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Abstract

Technological advances associated with data acquisition are leading to the production
of complex structured data sets. The recent development on classification with
multiclass responses makes it possible to incorporate the dependence structure of
predictors. The available methods, however, are hindered by the restrictive
requirements. Those methods basically assume a common network structure for
predictors of all subjects without taking into account the heterogeneity existing in
different classes. Furthermore, those methods mainly focus on the case where the
distribution of predictors is normal. In this paper, we propose classification methods
which address these limitations. Our methods are flexible in handling possibly
class-dependent network structures of variables and allow the predictors to follow a
distribution in the exponential family which includes normal distributions as a special
case. Our methods are computationally easy to implement. Numerical studies are
conducted to demonstrate the satisfactory performance of the proposed methods.
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Introduction
In contemporary statistical inference and machine learning theory, classification and
prediction are of great importance and many approaches have been proposed. Those
methods typically include the support vector machine (SVM), linear discriminant analy-
sis (LDA), and K-nearest neighbors (KNN) (Hastie et al. 2008; James et al. 2017). These
methods have widespread applications and their extensions to accommodating complex
settings have been proposed. For example, Lee and Lee (2003) studied multicategory
support vector machines for classification of multiple types of cancer. Cristianini and
Shawe-Taylor (2000) presented comprehensive discussions of SVM methods. Guo et al.
(2007) discussed the LDAmethod and its application inmicroarray data analysis. Safo and
Ahn (2016) considered the multiclass analysis by performing the generalized sparse linear
discriminant analysis. Regarding analysis of multiclass classification problems, Bagirov
et al. (2003) proposed a new algorithm for multiclass cancer data. Bicciato et al. (2003)
presented disjoint models for multiclass cancer analysis using the principal component
technique. Liu et al. (2005) proposed the genetic algorithm (GA)-based algorithm to carry
out multiclass cancer classification.
Recent development on classification further incorporates the dependence structure

of predictors. For example, Cetiner and Akgul (2014) developed a graphical-model-
based method for the multi-label classification. Zhu and Pan (2009) proposed the
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network-based support vector machine for classification of microarray samples for binary
classification. Zi et al. (2016) discussed identification of rheumatoid arthritis-related
genes by using network-based support vector machine. Cai et al. (2018) considered the
network linear discriminant analysis. Huttenhower et al. (2007) proposed the nearest
neighbor network approach. In the Bayesian paradigm, various classification approaches
with network-structures accommodated have been explored, such as Bielza et al. (2011),
Miguel Hernández-Lobato et al. (2011), Baladanddayuthapani et al. (2014), and Peterson
et al. (2015).
Although there have been methods handling network structures in classification, those

methods basically assume a common network structure for predictors of all subjects
without taking into account of possible heterogeneity for different classes. To overcome
those shortcomings, in this paper we propose classification methods with possibly class-
dependent network structures of predictors taken into account. Our methods utilize the
graphical model theory and allow the predictors to follow an exponential family distri-
bution, instead of a restrictive normal distribution. Furthermore, we develop a prediction
criterion for multiclass classification which accommodates pairwise dependence struc-
tures among the predictors. Our methods facilitate informative predictors with pairwise
dependence structures into classification procedures, and they are computationally easy
to implement.
The remainder of the paper is organized as follows. In “Data structure and framework”

section, we introduce the data structure and review a convenient multiclass classification
method for simple settings. In “Classification with predictor graphical structures accom-
modated” section, we describe the basics of graphical model theory and propose two
methods for multiclass classification to accommodate network structures of predictors.
In “Evaluation of the performance” section, we describe the criteria for evaluating the per-
formance of the proposed methods, and briefly review several competing classification
methods for comparisons. In “Numerical studies” section, we conduct simulation studies
to assess the performance of the proposed methods, and apply the proposed methods to
analyze a real dataset for illustration. A general discussion is presented in the last section.

Data structure and framework
In this section, we present the data structure with multiclass responses and introduce the
basic notation.

