;|x;). In terms of the explanatory factors, the mean structure is

Ai = exp(Bp + 61x1 + - - - + 0505 + Osx1%2 + - - - + O1504%5). )

We expect the locally D-optimal design for each of the above models has at least k > 16
design points because there are 16 parameters in both models. This means that we have
k — 1 weights to determine and at least k > 16 design points to determine, implying the
total number of variables we need to optimize in this problem is at least 95. If k = 25,
for instance, this number becomes 149 and so the problem becomes high-dimensional
rapidly. In the event that the D-optimal design has k = 16 = m support points, we have a
minimally-supported design.

As always, the choice of the tuning parameters in an evolutionary algorithm deserves
attention. For the hard high-dimensional problems in this paper, we used 200 particles.
The values for the other parameters we used were suggested by (Cheng and Jin 2015); in
particular, we set ¢ = 0.05 in CSO. We stop the algorithm when the change in the values
of objective function from successive iterations is smaller than 107>,

We implemented PSO and Genetic Algorithm (GA) and compared their performance
with CSO for searching D-optimal designs for high dimensional models. The choices for
the tuning parameters in PSO were w = 0.9 and ¢; = ¢ = 2 (Shi and Eberhart 1998). The
tuning parameter EliteCount in Genetic Algorithm was 0.05, which is recommended by
the Matlab official implementation of the code. The swarm size of PSO and GA was also
200. Since evolutionary algorithms are stochastic and produce slightly different result for
each run, we ran the algorithm five times for each model and averaged the outputs.

For simulation purposes, parameters for Logistic models were generated randomly
from uniform [-1, 1] and parameters for Poisson models were generated randomly from
uniform [-3, 3]. These nominal values are listed in Table 1. The design space is [ —1, 1]°.

Table 2 displays the D-optimality criterion values, averaged over five runs, obtained by
the three algorithms for the four models 8-1, 8-2, 9-1 and 9-2, along with their standard
deviations in parentheses. Among the three algorithms, CSO consistently has better and
more stable performance for searching D-optimal designs for the four simulated models.
The equivalence theorem can be used to verify optimality of the CSO-generated designs
but the high-dimensional sensitivity function plots are not necessarily easy to construct
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Table 1 Parameter values for two Logistic and two Poisson simulated models

Model 00,01, 615

8-1 (Logistic) [0.72,-0.25,0.11,0.91,0.47,0.63,-0.80, 0.86
0.22,0.19,-0.82,-0.31,0.33,-0.12,0.10, 0.41]

8-2 (Logistic) [-0.50,-0.10,-0.18,-0.48, 0.74, -0.63, -0.96, 0.90
0.36,-0.03,-0.93,-0.21,-0.84,-0.30,-0.67, 0.97]

9-1 (Poisson) [0.54,-2.70,0.37,1.60, 247,-2.44,2.42,-0.23
-0.29,3.00,-2.03,1.26,-2.04,-1.86,-2.79,0.21]

9-2 (Poisson) [0.17,-1.01,-0.88,-2.53,0.34,-2.01,-1.23, 2.04
-0.82,-0.96, 1.26,-2.81,-0.17,1.39, 1.64, -1.55]

Parameters for Logistic models were generated randomly from uniform(-1, 1] and parameters for Poisson models were generated

randomly from uniform [-3, 3]

and interpret visually. A more practical way is to determine the maximum of the sensi-
tivity function of the generated design across the design space and compute its efficiency
lower bound. For our examples, the average efficiency lower bounds of the generated
designs for the four models are 93%, 96%, 99% and 99%, suggesting that the generated
designs are highly D-efficient. We also observe that the average runtime for each algo-
rithm shown at the bottom of the table confirms CSO not only produces the best quality
solutions but also does so most efficiently.

As an example, we display at least 99% D-efficient design found by CSO for model 9-2
in Table 3. The first five columns show the support points and the last column shows the
weight associated with each design point.

