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Abstract

The eigenvalue distributions from a complex noncentral Wishart matrix S = XHX has
been the subject of interest in various real world applications, where X is assumed to
be complex matrix variate normally distributed with nonzero meanM and covariance
�. This paper focuses on a weighted analytical representation of S to alleviate the
restriction of normality; thereby allowing the choice of X to be complex matrix variate
elliptically distributed for the practitioner. New results for eigenvalue distributions of
more generalised forms are derived under this elliptical assumption, and investigated
for certain members of the complex elliptical class. The distribution of the minimum
eigenvalue enjoys particular attention. This theoretical investigation has proposed
impact in communications systems (where massive datasets can be conveniently
formulated in matrix terms), in particular the case where the noncentral matrix has rank
one which is useful in practice.
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Introduction
Communications systems with multiple-input-multiple-output (MIMO) design have
become very popular since they allow higher bit rate and because of their applications in
the analysis of signal-to-noise ratio (SNR). The literature of research on MIMO systems
insists on MIMO systems to be modelled using complex matrix variate distributions (see
Ratnarajah and Vaillancourt (2005); Bekker et al. (2018); Ferreira et al. (2020)), in par-
ticular due to the flexibility these distributions provide in terms of the massive amounts
of data that springs forth from these MIMO systems. He et al. (2016) in particular men-
tions the unification of random matrix theory (RMT) models, and draws a comparison
between such unified models and so-called big data analytics. The authors make spe-
cific mention to one of the foundations of big data analytics in communications systems,
namely matrix analysis. Zhang and Qui (2015) and He et al. (2018) also have thoughts on
the implementation and use of large RMT as building blocks to model the massive (big)
data arising frommassive MIMO systems, mentioning several benefits to the use of RMT
in this regard.
In a practical sense, let X denote the channel propagation matrix in a MIMO channel

context, with n “inputs” and p “outputs”, colloquially referred to as “receivers” and “trans-
mitters” respectively. Usually, the coefficients of X are assumed to be complex matrix
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variate normally distributed, and1 E (X) = 0, which reflects the standard i.i.d. Rayleigh
fading assumption. However, in practice MIMO channels don’t always exhibit this, stem-
ming from a line-of-sight connection between the transmitters and receivers (Kang and
Alouini 2006; Zhou et al. 2015; Jayaweera and Poor 2003) motivates the channel matrix
X to be modelled having non-zero mean, to account for environments with strong line-
of-sight paths between transmitters and receivers. In order to encompass all channel
characteristics, Taricco and Riegler (2011) suggests employing correlated Rician fading
models - which directly pertains to modeling X with a non-zero mean. It is with these
thoughts in mind that this paper assumes E (X) = M �= 0.
When evaluating different performance measures of MIMO systems, the complex

channel coefficients have been taken to be complex matrix variate normal distributed
so far. de Souza and Yacoub (2008) stated that the Rayleigh probability density func-
tion (pdf) (assumed within a signal fading environment) is a consequence based on the
assumption from the central limit theorem for large number of partial waves, the resul-
tant process is decomposed into two orthogonal zero-mean and equal standard deviation
normal random processes. This is an approximation and the restriction of complex nor-
mal is restrictive as it is not always a large number of interfering signals. Thus a more
general assumption than complex matrix variate normal may not be that far from reality
(see also Ollila et al. (2011)). This paper challenges this assumption of a channel being fed
by normal inputs, and sets the platform for introducing previously unconsidered models
to the MIMO communications systems domain. Indeed, He et al. (2016) and Qiu (2017)
explicitly asks what the consequences of analyses are when the entries of X is not normal.
The contribution of the work in this paper aims to assist answering this question.
The Wishart distribution emanating from the underlying complex normal channel

matrix X is of particular interest, and has been studied to a wide extent in literature (see
for example, James (1964); Gupta and Varga (1995); Ratnarajah and Vaillancourt (2005)).
However, Choi et al. (2007) discussed the viable and necessary contribution of the com-
plex matrix variate t distribution as assumption for the underlying channel matrix. This
paper focus on2 S = XHX, but from a generalized view of assuming3 X ∈ C

n×p
1 to be

the complex matrix variate elliptical distribution, to address the criticism against the
questionable use of the normal model. This complex matrix variate elliptical distribution
contains the well-studied complex matrix variate normal distribution as a special case,
but enjoys the flexibility to have different members which may serve as alternatives for
the well-studied normal case. The complex matrix variate t- and slash distributions are
also members of the complex elliptical class and bear close resemblance and familiar-
ity to the well-studied normal case; with this notion, results pertaining to the underlying
complex channel matrix distributed according to these distributions are presented. The
distribution under consideration, that is, the distribution of S, is referred to as a complex
noncentral Wishart type distribution.
He et al. (2016, 2018) mentions a crucial point of consideration for big data analytics is

the “big” data matrix (in this case,X, or effectively S), and the study of its eigenvalues. The
distribution of the minimum eigenvalue of the noncentral Wishart type distribution is
thus investigated and expressions for the corresponding cumulative distribution functions
(cdfs) derived. The distribution for the minimum eigenvalue from a noncentral Wishart
form is crucial for the design and analysis of certain specialisedMIMO systems (see Heath
and Love (2005); Dharmawansa and McKay (2011)). For computational convenience the
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focus is onmatrices with rank one noncentral matrix parameter. The low rank assumption
is reportedly well modelled in practice (see Hansen and Bolcskei (2004)), and allows for
tractable expressions in implementable computation of the derived results.
The paper is organized as follows. “Complex noncentral Wishart type” section con-

tains some preliminary results required for the derivations in this paper. The main results
relating to the distribution of the complex noncentral Wishart type distribution are also
derived and some particular cases highlighted. In “Minimum eigenvalue cds under rank
one noncentrality” section the cdf of the minimum eigenvalue of the newly derived
distributions is presented with special cases. Numerical experiments are discussed in
“Numerical experiments” section, followed by some conclusions.