Notation

Suppose the data of n subjects come from I classes, where I is an integer no smaller than
2 and the classes are free of order, i.e., they are nominal. Let ni be the class size in class i

with i = 1, · · · , I, and hence n =
I∑

i=1
ni. Define Yik = i for class i = 1, · · · , I and subject

k = 1, · · · , ni, and let Y = (
Y11,Y12, · · · ,Y1n1 ,Y21, · · · ,Y2n2 , · · · ,YI1, · · · ,YInI

)� denote
the n-dimensional random vector of response. Let Y·j denote the jth component of Y. In
other words, if we ignore the class information, then Y·j represents the response (or the
class membership) for the jth subject in the sample, where j = 1, · · · , n.
For i = 1, · · · , I, let Xli = (

Xli1, · · · ,Xlini
)� denote the lth predictor (or covariate)

vector associated with class i, where l = 1, · · · , p for a positive integer p. We write Xl =
(
X�
l1, · · · ,X�

lI
)� for l = 1, · · · , p, and let X = (

X1, · · · ,Xp
)
denote the n × p matrix of
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predictors. Let X·j = (
X·j1, · · · ,X·jp

)� denote the jth row of X, which represents the p-
dimensional predictor vector for the jth subject. Without loss of generality, the

{
X·j,Y·j

}

are treated as independent and identically distributed (i.i.d.) for j = 1, · · · , n . We let
lower case letters represent realized values for the corresponding random variables. For
example, x·j stands for a realized value of X·j. The data structure is shown in Table 1.
The objective here is to use the observed data to build models in order to predict the

class label for a new subject using his/her observed predictor measurement.

Logistic regression model for multiclass response

With the multiclass response, we may consider the use of the logistic regression model by
adapting the discussion of Agresti (2012, Section 7.1). For i = 1, · · · , I and j = 1, · · · , n, let
πij(x·j) = P

(
Y·j = i|X·j = x·j

)
denote the conditional probability that subject j is selected

from class i, given the predictor information X·j = x·j.

Noting the constraint
I∑

i=1
πij(x·j) = 1 for every j = 1, · · · , n, to describe the πij(x·j), we

can only model (I −1) of the πij(x·j) rather than all of the πij(x·j). Without loss of general-
ity, we take the Ith conditional probability πIj(x·j) as the reference and then consider the
logistic model

log
{

πij(x·j)
πIj(x·j)

}

= γ0i + γ �
i x·j (1)

for i = 1, · · · , I−1 and j = 1, · · · , n, where γ = (
γ01, γ �

1 , γ02, γ �
2 , · · · , γ0,I−1, γ �

I−1
)� is the

vector of parameters with the intercepts γ0i and a p-dimensional vector γi of parameters.
Equivalently, (1) shows that for i = 1, · · · , I − 1 and j = 1, · · · , n,

πij(x·j) = exp
(
γ0i + γ �

i x·j
)

1 +
I−1∑

l=1
exp

(
γ0l + γ �

l x·j
)

(2)

and

πIj(x·j) = 1 −
I−1∑

i=1
πij(x·j). (3)

Since the distribution of the Yij can be delineated by a multinominal distribution, the
likelihood function for the observed data is given by

L (γ ) =
I∏

i=1

⎧
⎨

⎩

n∏

j=1
πij(x·j)yij

⎫
⎬

⎭
, (4)

where πij(x·j) is determined by (2) or (3). Estimation of γ can proceed with maximiz-
ing (4). Let γ̂ = (

γ̂01, γ̂ �
1 , γ̂02, γ̂ �

2 , · · · , γ̂0,I−1, γ̂ �
I−1

)� denote the resulting maximum
likelihood estimate of γ .
To predict the class label for a new subject with a p-dimensional predictor vector x̃,

we first calculate the right-hand side of (2) and (3) with the
(
γ0i, γ �

i
)� replaced by the

corresponding estimate obtained for the training data and let π̂1, · · · , π̂I denote the cor-
responding values. Let i∗ denote the index which corresponds to the largest value of
{π̂1, · · · , π̂I}. Then the class label for this new subject is predicted as i∗.
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Classification with predictor graphical structures accommodated
In this section, we propose two classification methods for prediction which incorporate
the network structure of the predictors. We first describe the use of graphical models
to facilitate the association structure of the predictors, and then explore two methods of
building prediction models using the identified association structures.

Predictor network structure

Graphical models are useful to facilitate the network structures of the predictors. Here we
describe the way of using graphical models to delineate possible association structures of
the predictors. For j = 1, · · · , n, we use an undirected graph, denoted as Gj = (Vj,Ej), to
describe the relationship among the components of X·j = (

X·j1, · · · ,X·jp
)�, where Vj =

{
1, · · · , p} includes all the indices of predictors and Vj×Vj contains all pairs with unequal
coordinates. A covariate X·jr is called a vertex of the graphGj if r ∈ Vj; a pair of predictors{
X·jr ,X·js