We verify the optimality of this and other designs by checking the values of sensitivity
function over a user-selected discretized grid set in the design space. Clearly for mod-
els with several explanatory factors, the finer the grid set, the longer time it takes to
check optimality. It is helpful to start with some initial testings with a rough grid to deter-
mine whether there are violations of the equivalence theorem; if there are, this suggests
the design is not optimal and another should be generated. For this particular exam-
ple, after initial testings, we discretized the search space with a total of (2/0.2 + 1)° =
161051 grid points for this 5-factor model, i.e. a step size of 0.2 for each of the factor
spaces. We then plot the multi-dimensional sensitivity function over the grid set, which
is now much harder to visualize and appreciate its properties than the case when there
is only one explanatory factor. One option is to stretch the high-dimensional grid into
a one-dimensional vector on the x-axis and plot the sensitivity function values along
the x-axis.

Figure 3 is an example of such a plot where it shows the graph of the sensitivity function
of the design in Table 3. The plot shows that there are many zero points in the graph. Such

Table 2 Average criterion values of the locally D-optimal designs found by genetic algorithm (GA),
particle swarm optimization (PSO) and competitive swarm optimizer (CSO) for the 5-factor models,
along with their standard deviations in parentheses

Model GA PSO cso

8-1 29.54(0.83) 31.05(1.51) 28.80(0.37)
8-2 29.76(1.12) 30.78(1.07) 28.91(0.54)
9-1 -167.30(1.31) -163.11(0.92) -169.04(1.24)
9-2 -100.14(1.71) -93.23(1.40) -100.35(0.64)

Average Runtime 95.2s 64.5s5 42.3s
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Table 3 A CSO generated 21 point design for model 9-2 with at least 99% D-efficiency

X1 X2 X3 X4 X5 w

-1.000 -1.000 -1.000 1.000 1.000 0.049
-1.000 -1.000 1.000 1.000 -1.000 0.049
-1.000 -0.259 1.000 1.000 1.000 0.051
-1.000 0.608 1.000 -1.000 1.000 0.046
-1.000 1.000 -1.000 -1.000 1.000 0.053
-1.000 1.000 -1.000 1.000 0.296 0.046
-1.000 1.000 1.000 -1.000 -1.000 0.043
-1.000 1.000 1.000 1.000 -1.000 0.049
-0.827 1.000 -1.000 -1.000 -1.000 0.046
-0.239 -1.000 -1.000 -1.000 -1.000 0.052
0673 1.000 -1.000 -1.000 -1.000 0.036
0.746 -1.000 -1.000 1.000 -1.000 0.047
1.000 -1.000 -1.000 -1.000 1.000 0.054
1.000 -1.000 -1.000 1.000 1.000 0.043
1.000 -1.000 1.000 -1.000 -1.000 0.053
1.000 -1.000 1.000 1.000 -1.000 0.037
1.000 1.000 -1.000 1.000 -1.000 0.054
1.000 1.000 -1.000 1.000 1.000 0.050
1.000 1.000 1.000 -1.000 -1.000 0.042
1.000 1.000 1.000 -1.000 1.000 0.052
1.000 1.000 1.000 1.000 1.000 0.048

discrepancy can be explained from several perspectives: (1) the design is very close to the

true optimal design, but still not the true one; (2) when plotting, we systematically chose

points from the high-dimensional space. One theoretical design point might be spatially

close to more than one points in the grid we made; (3) although values at some points

seem to achieve 0, if we amplify the graph, we may find out that they are not 0 points.