Complex noncentral Wishart type
In this section, the definition of the complex matrix variate elliptical distribution is pre-
sented, along with the lemma useful for the construction of the complex matrix variate
elliptical model. Subsequently the derived complex noncentral Wishart type distribution
is presented along with the corresponding joint eigenvalue distribution. Some particular
cases, which is of interest for the practitioner, are highlighted.
The complexmatrix variate elliptical distribution, which contains the well-studied com-

plex matrix variate normal distribution as a special case, is defined next (see Bekker et al.
(2018); Ferreira et al. (2020)).

Definition 1 The complex matrix variate X ∈ C
n×p
1 , whose distribution is absolutely

continuous, has the complex matrix variate elliptical distribution with parameters M ∈
C
n×p
1 , � ∈ C

n×n
2 , � ∈ C

p×p
2 , denoted by X ∼ CEn×p(M,� ⊗ �,g), if it has the following

pdf4:

h(X) = 1
(det�)p (det�)n

g
[−tr

(
�−1(X − M)H�−1(X − M)

)]
(1)

with g (·) a generator function.

Chu (1973) and Gupta and Varga (1995) demonstrates that real elliptical distributions
can always be expanded as an integral of a set of normal pdfs. We report the result by
Provost and Cheong (2002) as a useful lemma, defining the complex matrix variate ellipti-
cal distribution as a weighted representation of complex matrix variate normal pdfs. This
representation can be used to explore the distribution of S when the distribution of X can
be that of any member of the complex matrix variate elliptical class.

Lemma 1 If X ∼ CEn×p(M,� ⊗ �, g) with pdf h(X) (see (1)), then there exists a scalar
weight functionW(·) on5 R+ such that

h(X) =
∫

R+
W(t)fCNn×p(M,�⊗t−1�)(X|t)dt (2)

where X|t ∼ CNn×p
(
M,�⊗t−1�

)
has the complex normal distribution with pdf (see

James (1964))

fCNn×p(M,�⊗t−1�)(X|t) = 1
πpn det (�)p det

(
t−1�

)n etr
[− (t�−1(X − M)H�−1(X − M)

)]

(3)
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and the weight functionW(·) is given by

W(t) = πnpt−npL−1 {g
[−tr

(
�−1(X − M)H�−1(X − M)

)]}

where L is the Laplace transform operator.

Three special cases of the complex matrix variate elliptical model are of interest in this
paper.

1 Firstly, the complex random matrix X ∈ C
n×p
1 has the complex matrix variate

normal distribution with weight functionW(·) in Lemma 1 given by

W(t) = δ(t − 1) (4)

where δ(·) is the dirac delta function.
2 Secondly, X ∈ C

n×p
1 has the complex matrix variate t distribution (see Provost and

Cheong (2002)) with the parametersM ∈ C
n×p
1 , � ∈ C

n×n
2 , � ∈ C

p×p
2 and degrees

of freedom v > 0, denoted by X ∼ Ctn×p(M,� ⊗ �, v), with pdf

f (X) = vnpC� (np + v)
πnpC�p(v)

{
1 + 1

v
tr
(
�−1(X − M)H�−1(X − M)

)
}−(np+v)

where C�p(a) denotes the complex multivariate gamma function 6, and �(·)
denotes the usual gamma function. In this case the weight functionW(·) in
Lemma 1 is given by

W(t) =
( v
2
) v
2

�( v2 )
t
v
2−1e−t v2 . (5)

3 Thirdly, X ∈ C
n×p
1 has the complex matrix variate slash distribution (see Lachos

and Labra (2014)) with the parametersM ∈ C
n×p
1 , � ∈ C

n×n
2 , � ∈ C

p×p
2 and shape

parameter b > 0, denoted by X ∼ Csn×p(M,� ⊗ �, b), with pdf

f (X) =
1∫

0

btb−1fCNn×p(M,�⊗t−1�)(X|t)dt

In this case the weight functionW(·) in Lemma 1 is given by

W(t) = btb−1. (6)

The case where � = In is of particular interest (in Lemma 1). Hence, � represents the
covariance structure of the columns of the random matrix variate X , in other words, the
covariance structure of the transmitters. Subsequently, the complex noncentral Wishart
type distribution is derived (the proof is contained in the Appendix).

Theorem 1 Suppose that X ∈ C
n×p
1 (n ≥ p) is a random matrix distributed as

CEn×p(M, In⊗�, g). Then S = XHX ∈ C
p×p
2 has a complex noncentral Wishart type

distribution with pdf

f (S) = det (S)n−p

C�p(n) det (�)n

×
∫

R+
tnpetr

(−t
(
�−1S + �

))
0F1

(
n; t2��−1S

)
W (t) dt (7)
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where �= �−1MHM denotes the noncentral matrix parameter and 0F1 (·) denotes the
complex hypergeometric function of matrix argument (see Constantine (1963)). This
distribution is denoted by S ∼ISCWp (n,M, In⊗�) (Integral Series of Complex Wishart).

Remark 1 Suppose thatM = 0. Then � = 0, and the pdf (7) simplifies to

f central (S) =
∫

R+

det (S)n−p etr
(
− (t−1�

)−1 S
)

C�p(n) det
(
t−1�

)n W (t) dt, (8)

S ∈ C
p×p
2 , which reflects the distribution as in Ferreira et al. (2020), eq. 2.2.

Remark 2 The complex noncentral Wishart type distribution (see (7)) can be written in
terms of the complex central Wishart type distribution:

f (S) =
∫

R+
f central (S) etr (−t�) 0F1

(
n; t2��−1S

)
W (t) dt,

where f central (S) denotes the pdf of the central complex Wishart type distribution (see (8)).

Special cases of the distribution in (7) are highlighted next.