}
is called an edge of the graph Gj if (r, s) ∈ Ej ⊂ Vj × Vj. In the setting we

consider, the sets Vj and Ej are common for j = 1, · · · , n, so we let V and E denote the
vertex and edge of the graph, respectively.
To characterize the distribution of the predictor X·j, we consider the graphical model

with the exponential family distribution,

f (x·j;β ,�) = exp

⎧
⎨

⎩

∑

r∈V
βrB(x·jr) +

∑

(s,t)∈E
θstB(x·js)B(x·jt) +

∑

r∈V
C(x·jr) − A(β ,�)

⎫
⎬

⎭
, (5)

where β = (
β1, · · ·βp

)� is a p-dimensional vector of parameters, � = [θst] is a p × p
symmetric matrix with zero diagonal elements, and B(·) and C(·) are given functions.
The function A(β ,�) is the normalizing constant which makes (5) integrated as 1; this
function is also called the log-partition function, given by

A(β ,�) = log
∫

exp

⎧
⎨

⎩

∑

r∈V
βrB(x·jr) +

∑

(s,t)∈E
θstB(x·js)B(x·jt) +

∑

r∈V
C(x·jr)

⎫
⎬

⎭
dx·j.

Formulation (5) gives a broad class of models which essentially covers most commonly
used distributions. For example, if B(x) = x

σ
and C(x) = − x2

2σ 2 where σ is a positive
constant, then (5) yields the well-known Gaussian graphical model (Friedman et al. 2008;
Hastie et al. 2015; Lee and Hastie 2015). If B(x) = x and C(x) = 0 with x ∈ {0, 1}, then
with the βr set to be zero, (5) reduces to

exp

⎧
⎨

⎩

∑

(s,t)∈E
θstx·jsx·jt − A(�)

⎫
⎬

⎭
, (6)

which is the Ising model without the singletons (Ravikumar et al. 2010).
To focus on featuring the pairwise association among the components of X·j, similar to

the structure of (6), we consider the following graphical model
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f (x·j;�) = exp

⎧
⎨

⎩

∑

(s,t)∈E
θstx·jsx·jt +

∑

r∈V
C(x·jr) − A(�)

⎫
⎬

⎭
, (7)

where the function A(�) is the normalizing constant, and the θst and C(·) are defined as
for (5). Model (7) is a special case of (5) which constraints the main effects parameters
βr in (5) to be zero; nonzero parameter θst implies that X·js and X·jt are conditionally
dependent given other predictors.
To estimate �, one may apply the likelihood method using the distribution (7) directly.

Alternatively, a simpler estimation method can be carried out based on a conditional dis-
tribution derived from (7) (Meinshausen and Bühlmann2006; Hastie et al. 2015, p.254).
For every s ∈ V , let X·j,V\{s} denote the (p − 1)-dimensional subvector of X·j with its sth
component deleted, i.e., X·j,V\{s} = (

X·j1, · · · ,X·j,s−1,X·j,s+1, · · · ,X·jp
)�. By some algebra,

we have

f
(
x·js|x·j,V\{s}; θs

) = exp

⎧
⎨

⎩
x·js

⎛

⎝
∑

t∈V\{s}
θstx·jt

⎞

⎠ + C
(
x·js

) − D

⎛

⎝
∑

t∈V\{s}
θstx·jt

⎞

⎠

⎫
⎬

⎭
, (8)

whereD(·) is the normalizing constant ensuring the integration of (8) equal one, and θs =
(
θs1, · · · , θs,s−1, θs,s+1, · · · , θsp

)� is a (p − 1)-dimensional vector of parameters indicating
the relationship of X·js with all other predictors X·jr for r ∈ {1, · · · , p} \ {s} associated with
(8).
Let � (θs) be the log-likelihood for θs multiplied with − 1

n with the constand omitted, i.e.,

� (θs) = −1
n
log

⎧
⎨

⎩

n∏

j=1
f
(
x·js|x·j,V\{s}; θs

)
⎫
⎬

⎭

= 1
n

n∑

j=1

⎧
⎨

⎩
−x·js

⎛

⎝
∑

t∈V\{s}
θstx·jt

⎞

⎠ + D

⎛

⎝
∑

t∈V\{s}
θstx·jt

⎞

⎠

⎫
⎬

⎭
.