Fig. 3 Plot of the sensitivity function for the design in Table 3

14
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1.01 K * L 01 Stmax

Fig. 4 Sensitivity function plots of the generated designs for Exponential regression model 10 (left) and
model 11 (right)

A real-world application on car refueling experiment

In this section, we describe a real-world application which tries to find a high-dimensional
optimal design for a 10-factor Logistic model. Grimshaw et al. (2001) described an exper-
iment for testing a vision-based car refueling system with the question that whether a
computer-controlled nozzle was able to insert itself into the gas pipe correctly or not.
The experiment has four binary explanatory factors taking values -1 or 1: ring type (x1,
white paper or reflective), lighting (x2, room lighting or 2 flood lights and room lights),
sharpening (x3, without or with), smoothing (x4, without or with); also included are six
continuous factors: lightning angle (x5, 50 to 90 degrees), gas-cap angle 1 (x4, 30 to 55
degrees), gas-cap angle 2 (x7, 0 to 10 degrees), can distance (xg, 18 to 48 inches), reflective
ring thickness (x9, 0.125 to 0.425 inches) and threshold step vale (x10, 5 to 15). Lukemire
et al. (2019) employed a variant of PSO called quantum PSO to search for a locally D-
optimal design for the 10-factor additive Logistic model and reported an average runtime
of 140 seconds. Here we include some two and three-way interaction terms . All these
terms are summarized in table 4. The model contains 10 factors and 16 parameters in
total. Here, we started the search with a swarm, each with 20 support points. Finding
optimal design for this problem is a high-dimensional problem: for each solution, there
is (10+1) x 20=220 dimensions, as each design point has 10 factors and 1 corresponding
weights, and there are 20 support points to be optimized.

o 137 5 10 Stmx 15 2 2 Y 0 10017 2 2833

Fig. 5 Sensitivity function plots of the the generated design for the Exponential regression model 12 under
specification 12-1 (left) and specification 12-2 (right)
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Table 4 Variables in the car refueling experiment

Variable Notation Type Range
Ring type X1 Binary -1or-1
Lightning X2 Binary -1or-1
Sharpening X3 Binary -lor-1
Smoothing X4 Binary -Tor-1
Lightning Angle X5 Continuous [50, 90]
Gas-cap Angle 1 X6 Continuous [30, 55]
Gas-cap Angle 2 X7 Continuous [0, 10]
Can Distance Xg Continuous [18, 48]
Reflective Ring Thickness Xo Continuous [0.125,0.425]
Threshold Step Value X10 Continuous [5,15]
P-Interaction 1 X1X9 - -
P-Interaction 2 XoX5 - -
P-Interaction 3 X4Xg - -
T-Interaction 1 X6X7X8 - -
T-Interaction 2 X3X4X10 - -

To find the locally D-optimal design, a set of parameter values are proposed: 87 = (3.0,

0.5, 0.75, 1.25, 0.8, 0.5, 0.8, -0.4, -1.00, 2.65, 0.65, 1.1, -0.2, 0.9, -0.36, 1.07). We used 200
CSO particles to search the design space; we ran the simulation for 10 times in order to
obtain the averaged runtime. We first tested the algorithm on the additive model used in
(Lukemire et al. 2019), and CSO spent 24 seconds on average to find the optimal design,
which is shown in Table 5 and the optimal criterion value is -35.95. This confirms that
CSO has superior capability to find the optimal design efficiently. When testing CSO
on the model with interaction terms, we found a design with an efficiency lower bound
of 99% efficient using around 957 seconds. These efficiency was calculated on 1882384
sampled grid points uniformly drawn from the design space. Table 6 displays the 17-point
locally D-optimal design. Its weight distribution on these points is in the last column and
the criterion value for this design is 7.2562.

Table 5 The 12-point locally D-optimal design for the additive 10-factor car refueling experiment