1 By choosingW (t) as the dirac delta function (4), (7) simplifies to

f (S) = det (S)n−p

C�p(n) det (�)n
etr
(− (�−1S + �

))
0F1

(
n;��−1S

)

where S ∈ C
p×p
2 , which is the complex matrix variate normal distribution as in

James (1964).
2 By choosingW (t) as the t distribution weight (5), expanding the complex

hypergeometric function per definition7 (see Constantine (1963)),
and using Gradshteyn and Ryzhik (2007), p. 815, eq. 7.522.9, eq. 7.525.1,
(7)simplifies to
f (S)

=
( v
2
) v
2

�( v2 )

det (S)n−p

C�p(n) det (�)n

∞∑

k=0

∑

κ

Cκ

(
��−1S

)

k! [n]κ

∫

R+
tnp+

v
2+2k−1 exp

[
−ttr

(
�−1S + �+ v

2

)]
dt

=
( v
2
) v
2

�( v2 )

det (S)n−p

C�p(n) det (�)n

∞∑

k=0

∑

κ

Cκ

(
��−1S

)

k! [n]κ
�
(
np + v

2 + 2k
)

(
tr
(
�−1S + �+ v

2
))np+ v

2+2k

where S ∈ C
p×p
2 .

3 Similarly, by choosingW (t) as the slash distribution weight (6), expanding the
complex hypergeometric function per definition, and using Gradshteyn and Ryzhik
(2007), p. 346, eq. 3.381.1, (7) simplifies to

f (S) = b det (S)n−p

C�p(n) det (�)n

∞∑

k=0

∑

κ

Cκ

(
��−1S

)

k! [n]κ

1∫

0

tnp+b+2k−1 exp
[−ttr

(
�−1S + �

)]
dt

= b det (S)n−p

C�p(n) det (�)n

∞∑

k=0

∑

κ

Cκ

(
��−1S

)

k! [n]κ
γ
(
np + b + 2k, tr

(
�−1S + �

))

tr
(
�−1S + �

)np+b+2k

where γ (·, ·) denotes the lower incomplete gamma function (see Gradshteyn and
Ryzhik (2007), p. 899, eq. 8.350.1), and S ∈ C

p×p
2 .
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Eigenvalue distributions arising from complexWishart randommatrices are of interests
in a variety of fields, especially in the case of wireless communications (see Dharmawansa
andMcKay (2011) and references therein). Expressions for the joint pdf of the eigenvalues
of S (see (7)) and some special cases are derived (the proof is contained in the Appendix).
Note that the ordered eigenvalues of S is denoted by λ1 > λ2 > ... > λp > 0 . The ordered
eigenvalues of the noncentral matrix parameter � is denoted by μ1 > μ2 > ... > μp > 0.

Theorem 2 Suppose that S ∈ C
p×p
2 is distributed with pdf (7), and let λ1 > λ2 >

... > λp > 0 represent the ordered eigenvalues of S. Then the eigenvalues of S, � =
diag

(
λ1, λ2, ..., λp

)
, has joint pdf

f (�) =
πp(p−1)

(
p∏

k<l
(λk − λl)

2

)

det (�)n−p

C�p(p)C�p(n) det (�)n

∫

R+
tnpetr (−t�) (9)

×
∫

E∈U(p)

etr
(−t�−1E�EH)

0F1
(
n; t2��−1E�EH) dEW (t) dt

where� denotes the noncentral matrix parameter, and U (p) denotes the unitary manifold
(see Appendix).

In the following corollary, particular attention is given to the case when � =σ 2Ip. This
assumption is meaningful within theMIMOparadigm, when the practitionermay assume
that the transmitters are sufficiently spatially far from each other, so that an assumption
of independence can be made (see also Kang and Alouini (2006)) (the proof is contained
in the Appendix).

Corollary 1 Suppose that S ∈ C
p×p
2 is distributed with pdf (7), and let λ1 > λ2 > ... >

λp > 0 represent the ordered eigenvalues of S. Furthermore suppose that � =σ 2Ip. Then
the eigenvalues of S, � = diag

(
λ1, λ2, ..., λp

)
, has joint pdf

f (�)

= πp(p−1)

((n − p) ! )p

(
p∏

k<l
(λk − λl)

)

det (�)n−p

(
p∏

k<l
(μk − μl)

)

σ 2np−p2+1

∫

R+
tnp−p2+1etr

(−t
(
�+σ−2�

))

× det
(
0F1

(
n − p + 1; t2σ−2μjλi

))
W (t) dt

= πp(p−1)

((n − p) ! )p
K (�)

∫

R+
tnp−p2+1etr

(−t
(
�+σ−2�

))

× det
(
0F1

(
n − p + 1; t2σ−2μjλi

))
W (t) dt (10)

where � ∈ C
p×p
2 denotes the noncentral matrix parameter, 0F1 (·; ·) denotes the confluent

hypergeometric function of scalar argument, and where
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K (�) =

(
p∏

k<l
(λk − λl)

)

det (�)n−p

(
p∏

k<l
(μk − μl)

)

σ 2np−p2+1

. (11)

For interest, special cases of the distribution in (10) are highlighted next.

1 By choosingW (t) as the dirac delta function (4), observe from (10) and (11) that

f (�) = πp(p−1)

((n − p) ! )p
K (�) etr

(− (�+σ−2�
))
det

(
0F1

(
n − p + 1; σ−2μjλi

))
.

When σ 2 = 1, this result simplifies to p. 41, eq. 2.52 of McKay (2006).
2 By choosingW (t) as the t distribution weight (5) and using (11), (10) simplifies to

f (�) =
( v
2
) v
2 πp(p−1)

�( v2 ) ((n − p) ! )p
K (�)

×
∫

R+
tnp−p2+ v

2+1etr
(
−t
(
�+σ−2�+ v

2

))

× det
(
0F1

(
n − p + 1; t2σ−2μjλi

))
dt.

3 By choosingW (t) as the slash distribution weight (6) and using (11), (10)
simplifies to

f (�) = bπp(p−1)

((n − p) ! )p
K (�)

×
1∫

0

tnp−p2+betr
(−t

(
�+σ−2�

))
det

(
0F1

(
n − p + 1; t2σ−2μjλi

))
dt.