Then an estimator of θs can be obtained as

θ̂s(λ) = argmin
θs

{� (θs) + λ ‖θs‖1} , (9)

where λ is a tuning parameter and ‖·‖1 is the L1-norm. In principle, the L1-norm in (9)
may be replaced by other penalty functions such as the weighted L1-norm (Zou 2006)
and the nonconcave function (Fan and Li 2001). Here we focus on using the L1-norm, the
well-known LASSO penalty (Tibshirani 1996), to determine informative pairwise depen-
dent predictors. The LASSO penalty is frequently considered when dealing with graphical
models; it has been implemented in R. For instance, R packages huge and XMRF use the
LASSO penalty to determine the network structure.
We comment that the estimator obtained from (9) depends on the choice of the tuning

parameter λ. There is no unique way of selecting a suitable tuning parameter, and meth-
ods such as the Akaike information criterion (AIC), the Bayesian information criterion
(BIC), the Cross Validation (CV), and the Generalized Cross Validation (GCV) may be
considered in the selection of the tuning parameter. Suggested by Wang et al. (2007), BIC
tends to outperform others in many situations, especially in the setting with a penalized
likelihood function. Consequently, here we employ the BIC approach to select the tuning
parameter λ.
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Define

BIC(λ) = 2n�
(
θ̂s(λ)

) + log(n) × df
{
θ̂s(λ)

}
, (10)

where df
{
θ̂s(λ)

}
represents the number of non-zero elements in θ̂s(λ) for a given λ. The

optimal tuning parameter λ, denoted by λ̂, is determined by minimizing (10) within a
suitable range of λ. As a result, the estimator of θs is determined by θ̂s = θ̂s

(
λ̂
)
.

The preceding procedure is repeated for all s ∈ V and yields the estimator θ̂s for all
s ∈ V . There is an important point we need to pay attention. For (s, t) ∈ E, the estimates
θ̂st and θ̂ts are not necessarily identical although θst and θts are constrained to be equal.
To overcome this problem, we apply the AND rule (Meinshausen and Bühlmann 2006;
Hastie et al. 2015, p.255) to determine the final estimates of θ̂st and θ̂ts as their maximum
if both θ̂st and θ̂ts are not zero; and set θ̂st and θ̂ts to be zero if one of them is zero.
To determine an estimated set of edges, we define

N̂ (s) = {
t ∈ V : θ̂st �= 0

}

for s ∈ V . Then

Ê =
{
(s, t) : s ∈ N̂ (t) and t ∈ N̂ (s)

}
(11)

is taken as the set of the edges that are estimated to exist. The R package ‘huge’ can be
implemented to show the graphic results.
Under mild regularity conditions, the estimated set of edges Ê approximate the true

network structure E accurately, as shown below which was available in Ravikumar et al.
(2010, Section 2.2) and Theorem 5 (b) of Yang et al. (2015).

Proposition 1 (Network Recovery) Suppose E is the set of edges, and let Ê be the esti-
mated set of edges. Under regular conditions in Meinshausen and Bühlmann (2006), we
have that as n → ∞,

P
(
Ê = E

) → 1.

Logistic regression with homogeneous graphically structured predictors

To incorporate the network structures of the predictors into building a prediction model,
in the next two subsections, we present two methods which can be readily implemented
using the R package huge and the R function glm for fitting a logistic regression model.
In the first method, called the logistic regression with homogeneous graphically struc-

tured predictors (LR-HomoGraph) method, we consider the case where the subjects in
different classes share a common network structure in the predictors. To build a pre-
diction model, we make use of the development of the logistic model with multiclass
responses, discussed by Agresti (2007, Section 6.1) and Agresti (2012, Section 7.1).
We first identify the pairwise dependence of the predictors using the measurements

of all the subjects without distinguishing their class labels. Let θ̂st be the estimate for θst
obtained for (9) by using all the predictor measurements of

{
X·j : j = 1, · · · , n}, and let

Ê = {
(s, t) : θ̂st �= 0

}
denote the resulting estimated set of edges.

Next, for i = 1, · · · , I and j = 1, · · · , n, we let

pij(x·j) = P
(
Y·j = i

∣
∣X·j = x·j

)
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be the conditional probability of Y·j = i given X·j = x·j. Consider the logistic regression
model

pij(x·j) =
exp

(

αi0 + ∑

(s,t)∈Ê
αi,stx·jsx·jt

)

1 +
I−1∑

l=1
exp

(

αl0 + ∑

(s,t)∈Ê
αl,stx·jsx·jt

) (12)

for i = 1, 2, · · · , I − 1, where (αi0,αi,st)� is the vector of parameters associated with class

i and the constraint
I∑

i=1
pij(x) = 1 is imposed for every j = 1, · · · , n.