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 w

-1 -1 -1 -1 50.000 30.000 4.200 48.000 0.125 5.000 0.091
-1 -1 -1 -1 50.000 30.000 10.000 48.000 0.125 8.570 0.091
-1 -1 -1 -1 50.000 30.000 10.000 45.680 0.125 5.000 0.091
-1 -1 -1 -1 54.640 30.000 10.000 48.000 0.125 5.000 0.091
-1 -1 -1 -1 50.000 32.900 10.000 48.000 0.125 5.000 0.091
-1 -1 -1 -1 50.000 30.000 10.000 48.000 0.125 5.000 0.081
-1 -1 -1 -1 50.000 30.000 10.000 48.000 0425 5.000 0.077
-1 -1 -1 1 50.000 30.000 10.000 48.000 0.125 5.000 0.091
-1 -1 1 1 50.000 30.000 10.000 48.000 0.125 5.000 0.091
-1 1 1 -1 50.000 30.000 10.000 48.000 0.125 5.000 0.091
1 -1 -1 -1 50.000 30.000 10.000 48.000 0.125 5.000 0.075
1 -1 -1 -1 50.000 30.000 10.000 48.000 0425 5.000 0.004

The vector of nominal values for the model parameters is 8

= (3.0,05,0.75,1.25,0.8,0.5,0.8, =0.4, —1.00, 2.65, 0.65)

Page 12 of 17
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Table 6 The 17-point locally D-optimal design for the 10-factor car refueling experiment with two
and three factor interactions

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 w

1 -1 -1 -1 50.000 30.000 0.026 31.494 0.125 5.000 0.062
1 -1 1 -1 90.000 30.000 0.285 18.000 0425 5.000 0.063
1 -1. 1 -1 90.000 37.342 0.000 47.999 0425 15.000 0.061
1 -1 1 1 68.511 55.000 0.209 29.239 0425 15.000 0.062
1 1 -1 -1 90.000 30.000 0.085 28.026 0.125 15.000 0.062
1 1 -1 -1 90.000 31.591 0.000 34.269 0425 5.000 0.062
1 1 1 -1 50.000 55.000 0.000 33014 0.125 5.000 0.062
-1 -1 -1 -1 50.000 36.649 0.000 48.000 0425 15.000 0.061
-1 -1 -1 -1 90.000 55.000 0.025 48.000 0425 5.000 0.062
-1 -1 -1 -1 90.000 55.000 0.091 36.073 0.125 15.000 0.061
-1 -1 -1 1 75.860 30.000 0.363 18.000 0.125 15.000 0.063
-1 -1 1 -1 50.000 55.000 0.007 36.516 0.125 15.000 0.062
-1 -1 1 -1 90.000 30.000 0.029 38.137 0425 15.000 0.020
-1 -1 1 -1 90.000 30.000 0.000 45.986 0.125 5.000 0.060
-1 1 -1 -1 50.000 30.000 0.000 34471 0.125 15.000 0.057
-1 1 -1 1 67477 30.000 0.070 48.000 0.125 15.000 0.063
-1 1 1 -1 50.000 30.000 0.011 18.361 0425 15.000 0.056

The vector of nominal values for the model parameters is 9" = (3.0,0.5,075,1.25,0.8,05,0.8,—0.4, —1.00,2.65,0.65,1.1,
—0.2,0.9,—-0.36,1.07)

Bayesian optimal designs for biomedical studies

Bayesian optimal designs incorporate prior knowledge of the model parameters at the
design stage. The prior knowledge usually comes in the form of a probability density
function for the parameters and is averaged out by numerical integration before an
optimization scheme is applied to find the optimal design. Because the integration and
optimization spaces can be very different objects, each with varying magnitude, finding a
Bayesian optimal design in a high dimensional problem can be very challenging. Here, we
show that PSO is a promising tool for finding Bayesian D-optimal designs for Exponential
models which are commonly used in pharmacokinetic/pharmacodynamic studies.

In HIV studies, Exponential models are frequently used to characterize viral load
changes with time after administration of a potent inhibitor of HIV-1 protease in vivo
(Perelson et al. 1996). Derived from a series of ordinary differential equations that
describes the virus change in different compartments, the model is a good representation
of longitudinal HIV dynamics. The important parameters in such a model include virus
clearance rate and infected cell life span (Wu and Ding 1999). Some analytic locally opti-
mal designs and Bayesian optimal designs are available for the Exponential models (Han
and Chaloner 2003; Dette and Neugebauer 1997).