Suppose now the noncentral matrix� has L ≤ p non-zero eigenvalues, thus, rank (�) =
L ≤ p. For the case � =σ 2Ip, the joint pdf of eigenvalues of S, � = diag

(
λ1, λ2, ..., λp

)
, is

presented in the following theorem (the proof is contained in the Appendix 1).

Theorem 3 Suppose that S is distributed with pdf (7), and let λ1 > λ2 > ... > λp > 0
represent the ordered eigenvalues of S ∈ C

p×p
2 . Furthermore suppose that � =σ 2Ip, and

that � has arbitrary rank L < p with eigenvalues μ1 > μ2 > ... > μL > 0. Then the
eigenvalues of S, � = diag

(
λ1, λ2, ..., λp

)
, has joint pdf

f (�) =
πp(p−1)

(
p∏

k<l
(λk − λl)

)

det (�)n−p

((n − p) ! )p
(

L∏

k<l
(μk − μl)

)( L∏

i=1
μ
p−L
i

)
C�p−L(p − L)σ 2np−p2+1

×
∫

R+
tnp−p2+1etr

(−t
(
�+σ−2�

))
det (T)W (t) dt

where � denotes the noncentral matrix parameter, and where T is a p × p matrix with
(
i, j
)th entry

{T}i,j =
⎧
⎨

⎩
0F1

(
n − p + 1; t2σ−2μiλj

)
i = 1, . . . , p j = 1, . . . , L

(t2λi)
k
(n−p)!

(n−p+k)! i = 1, . . . , p j = L + 1, . . . , p
. (12)
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Minimum eigenvalue cdf under rank one noncentrality
The distribution of the minimum eigenvalue from a complex Wishart random matrix is
important in certain MIMO designs (see Heath and Love (2005)), and is thus of interest
here. For computational convenience, we assume that the noncentral matrix has rank one;
thus ��−1 ∈ C

p×p
1 has rank one and is represented via its eigendecomposition as

��−1 = μγγH (13)

where γ ∈ C
p×1
1 and γHγ =1 (see also (Dharmawansa and McKay 2011)). In (13), μ

denotes the single eigenvalue of ��−1. The following contributions are made in this
section:

• The derivation of the exact cdf of the minimum eigenvalue of
S = XHX ∼ISCWp (n,M, In⊗�) for the case when X ∈ C

n×p
1 , X ∈ C

n×n
1 , and

X ∈ C
n×2
1 , and assuming ��−1 ∈ C

p×p
1 has rank one; and

• Exact results of the minimum eigenvalue of S as described, for the special cases of (4),
(5), and (6).

To derive the cdf of the minimum eigenvalue of S ∈ C
p×p
2 under this assumption, the

following approach is employed:

Fmin (y) = 1 − P (λmin (S) > y) .

Knowing that

P (λmin (S) > y) = P
(
S > yIp

)

the cdf of the minimum eigenvalue can be found using (7) directly, therefore avoid-
ing cumbersome derivations and computations of deriving the joint eigenvalue pdfs and
subsequently marginal distributions with pdfs like (9).
For the complex noncentral Wishart type distribution with pdf (7), the cdf of the

minimum eigenvalue is derived next (the proof is contained in the Appendix 1).

Theorem 4 Suppose that X ∈ C
n×p
1 is distributed as CEn×p(M, In⊗�, g), where

M ∈ C
n×p
1 has rank one, and S = XHX ∼ISCWp (n,M, In⊗�) with pdf (7).

The cdf of λmin (S) is given by

Fmin (y) = 1−
∫

R+
ynp

etr (−t�) etr
(−ty�−1)

C�p(n) det (�)n

∞∑

k=0

k∑

r=0

tnp+2k (yμ)k

k! (n)k

(
k
r

)
Qr

n,p,t (y)W (t) dt

(14)

where y > 0, � denotes the noncentral matrix parameter, and

Qr
n,p,t (y) =

∫

Y

det
(
Ip+Y

)n−p etr
(−ty�−1Y

)
trr
(
γ γHY

)
dY (15)

where Y ∈Cp×p
2 .

As before, special cases of the distribution in (14) are highlighted next.

1 By choosingW (t) as the dirac delta function (4), (14) simplifies to the result by
Dharmawansa and McKay (2011).
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2 By choosingW (t) as the t distribution weight (5), observe from (14) that

P (λmin (S) > y)

=
( v
2
) v
2

�( v2 )

∫

R+
ynp

etr
(−t

(
� + v

2
))
etr
(−ty�−1)

C�p(n) det (�)n

∞∑

k=0

k∑

r=0

tnp+2k+ v
2 (yμ)k

k! (n)k

(
k
r

)
Qr

n,p,t (y) dt

= I1

whereQr
n,p,t (y) is given by (15). Thus Fmin (y) = 1 − I1.

3 By choosingW (t) as the slash distribution weight (6), observe from (14) that

P (λmin (S) > y)

= b
1∫

0

ynp
etr (−t (�)) etr

(−ty�−1)

C�p(n) det (�)n

∞∑

k=0

k∑

r=0

tnp+2k+b (yμ)k

k! (n)k

(
k
r

)
Qr

n,p,t (y) dt

= I2

whereQr
n,p,t (y) is given by (15). Thus Fmin (y) = 1 − I2.

The following result gives the exact minimum eigenvalue distribution for n×n complex
noncentral Wishart type matrices with n degrees of freedom (the proof is contained in
the Appendix).

Theorem 5 Suppose that X ∈ C
n×n
1 is distributed as CEn×n(M, In⊗�, g), where M ∈

C
n×n
1 has rank one, and S = XHX ∼ISCWn (n,M, In⊗�) with pdf (7). The cdf of λmin (S)

is given by

Fmin (y) = 1 −
∫

R+
etr (−t�) etr

(−ty�−1)
∞∑

j=0

(
yt2μ

)j

j! (n)j
1F1

(
n; n + j, ttr�

)
W (t) dt

(16)

where 1F1 (·) denotes the confluent hypergeometric function (see Gradshteyn and Ryzhik
(2007), p. 1010, eq. 9.14.1).