For subject j = 1, · · · , n, we let Y ∗
ij = 1 if subject j is in class i and Y ∗

ij = 0 otherwise,

and hence,
I∑

i=1
Y ∗
ij = 1 for every j. Let y∗

ij denote a realized value of Y ∗
ij . For i = 1, · · · , I

and j = 1, · · · , n, the likelihood function is given by (Agresti 2012, p.273)

L(α) =
I∏

i=1

⎧
⎨

⎩

n∏

j=1
pij(x·j)y

∗
ij

⎫
⎬

⎭
, (13)

where α =
(
α10,α�

1· , · · · ,α(I−1)0,α�
(I−1)·

)�
is the vector of parameters with vector αi· =

(
αi,st : (s, t) ∈ Ê

)� for i = 1, · · · , I − 1.
The estimator α̂ can be derived by maximizing (13) with respect to α. Therefore, for the

realization x·j of the p-dimensional vector X·j, pij(x·j) is estimated as

p̂ij(x·j) =
exp

(

α̂i0 + ∑

(s,t)∈Ê
α̂i,stx·jsx·jt

)

1 +
I−1∑

l=1
exp

(

α̂l0 + ∑

(s,t)∈Ê
α̂l,stx·jsx·jt

) for i = 1, · · · , I − 1, (14)

and pIj(x·j) is estimated as

p̂Ij(x·j) = 1 −
I−1∑

i=1
p̂ij(x·j). (15)

Finally, to predict the class label for a new subject with a p-dimensional predictor x̃,
we first calculate the right-hand side of (14) and (15), and let ˜̂p1, · · · ,˜̂pI denote the cor-
responding values. Let i∗ denote the index which corresponds to the largest value of
{
˜̂p1, · · · ,˜̂pI

}
, i.e., i∗ = argmax

1≤i≤I
˜̂pi. Then the class label for this new subject is predicted as

i∗.

Logistic regression with class-dependent graphically structured predictors

We now present an alternative to the method described in “Logistic regression with
homogeneous graphically structured predictors” section. Instead of pooling all the covari-
ates to feature the covariate network structure, this method, called the logistic regression
with class-dependent graphically structured covariates (LR-ClassGraph) method, strat-
ifies the covariate information by class when characterizing the covariate network
structures.
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We first introduce a binary, surrogate response variable Y i
ij for every i and j, where i =

1, · · · , I and j = 1, · · · , n. Let

Y i
ij =

{
1, Yij = i,
0, otherwise,

and define Y i =
(
0, · · · , 0,Y i

i1, · · · ,Y i
ini , 0, · · · , 0

)�
to be an n-dimensional vector whose

elements corresponding to class i are respectively Y i
i1, · · · ,Y i

ini , and other elements are
zero. That is, Y i = ( 0, · · · , 0

︸ ︷︷ ︸
n1+···+ni−1

, 1, · · · , 1
︸ ︷︷ ︸

ni

, 0, · · · , 0
︸ ︷︷ ︸
ni+1+···+nI

)� with i = 1, · · · , I. Now we implement

the following steps.

Step 1: (Class-Dependent Predictor Network)
For each class i = 1, · · · , I, we apply the procedure described in “Predictor network
structure” section to determine the network structure of predictors in class i. Let
Êi = {

(s, t) : θ̂ ist �= 0
}
denote an estimated set of edges for class i, where θ̂ ist is the

estimate of θst derived from (9) based on using the predictor measurements in class
i.

Step 2: (Class-Dependent Model Building)
For each class i = 1, · · · , I, fit a logistic regression model using the surrogate
response vector Y i with the estimated covariates network structure Êi incorporated.
Specifically, for the jth component of Y i, Y i

j , define π i
j (x·j) = P

(
Y i
j = 1|X·j = x·j

)

and consider the logistic regression model

logit
{
π i
j (x·j)

}
= γ i

0 +
∑

(s,t)∈Êi
γ i
stx·jsx·jt , (16)

where j = 1, · · · , n, (γ i
0, γ

i
st
)� is the vector of parameters associated with class i.

By the theory of maximum likelihood (e.g., Agresti 2012), we obtain the estimate
(
γ̂ i
0, γ̂

i
st
)� of

(
γ i
0, γ

i
st
)�.