This section describes how to use prior information to study drug effect and understand
the longitudinal viral dynamics. A well thought out design to draw plasma samples from
patients to measure the HIV-1 RNA copies is essential for estimating the model param-
eters accurately. Han (2003)(Han and Chaloner 2003) provides some simple but useful
models:

Y; = Pre % 4 ¢ (10)

Y; =Py + Pre™%% + ¢ (11)
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and
Y; = log (Po + Pre %) + €. (12)

Here Yj is the viral load at time #; and the sampling times are ¢; € [£in, tmax] < [0,60].
Both ¢,,;,, and £, are pre-selected and refer, respectively, to the minimum and maximum

time where observations can be taken. We have ¢; ud N(0,52) and the model parameters
we wish to estimate are Py, P; and § (all > 0). Following (Han and Chaloner 2003), the
prior densities for Py, P; are both uniform [0.5, 1.5], and for § is uniform [0.9, 1.1]. Addi-
tionally we use a different specification for model 12 with the usual Py and P; but with § ~
uniform [0, 0.2]. We call the former specification model 12-1 and the latter model 12-2
and try to compare the properties of Bayesian optimal designs under different specifica-
tions. The priors can be quite flexible and they do not have to be independent. The above
three models are simplified Exponential regression models with two to three parameters,
and one can easily extend to the models with more parameters based on the disease stages.
Specifically, model 12 describes the trajectory of plasma HIV RNA level under antiviral
treatment (Wu and Ding 1999); model 10 and 11 are special cases when Py is treated as a
nuisance parameter.

Similarly, we set PSO tunning parameters as ¢; = ¢ = 2, w =0.9 (Shi and Eberhart
1998) and use 40 particles and 1000 iterations. We use 1000 Monte Carlo samples to com-
pute the numerical integral in the objective function (Eq. 2). Other numerical integration
techniques such as Gaussian quadrature or sparse grid can be used to confirm the accu-
racy of the numerical integration. Table 7 provides the PSO found designs for different
models.

The sensitivity function plots of the four PSO generated designs are shown in Figs. 4
and 5, below and they all confirm that the designs are Bayesian optimal. The plots suggest
that the design remains optimal if ¢ = 14 instead of £,,,,. We note that changing prior
specifications considerably changes the optimal design. For example, when we compare
model 12-2 with model 12-1, we observe that the locations of the support points and
the number of support points also change. The optimal design for model 12-2 requires
4 support points compared to 3 support points for model 12-1. Moreover, the optimal
design support points for model 12-2 are more dispersed, and include middle and end
time points, whereas the optimal design support points for model 12-1 are concentrated
in the earlier time. As is shown in Fig. 6, the differences in designs might be attributed to
the fact that larger § value in Eq. 12 flatten out responses quickly, and design points drawn
at earlier time points are critical in providing insights on the exponential decay rate. On
the contrary, the small § value response curve decays smoothly, and later time points
are still on the decreasing curve so that more information can be obtained by allocating
design points sparsely.

Table 7 Designs found by PSO for the Exponential regression models

Model # Model parameters Design (time, weight)

10 2 ((0,1/2),(1.01,1/2))

11 3 ((0,1/3),(1,1/3), (tmax, 1/3))

12-1 3 ((0,1/3),(1.27,1/3), (tmax, 1/3))

12-2 3 ((0,0.32),(10.17,0.28), (28.30, 0.10), (60, 0.30))
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Fig. 6 Mean response curves of model 12 with § fixed at 1 (left) and 0.1 (right), using mean values of the
parameters
Discussion