Remark 3 See that (27) can also be expressed as

∞∑

k=0

k∑

r=0

(
yt2μ

)k

k! (n)k

(
k
r

)
(n)r

(
1

μty

)r (
trr�

) = �3
(
n, n, ttr�,yt2μ

)

where �3 (·) denotes the Humbert confluent hypergeometric function of two variables (see
Bateman and Erdélyi (1953), p. 225, eq. 5.7.1.22). Thus (16) can be written as

Fmin (y) = 1 −
∫

R+
etr (−t�) etr

(−ty�−1)�3
(
n, n, ttr�,yt2μ

)
W (t) dt.

Special cases of the distribution in (16) are highlighted next.

1 By choosingW (t) as the dirac delta function (4), (16) simplifies to the result by
Dharmawansa and McKay (2011).
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2 By choosingW (t) as the t distribution weight (5) and by applying Gradshteyn and
Ryzhik (2007), p. 815, eq. 7.522.9, from (16) it follows:

Fmin (y) = 1−
( v
2
) v
2

�( v2 )

∞∑

j=0

(yμ)j

j! (n)j

�
(
v + 2j

)

(
tr
(
y�−1 + �+ v

2
)) v

2+2j ×2F1

(

n, v + 2j; n + j,
tr�

tr
(
y�−1 + �+ v

2
)

)

(17)

where 2F1 (·) denotes the Gauss hypergeometric function (see Gradshteyn and
Ryzhik (2007), p. 1010, eq. 9.14.2).

3 By choosingW (t) as the slash distribution weight (6), observe from (16) that:

Fmin (y) = 1 − b
∞∑

j=0

(yμ)j

j! (n)j

1∫

0

etr
(−t

(
�+y�−1)) tb+2j−1

1F1
(
n; n + j, ttr�

)
dt. (18)

The following result gives the exact minimum eigenvalue distribution for 2×2 complex
noncentral Wishart type matrices with arbitrary degrees of freedom. Scenarios of this
2×2 nature has been investigated in the literature for both exemplary- as well as practical
reasons (see Ratnarajah and Vaillancourt (2005), for example) (the proof is contained in
the Appendix 1).

Theorem 6 Suppose that X ∈ C
n×2
1 is distributed as CEn×2(M, In⊗�, g), where M ∈

C
n×2
1 has rank one, and S = XHX ∼ISCW2 (n,M, In⊗�) with pdf (7). Thus, S is a 2 × 2

complex noncentral Wishart type matrix with arbitrary degrees of freedom n. The cdf of
λmin (S) is given by

Fmin (y) = 1−
∫

R+

etr (−t�) etr
(−ty�−1)

C�2(n) det (�)n−2

∞∑

k=0

k∑

r=0

(
yt2μ

)k

k! (n)k

(
k
r

)(
tr (�)

ytμ

)r
ρ (r, y, t)W (t) dt

(19)

with

ρ (r, y, t)

=
n−2∑

i1=0

i1∑

i2=0

min(i2,r)∑

h=0
(−1)h

(
n − 2
i1

)(
i1
i2

)(
r
h

)
i2! (i1 − i2 + 2)r C�2 (i1 − i2 + 2) (20)

×
(

μ

tr (�)

)h
(det�)i1+

h
2− i2

2 C
i1−i2+2+r
i2−h

(
1
2
tr
(
�−1)√det (�)

)
(ty)2n+i2−2i1−4

where Cv
n (·) denotes the Gegenbauer polynomial (see Gradshteyn and Ryzhik (2007),

p. 991, eq. 8.932.1).

Special cases of the distribution in (19) are highlighted next.

1 By choosingW (t) as the dirac delta function (4), (19) and (20) simplifies to (see
Dharmawansa and McKay (2011)):
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Fmin (y) (21)

= 1 − etr (−�) etr
(−y�−1)

C�2(n) det (�)n−2

∞∑

k=0

k∑

r=0

(yμ)k

k! (n)k

(
k
r

)(
tr (�)

yμ

)r

×
n−2∑

i1=0

i1∑

i2=0

min(i2,r)∑

h=0
(−1)h

(
n − 2
i1

)(
i1
i2

)(
r
h

)
i2! (i1 − i2 + 2)r C�2 (i1 − i2 + 2)

×
(

μ

tr (�)

)h
(det�)i1+

h
2− i2

2 C
i1−i2+2+r
i2−h

(
1
2
tr
(
�−1)√det (�)

)
y2n+i2−2i1−4.

2 By choosingW (t) as the t distribution weight (5), (19) and (20) simplifies using
Gradshteyn and Ryzhik (2007), p. 346, eq. 3.381.4:

Fmin (y)

= 1 −
( v
2
) v
2

�( v2 )

1
C�2(n) det (�)n−2

∞∑

k=0

k∑

r=0

(yμ)k

k! (n)k

(
k
r

)(
tr (�)

ytμ

)r n−2∑

i1=0

i1∑

i2=0

×
min(i2,r)∑

h=0
(−1)h

(
n − 2
i1

)(
i1
i2

)(
r
h

)
i2! (i1 − i2 + 2)r C�2 (i1 − i2 + 2)

(
μ

tr (�)

)h

× (det�)i1+
h
2− i2

2 y2n+i2−2i1−4Ci1−i2+2+r
i2−h

(
1
2
tr
(
�−1)√det (�)

)

× �
(
2n + 2k − r + i2 − 2i1 − 4 + v

2
)

(
tr
(
�+y�−1 + v

2
))2n+2k−r+i2−2i1−4+ v

2
. (22)

3 By choosingW (t) as the slash distribution weight (6), (19) and (20) simplifies using
Gradshteyn and Ryzhik (2007), p. 346, eq. 3.381.1:

Fmin (y) (23)

= 1 − b
C�2(n) det (�)n−2

∞∑

k=0

k∑

r=0

(yμ)k

k! (n)k

(
k
r

)(
tr (�)

ytμ

)r n−2∑

i1=0

i1∑

i2=0

min(i2,r)∑

h=0
(−1)h

(
n − 2
i1

)

(
i1
i2

)(
r
h

)
i2! (i1 − i2 + 2)r C�2 (i1 − i2 + 2)

(
μ

tr (�)

)h
(det�)i1+

h
2− i2

2 y2n+i2−2i1−4

×C
i1−i2+2+r
i2−h

(
1
2
tr
(
�−1)√det (�)

)
γ
(
2n + i2 − 2i1 − 4 − r + 2k + b, tr

(
�+y�−1))

(
tr
(
�+y�−1))2n+i2−2i1−4−r+2k+b .