Step 3: (Prediction)
For a realization x·j of the p-dimensional vector X·j, based on (16), π i

j (x·j) can be
estimated by

π̂ i
j (x·j) =

exp
(

γ̂ i
0 + ∑

(s,t)∈Êi
γ̂ i
stx·jsx·jt

)

1 + exp
(

γ̂ i
0 + ∑

(s,t)∈Êi
γ̂ i
stx·jsx·jt

) for i = 1, · · · , I. (17)

To predict the class label for a new subject with a p-dimensional covariate vector
x̃, we first calculate (17) with x·j replaced by x̃ for i = 1, · · · , I, and let ˜̂π1, · · · , ˜̂π I

denote the corresponding values. Let i∗ denote the index which corresponds to the
largest value of

{
˜̂π1, · · · , ˜̂π I

}
, i.e.,

˜̂π i∗ = max
1≤i≤I

˜̂π i. (18)

Then the class label for this new subject is predicted as i∗.
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Comparison of decision boundaries

As noted in “Logistic regression with homogeneous graphically structured predictors”
and “Logistic regression with class-dependent graphically structured predictors” sections,
while both the LR-HomoGraph and LR-ClassGraph methods employ logistic regres-
sion to classify classes, they are different in the way of featuring predictor structures.
Furthermore, we may compare their differences in terms of decision boundaries.
First, we examine the decision boundaries for the LR-HomoGraph method. For i �= k,

the boundary between the ith and kth classes is determined by

p̂ij(x·j) = p̂ik(x·j)

for a new instance with the predictor value x·j, where p̂ij(x·j) and p̂ik(x·j) are given by (14)
or (15). To be more specific, for any i = 1, ..., I − 1, if k = 1, ..., I − 1 and k �= i, then by
(14), the boundary between the ith and kth classes is

∑

(s,t)∈Ê
(̂αi,st − α̂k,st)x·jsx·jt + (̂αi0 − α̂k0) = 0; (19)

and the boundary between the ith and Ith classes is, by (15),
∑

(s,t)∈Ê
α̂i,stx·jsx·jt + α̂i0 = 0. (20)

Similarly, the decision boundaries for the LR-ClassGraph method can be determined
based on (17). For i �= k, equating π̂ i

j (x·j) and π̂k
j (x·j) for a covariate value x·j gives the

boundary between the ith and kth classes
∑

(s,t)∈Êi
γ̂ i
stx·jsx·jt −

∑

(s,t)∈Êk
γ̂ k
stx·jsx·jt +

(
γ̂ i
0 − γ̂ k

0

)
= 0. (21)

Comparing (21) to (19) or (20) shows that decision boundaries for both the LR-
HomoGraph and LR-ClassGraph methods are all quadratic surfaces determined by
the features selected from the graphical models. However, the way of incorporating
the features is different for the two methods. The boundaries (21) are determined by
the quadratic terms identified using instances from classes i and k separately, but the
quadratic terms in the boundary (19) or (20) are not distinguished by the class labels.
In addition, the coefficients γ̂ i

st and α̂i,st associated with the decision boundaries are
generally different.

Evaluation of the performance
In this section we discuss the evaluation of the procedures proposed in “Logistic regres-
sion with homogeneous graphically structured predictors” and “Logistic regression with
class-dependent graphically structured predictors” sections. For comparisons, we also
examine some conventional classification methods in machine learning, including sup-
port vector machine (SVM), linear discriminant analysis (LDA), K-nearest neighbor
(KNN), and extreme gradient boosting (XGBOOST). We first describe the measures of
assessing the prediction error that are commonly used, and then we briefly review the
four classification methods.

Criteria for performances

In this subsection, we describe several criteria of evaluating the performance for predic-
tion. To show the overall performance of prediction, we consider either micro averaged
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metrics or macro averaged metrics (Parambath et al. 2018). For subject j = 1, · · · , n, let
ŷ·j denote the predicted class label. For class i = 1, · · · , I, we calculate the number of the
true positives, the number of the false positives, and the number of the false negatives,
respectively, given by

TPi =
n∑

j=1
I
(
y·j = i, ŷ·j = i

)
, FPi =

n∑

j=1
I
(
y·j �= i, ŷ·j = i

)
,

and

FNi =
n∑

j=1
I
(
y·j = i, ŷ·j �= i

)
,

where I(·) is the indicator function. For micro averaged metrics, we define precision and
recall, respectively, given by

PREmicro =

I∑

i=1
TPi

I∑

i=1
TPi +

I∑

i=1
FPi

and RECmicro =

I∑

i=1
TPi

I∑

i=1
TPi +

I∑

i=1
FNi

.

ThenMicro-F-score is defined as

Fmicro = 2 × PREmicro × RECmicro
PREmicro + RECmicro

. (22)

On the other hand, for macro averaged metrics, for i = 1, · · · , I, let PREi = TPi
TPi+FPi

denote precision for class i, and let RECi = TPi
TPi+FNi

denote recall for class i. Then the
overall precision and recall are, respectively, defined as

PREmacro = 1
I

I∑

i=1
PREi and RECmacro = 1

I

I∑

i=1
RECi;

andMacro-F-score is defined as

Fmacro = 2 × PREmacro × RECmacro
PREmacro + RECmacro

. (23)

In principle, higher values of PRE, REC and F based on both micro and macro reflect
better performance of methods (Parambath et al. 2018; Sokolova et al. 2006).