Constructing efficient designs is critical to best use the data to reach reliable estima-
tions. One potential issue in constructing high-dimensional or Bayesian designs is that
the computational time will increase when the model becomes large and the number of
the design points increases. Even for a simple linear additive model with 20 factors and
21 design points, the dimension of the optimal design problem is 20 x 21 4 20 = 440.
To solve this constrained optimization problem, PSO has to optimize 440 variables. Con-
sequently there is high computational costs. Fortunately, parallel computing techniques
can be applied to accelerate the computations. Hung and Wang (2012) proposed a GPU-
accelerated PSO (GPSO) algorithm by using a thread pool model and implemented GPSO
on a Graphic Processing Unit (GPU). The authors demonstrated that the proposed GPSO
can significantly reduce the computational burden with satisfactory parallel efficiency.
Likewise, (Chen et al. 2013) proposed a discrete PSO approach, named LaPSO, to search
for an optimal Latin hypercube design. The authors accelerated LaPSO by using GPU and
showed that the GPU implementation can save computational time significantly for large
optimization problems. We expect that the programs in this article can also be acceler-
ated on parallel computers such as GPU. The parallelization will likely produce computing
tools with faster response time and better user experience.

There are continuing challenging problems in our work. We do not claim we are able
to find all types of optimal designs in a regression setup using the types of algorithms we
proposed here. We point out a few of these problems:

¢ we have experiences with metaheuristic algorithms that work well for some nominal
values for a model but not for other nominal values; similarly, the same algorithm
may not work well when the design space is changed, and especially when it is
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enlarged. These are likely scaling problems that our current work is trying to address
and understand.

e confirming optimality of a generated design remains a challenge because it is difficult
to appreciate interesting features in a high dimensional plot. An alternative is to find
its efficiency lower bound, which amounts to solving another high-dimensional
optimization problem to find the maximal value of the sensitivity function. This
means that the metaheuristic algorithm has to be applied twice or find another more
appropriate metaheuristic algorithm to solve this second optimization problem.

e as the number of explanatory factors in the model increases, so is the number of
variables we need to optimize. For example, in the 10-factor car-refueling example,
CSO fails to find a locally D-optimal design when the model includes all two-factor
interaction terms and some three-factor interaction terms. Currently, the best design
found by CSO seems to have a D-efficiency of about 82%. Clearly, some further
enhancements of the metaheuristic algorithms may be needed. Hybridization to
combine one or two more algorithms with CSO may also improve performance.

Summary

Our main contributions in this paper are 1) use PSO and its variants to find optimal
designs for high-dimensional and Bayesian models; and 2) the creation of online tools
for practitioners to generate different types of tailor made optimal designs for their prob-
lems. Web based tools can be very valuable to help practitioners make informed decisions
on the study design. For instance, a successful website is the one housed in Houston at
https://biostatistics.mdanderson.org/SoftwareDownload/, where an array of software is
available for download to find many types of adaptive Bayesian designs for Phase I and II
trials. It has more than 17,000 downloads to date indicating a high demand of such tools
in practice. Some of our PSO codes for stand alone programs are in MATLAB, where the
user can download to make changes, when necessary, for their problems. This website
allows practitioners to compare designs and arrive at an informed decision on the choice
of the design to implement.

We have applied PSO and its variants to search for Bayesian optimal designs and high-
dimensional models. These are challenging tasks as they involve scaling problems and
multiple integration over different types of parameter spaces. While such algorithms do
not perform integration per se, they can be cleverly hybridized with effective tools for
integration purposes to find these hard to find Bayesian optimal designs. Our current
work includes hybridizing PSO or its variants with sparse grid algorithm and results are
promising.

We close with a cautionary note that an optimal design should not be used religiously
but should serve as a guide or benchmark. This is because the optimal design is found
under a fixed set of assumptions that may not adequately reflect reality and so may not
satisfy the needs of the practitioners. Different optimal designs under various settings
should be compared carefully before the design is implemented. The guiding principle
is that the implemented design should not stray too far from the optimum as measured
by its efficiency relative to the optimum. PSO facilitates search for an efficient design,
calculates an efficiency lower bound and compares competing designs. Our hope is that
the practitioners are more informed of such algorithms and the availability of them on
websites will help them implement more efficient designs.
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