Numerical experiments
In this section, simulation and analytical results are presented to illustrate the contribu-
tion of the derived results. For the cdfs (16) and (19), the covariance matrix � is assumed
to be given by:
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Table 1 Analytical ((16), (17), and (18)) and simulated values of cdf of λmin (S)

y t, v = 15 Normal Slash, b = 3

Analytical Simulated Analytical Simulated Analytical Simulated

1.6 0.807 0.881 0.931 0.939 0.859 0.803

1.8 0.831 0.906 0.951 0.956 0.888 0.842

2 0.851 0.925 0.965 0.968 0.911 0.866

2.2 0.867 0.938 0.975 0.968 0.928 0.901

2.4 0.881 0.949 0.982 0.968 0.942 0.910

{�}i,j = exp
(

−π3

32
(
i − j

)2
)

where 1 ≤ i, j ≤ p. The mean matrixM is constructed as:

M = aHb

where a ∈ C
1×n
1 and b ∈ C

1×p
1 is given by:

{a}i = exp (2 (i − 1) lπ cos (θ))

{b}j = exp
(
2
(
j − 1

)
lπ cos (θ)

)

where l = √−1, θ = π
4 , and i = 1, ..., n and j = 1, ..., p. These specific constructions

of the covariance and mean matrices are meaningful when modeling practical MIMO
channels with a nonzeromean (see Dharmawansa andMcKay (2011);McKay andCollings
(2005)). Table 1 compares the analytical values of the cdf of λmin (S) where X ∈ C

2×2
1

for the underlying t distribution (see (17)), the underlying slash distribution (see (18))
and the underlying normal distribution (see (21)) with corresponding simulated values
(computed in Matlab R2013a). The tail behaviour of the simulated values relates to those
of its analytical counterparts.
The following figures illustrate the cdfs (16) and (19) for n = 2 and n = 3 respectively,

for the different weight functions under consideration in this paper. In Figs. 1 and 2, it is
observed that (17) and (18) tends to the normal case as the value of v and b respectively
increases - as does (22) and (23).
These figures (Figs. 1 and 2) illustrates the value which the underlying complex matrix

variate elliptical assumption provides the practitioner having the engineering expertise

Fig. 1 Cdf ((16), (17), and (18)) for different values of v = 3, 10 and b = 3, 10 when n = 2 (left), zoomed in
subset on right
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Fig. 2 Cdf ((21), (22), and (23)) for different values of v = 3, 10 and b = 3, 10 when n = 3 (left), zoomed in
subset on right

with. The proposed elliptical platform in this paper allows theoretical, and resultant prac-
tical access to previously unconsidered models; providing flexibility for modeling that
may yield improved fits to experimental data in practice (see Yacoub (2007) for example).

Conclusion
In this paper, exact results were presented for a variety of characteristics pertaining to a
complex noncentralWishart type distribution. In particular, the pdf of a complex noncen-
tral Wishart type matrix S = XHX, where X ∈ C

n×p
1 ∼ CEn×p(M, I ⊗ �, g) and the pdf

of its associated ordered eigenvalues have been derived. Some special cases were investi-
gated, of which the pdf of the eigenvalues when � =σ 2I (which is of practical importance
in communications systems) and the noncentral matrix has arbitrary rank L < p. Sub-
sequently, the exact cdf of the minimum eigenvalue of S was derived for the case when
X ∈ C

n×n
1 , as well as when X ∈ C

n×2
1 . These cdfs were derived under the assumption

that the noncentral matrix has rank one, which is a practical assumption. This theoretical
investigation has proposed impact in big data and communication systems to allow the
practitioner a flexible choice of underlying model for X, and thus S; thereby alleviating
the restricted assumption of normality.

Appendix
Matrix spaces; see Ratnarajah (2003): The set of all n × p (n ≥ p) matrices, E, with
orthonormal columns is called the Stiefel manifold, denoted by CVp,n. Thus CVp,n =
{
E (n × p) ;EHE = Ip

}
. The volume of this manifold is given by

Vol
(
CVp,n

) =
∫

CVp,n

(
EHdE

) = 2pπnp

C�p(n)
.

If n = p then a special case of the Stiefel manifold is obtained, the so-called unitary man-
ifold, defined as CVp,p = {

E (p × p) ;EHE = Ip
} ≡ U (p) where U (p) denotes the group

of unitary p × p matrices. The volume of U (p) is given by Vol (U (p)) = ∫

U(p)

(
EHdE

) =
2pπp2

C�p(p) .
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Complex noncentral Wishart type section proofs

Proof of Theorem 1
From (3), the pdf of X|t follows as
f (X|t) = π−np det

(
t−1�

)−n etr
(− (t�−1)XHX

)
etr
(− (t�−1)MHM

)
etr
(
2
(
t�−1)MHX

)

Let X = ET, where E : n × p ∈ CVp,n such that EHE = Ip and T is an upper triangular
matrix with real and positive diagonal elements. Then S = XHX = THT (the Cholesky
decomposition of S). From Ratnarajah (2003) it thus follows that

f (S,E|t) = 2−pπ−np det
(
t−1�

)−n etr
(− (t�−1) S

)
det (S)n−p

×etr
(− (t�−1)MHM

)
etr
(
2
(
t�−1)MHET

)
.