Support vector machine for multiclass responses

Support vector machine (SVM) was originally designed for two-class classification
(Hastie et al. 2008, Sec. 12.2), and its extensions to the multiclass responses have been
discussed by many authors. An early extension of the SVM to accommodating multiclass
classification is the one-against-all method (Hsu and Lin 2002). The main idea is that the
ith SVM is trained from all subjects with positive labels in the ith class and all other sub-
jects with negative labels. This type of SVM for multiclass classification, however, ignores
the heterogeneity among the subjects in each class.
A useful multiclass SVM is the one-against-one method (Knerr et al. 1990), which is

implemented in the R package e1071. Different from the one-against-all method, the
one-against-one method first produces I(I−1)/2 pairwise classifiers and trains data from
any two selected classes, and then it applies SVM with binary classification to each pair-
wise classifiers. To see this, for i1, i2 ∈ {1, · · · , I} with i1 < i2, we consider the following
optimization
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min
wi1i2 ,bi1i2 ,ξ i1i2j

⎧
⎨

⎩

1
2
(
wi1i2)� wi1i2 + C

n∑

j=1
ξ
i1i2
j

⎫
⎬

⎭
(24)

subject to

for j = 1, . . . , n,

ξ
i1i2
j ≥ 0

{(
wi1i2)� φ(X·j) + bi1i2

}
≥ 1 − ξ

i1i2
j , ifY·j = i1,

{(
wi1i2)� φ(X·j) + bi1i2

}
≤ −1 + ξ

i1i2
j , ifY·j = i2,

where φ(·) is a non-linearmapping from a p-dimensional vector to a q-dimensional vector
with q > p (Hsu and Lin 2002), wi1i2 is a q-dimensional vector of parameters associated
with the comparison between classes i1 and i2, bi1i2 is a scalar, ξ i1i2j is the slack variable
for the soft margin solution, and C is a cost parameter controlling balance of maximizing
the margin and minimizing the training error.
Solving (24) for arbitrary i1, i2 ∈ {1, · · · , I} with i1 < i2 yields I(I − 1)/2 clas-

sifiers and those classifiers can then be used for classification of a new instance, say
X̃ = x̃. This can be done through a voting process (Hsu and Lin 2002). Specifically, let
L = {(1, 2), (1, 3), · · · , (1, I) , (2, 3), · · · , (2, I), · · · , (I − 1, I)} be the collection of all pair-
wise class labels which includes I(I − 1)/2 elements. For each class i with i = 1, · · · , I, we
let vote(i) denote the “number of vote” related to class i. Then we carry out the following
three steps.

Step 1: For class i = 1, · · · , I, the initial value of vote(i) is set as 0.
Step 2: For any given class i, we consider a subcollection of L,

{
(i, i′) : i′ = i + 1, · · · , I},

which is associated with class i. Calculate sign
{
(wii′)�φ(̃x) + bii′

}
repeatedly for

i′ = i + 1, · · · , I and then determine the values of vote(i) and vote(i′) iteratively by
the rule:

If sign
{
(wii′)�φ(̃x) + bii

′}
> 0, then we let

vote(i) = vote(i) + 1;

otherwise,

vote(i′) = vote(i′) + 1;

where vote(i′) on the right-hand-side of the equation is a value determined by the
previous step, vote(i′) on the left-hand-side of the equation represents a newly
determined value, and i′ = i + 1, · · · , I.

Step 3: Repeat Step 2 for i = 1, · · · , I. In this way, we determine all the final values of
vote(1), · · · , vote(I). Let i∗ denote the class index corresponding to the largest value
of {vote(1), · · · , vote(I)}, i.e., i∗ = argmax

1≤i≤I
{vote(i)}. Then we let i∗ be the predicted

class for the new instance.