Subsequently,

f (S|t) =
∫

CVp,n

f (S,E|t) (EHdE
)

= 2−pπ−np det
(
t−1�

)−n etr
(− (t�−1) S

)
det (S)n−p etr (−t�)

×
∫

CVp,n

etr
(
2
(
t�−1)MHET

) (
EHdE

)
.

Using eq. 3.37 from Ratnarajah (2003), see that
∫

CVp,n

etr
(
2
(
t�−1)MHET

) (
EHdE

) = 2pπnp

C�p(n)
0F1

(
n; t2��−1S

)
.

Thus

f (S|t) = det (S)n−p

C�p(n) det (�)n
tnpetr

(−t
(
�−1S + �

))
0F1

(
n; t2��−1S

)

and finally, from (2):

f (S) =
∫

R+
f (S|t)W (t) dt

which leaves the final result.
Proof of Theorem 2
Using eq. 93 of James (1964) and (7), the joint pdf of the eigenvalues λ1 > λ2 > ... >

λp > 0 of S is given by

f (�) =
πp(p−1)

(
p∏

k<l
(λk − λl)

2

)

C�p(p)

∫

E∈U(p)

f
(
E�EH) dE

=
πp(p−1)

(
p∏

k<l
(λk − λl)

2

)

det (�)n−p

C�p(p)C�p(n) det (�)n

∫

R+
tnpetr (−t�)

×
∫

E∈U(p)

etr
(−t�−1E�EH)

0F1
(
n; t2��−1E�EH) dEW (t) dt

which completes the proof.
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Proof of Corollary 1
Substituting � =σ 2Ip into (9) and using James (1964), p. 480, eq. 30, observe that

f (�) =
πp(p−1)

(
p∏

k<l
(λk − λl)

2

)

det (�)n−p

C�p(p)C�p(n)σ 2np

∫

R+
tnpetr (−t�) etr

(−tσ−2�
)

×
∫

E∈U(p)

0F1
(
n; t2σ−2�E�EH) dEW (t) dt

=
πp(p−1)

(
p∏

k<l
(λk − λl)

2

)

det (�)n−p

C�p(p)C�p(n)σ 2np

∫

R+
tnpetr (−t�) etr

(−tσ−2�
)

× 0F1
(
n; t2σ−2�,�

)
W (t) dt. (24)

Using Gross and Richards (1989), eq. 4.8, see that

0F1
(
n;�,t2σ−2�

) = det
(
0F1

(
n − p + 1; t2σ−2μjλi

))

tp(p−1)σ−p(p−1)
p∏

k<l
(λk − λl)

p∏

k<l
(μk − μl)

C�p(p)C�p(n)

((n − p) ! )p
. (25)

Substituting (25) into (24) simplifies to (10).
Proof of Theorem 3
Consider from (10)

f (�)

=
∫

R+

πp(p−1) det (�)n−p

((n − p) ! )p σ 2np−p2+1

( p∏

k<l
(λk − λl)

)

tnp−p2+1etr
(−t

(
�+σ−2�

))

×det
(
0F1

(
n − p + 1; t2σ−2μjλi

))

(
p∏

k<l
(μk − μl)

) W (t) dt.

In particular, consider

J = lim
μL+1,...,μp→0

det
(
fi
(
μj
)
i,j=1,...,p

)

p∏

k<l
(μk − μl)

where fi
(
μj
) = 0F1

(
n − p + 1; t2σ−2μiλj

)
. Applying Lemma 5, p. 340 of Chiani et al.

(2010):

J =

det

⎡

⎢
⎢
⎣

f1 (μ1) · · · f1 (μL) f (p−L−1)
1 (0) · · · f (0)

1 (0)
...

...
fp (μ1) · · · fp (μL) f (p−L−1)

p (0) · · · f (0)
p (0)

⎤

⎥
⎥
⎦

C�p−L(p − L)

(
L∏

k<l
(μk − μl)

)( L∏

i=1
μ
p−L
i

)

where

f (k)
i (0) =

(
t2σ−2λi

)k
(n − p) !

(n − p + k) !
.
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This leaves

∫

R+

πp(p−1) det (�)n−p

((n − p) ! )p σ 2np−p2+1

( p∏

k<l
(λk − λl)

)

tnp−p2+1etr
(−t

(
�+σ−2�

))
JW (t) dt

=
πp(p−1)

(
p∏

k<l
(λk − λl)

)

det (�)n−p

((n − p) ! )p
(

L∏

k<l
(μk − μl)

)( L∏

i=1
μ
p−L
i

)
C�p−L(p − L)σ 2np−p2+1

×
∫

R+
tnp−p2+1etr

(−t
(
�+σ−2�

))
det (T)W (t) dt

where T is a p × pmatrix as given in (22).

Minimum eigenvalue cdf proofs

Proof of Theorem 4

Consider from (7):

P (λmin (S) > y) =
∫

R+
tnp

etr (−t�)

C�p(n) det (�)n

×
∫

S−yIp

det (S)n−p etr
(−t�−1S

)
0F1

(
n; t2��−1S

)
dSW (t) dt

where S−yIp∈Cp×p
2 . Consider now the transformation S = y

(
Ip+Y

)
with Jacobian dS =

yp2dY (see Dharmawansa and McKay (2011)). It follows that

P (λmin (S) > y) =
∫

R+
tnpynp

etr (−t�) etr
(−ty�−1)

C�p(n) det (�)n

×
∫

Y

det
(
Ip+Y

)n−p etr
(−ty�−1Y

)
0F1

(
n; yt2��−1 (Ip+Y

))
dYW (t) dt.

By applying the definition of the complex hypergeometric function and the assumption
of rank one for the noncentral matrix parameter (see (13)) the following is obtained:

P (λmin (S) > y) =
∫

R+
tnpynp

etr (−t�) etr
(−ty�−1)

C�p(n) det (�)n

∞∑

k=0

∑

κ

1
k! [n]κ

×
∫

Y

det
(
Ip+Y

)n−p etr
(−ty�−1Y

)
Cκ

(
yt2μγH (Ip+Y

)
γ
)
dYW (t) dt

where Y ∈Cp×p
2 . Since having only one eigenvalue results in the partition κ to reduce to

a single partition, per definition of zonal polynomials it follows that [n]κ = (n)k and
Cκ (A) = tr (A)k , and

Cκ

(
yt2μγH (Ip+Y

)
γ
) = (

yt2μ
)k

k∑

r=0

(
k
r

)
trr
(
γ γHY

)
.
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Hence

P (λmin (S) > y) =
∫

R+
tnpynp

etr (−t�) etr
(−ty�−1)

C�p(n) det (�)n

∞∑

k=0

k∑

r=0

1
k! (n)k

×
∫

Y

det
(
Ip+Y

)n−p etr
(−ty�−1Y

) (
yt2μ

)k
(
k
r

)
trr
(
γ γHY

)
dYW (t) dt

where Y ∈Cp×p
2 , and leaves the final result.

Proof of Theorem 5
Letting n = p, see from (14) and (15) that

P (λmin (S) > y) =
∫

R+
yn

2 etr (−t�) etr
(−ty�−1)

C�n(n) det (�)n

∞∑

k=0

k∑

r=0

tn2+2k (yμ)k

k! (n)k

(
k
r

)
Qr

n,n,t (y)W (t) dt

where Qr
n,n,t (y) is as defined in (15). Following Mathai (1997), p. 365, eq. 6.1.20:

Qr
n,n,t (y) =

∫

Y

etr
(−ty�−1Y

)
Cr
(
γ γHY

)
dY

= C�n (n, r) (det�)n

tn2yn2
(

1
μty

)r
Cr (�)

= C�n (n) (n)r (det�)n

tn2yn2
(

1
μty

)r (
trr�

)

where Y ∈Cp×p
2 , and C�n (n, r) denotes the complex multivariate gamma function relating

to r (see Mathai (1997)). Subsequently

P (λmin (S) > y) =
∫

R+
etr (−t�) etr

(−ty�−1)
∞∑

k=0

k∑

r=0

(
yt2μ

)k

k! (n)k

(
k
r

)
(n)r

(
1

μty

)r (
trr�

)
W (t) dt.

(26)

Consider the summation component in (26). This component can be rewritten as follows:
∞∑

k=0

k∑

r=0

(
yt2μ

)k

k! (n)k

(
k
r

)
(n)r

(
1

μty

)r (
trr�

) =
∞∑

j=0

(
yt2μ

)j

j! (n)j
1F1

(
n; n + j, ttr�

)
(27)

Substituting (27) into (26) leaves the final result.

Proof of Theorem 6
Substituting p = 2, see from (14 ) and (15) that

P (λmin (S) > y) =
∫

R+
y2n

etr (−t�) etr
(−ty�−1)

C�2(n) det (�)n

∞∑

k=0

k∑

r=0

t2n+2k (yμ)k

k! (n)k

(
k
r

)
Qr

n,2,t (y)W (t) dt

(28)

where from (15) and Dharmawansa and McKay (2011), eq. 41:

Qr
n,2,t (y) =

∫

Y

det (I2+Y)n−2 etr
(−ty�−1Y

)
trr
(
γ γHY

)
dY

=
n−2∑

i1=0

i1∑

i2=0

(
n − 2
i1

)(
i1
i2

)∫

Y

tri2 (Y) det (Y)i1−i2 etr
(−ty�−1Y

)
trr
(
γ γHY

)
dY.
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where Y ∈C2×2
2 . By using Dharmawansa and McKay (2011), eq. 17 and setting p = i2, a =

i1 − i2 + 2, t = r,A = ty�−1 and R = γ γH , see that
∫

Y

tri2 (Y) det (Y)i1−i2 etr
(−ty�−1Y

)
trr
(
γ γHY

)
dY

= i2! (i1 − i2 + 2)r C�2 (i1 − i2 + 2)
(
det

(
ty�−1))i1−i2+2+ i2

2

×
min(i2,r)∑

h=0

(−1)h
(r
h
)

(
det

(
ty�−1)) h2

trr−h (γ γHty�−1) trh
(
γ γH)Ci1−i2+2+r

i2−h

⎛

⎜
⎝

tr
(
ty�−1)

2
√
det

(
ty�−1)

⎞

⎟
⎠ .

Noting that γHγ =1 (see (13)), it follows that

Qr
n,2,t (y)

=
n−2∑

i1=0

i1∑

i2=0

min(i2,r)∑

h=0
(−1)h

(
n − 2
i1

)(
i1
i2

)(
r
h

)
i2! (i1 − i2 + 2)r C�2 (i1 − i2 + 2) (det�)i1−

i2
2 + h

2 +2

×
(
tr (�)

μ

)r−h
C
i1−i2+2+r
i2−h

(
1
2
tr
(
�−1)√det (�)

)
ti2−2i1−4−ryi2−2i1−4−r . (29)

Substituting (29) into (28), the following is obtained:

P (λmin (S) > y)

=
∫

R+

etr (−t�) etr
(−ty�−1)

C�2(n) det (�)n−2

∞∑

k=0

k∑

r=0

(
yt2μ

)k

k! (n)k

(
k
r

)(
tr (�)

ytμ

)r

×
n−2∑

i1=0

i1∑

i2=0

min(i2,r)∑

h=0
(−1)h

(
n − 2
i1

)(
i1
i2

)(
r
h

)
i2! (i1 − i2 + 2)r C�2 (i1 − i2 + 2)

×
(

μ

tr (�)

)h
(det�)i1+

h
2 − i2

2 C
i1−i2+2+r
i2−h

(
1
2
tr
(
�−1)√det (�)

)
(ty)2n+i2−2i1−4 W (t) dt

which leaves the final result.
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