Linear discriminant analysis

The idea of LDA is to model the distribution of the predictors X·j separately for each of
the classes Y·j, and then use the Bayes theorem to obtain the conditional probabilities
P(Y·j = i|X·j = x·j) (e.g., James et al. 2017). For i = 1, · · · , I and j = 1, · · · , n, let fj|i(x·j)
denote the conditional probability density function of the predictor X·j taking value x·j
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given that subject j comes from the ith class. Let πi,j = P
(
Y·j = i

)
denote the probability

that the jth subject is randomly selected from class i. It is immediate that
I∑

i=1
πi,j = 1 for

j = 1, · · · , n. By some algebra (Hastie et al. 2008, p.108) and the Bayes theorem, we obtain
the posterior probability

P
(
Y·j = i|X·j = x·j

) = fj|i(x·j)πi,j
I∑

l=1
fj|l(x·j)πl,j

(25)

for i = 1, · · · , I and j = 1, · · · , n.
To compare two classes i and l with i �= l, we calculate the log-ratio of (25) for classes i

and l, given by

log
{
P
(
Y·j = i|X·j = x·j

)

P
(
Y·j = l|X·j = x·j

)

}

= log
( fj|i(x·j)
fj|l(x·j)

)

+ log
(

πi,j

πl,j

)

. (26)

To elaborate on the idea, we particularly consider the case where the conditional distri-
bution fj|i(x·j) of X·j given Y·j = i is assumed to be the normal distribution N (μi,i) with
the probability density function

fj|i(x·j) = 1
(2π)p/2 |i|1/2

exp
{

−1
2
(
x·j − μi

)�
−1

i
(
x·j − μi

)
}

. (27)

If the covariance matrices i in (27) are assumed to be common, i.e., i =  for every i
where  is a positive definite matrix, (26) becomes

log
(

πi,j

πl,j

)

− 1
2

(μi + μl)
� −1 (μi + μl) + x�·j −1 (μi + μl) . (28)

If (28) > 0, then

P
(
Y·j = i|X·j = x·j

)
> P

(
Y·j = l|X·j = x·j

)
,

showing that subject j with predictors X·j = x·j is more likely to be selected from class i
than from class l. Consequently, (28) defines a boundary between classes i and l which is
a linear function of x·j.
Motivated by the form of (28), we consider a linear function in x

δi(x) = log (πi) − 1
2
μ�
i −1μi + x�−1μi, (29)

where μi, πi, and  are estimated by μ̂i = 1
ni

∑

y·j=i
x·j, π̂i = ni

n , and ̂ =

1
n−I

I∑

i=1

∑

y·j=i

(
x·j − μ̂i

) (
x·j − μ̂i

)�, respectively. That is, (29) can be estimated by

δ̂i(x) = log (π̂i) − 1
2
μ̂�
i ̂−1μ̂i + x�̂−1μ̂i. (30)

Function (30) is called the linear discriminant function and is used to determine the
class label for a new instance (James et al. 2017, p.143; Hastie et al. 2008, p. 109). For
the prediction of a new subject with covariate x̃, we first calculate δ̂i(̃x) using (30) for
i = 1, · · · , I. Next, we find i∗ which is defined as

i∗ = argmax
i=1,··· ,I

δ̂i(̃x);

and the class label for this subject is then predicted as i∗.
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K-nearest neighbor

The third classification method we compare with is the K-nearest neighbor (KNN)
method which is a non-parametric approach. The key idea of KNN is to use the available
instances to estimate the conditional probability of Y·j given X·j, and then classify a new
instance to a certain class based on the highest estimated conditional probability.
For a positive integer K and a new instance x̃ of predictors X̃, the first step of KNN

is to identify K points which are closest to x̃; let N0 (̃x) denote the set containing such
K-nearest points of x̃. Next, for i = 1, · · · , I, we calculate

π̂i = 1
K

∑

j′∈N0 (̃x)
I(y·j′ = i).

Finally, let i∗ denote the class label which corresponds to the largest value of {π̂1, · · · , π̂I}.
Then the class label for this new subject is predicted as i∗.
For the KNN method, a crucial issue is the selection of K. A small value of K usually

yields an over-flexible decision boundary, which makes the classifier have a small bias but
a large variance. On the contrary, with a large K, the boundary becomes less flexible and is
close to linear, and classifier would have a small variance but a large bias. To determine an
optimalK from the theoretical perspective, James et al. (2017, p. 184 and p. 186) suggested
to use the cross-validation method to select K ; but from the computational viewpoint,
sometimes, a choice of K may be based on a random guess, as commented by James et al.
(2017, p. 167).

Extreme gradient boosting

The extreme gradient boosting (XGBOOST) is a tree based ensemble method created
under the gradient boosting framework (e.g., Chen and Guestrin 2016) and can be
implemented by the R package xgboost.
Let F denote the space of functions representing regression trees f, where for f ∈ F

with f (x) = wq(x), q : Rp → L reflects the structure of the tree f that maps an example to
the corresponding leaf index, L is the set of the leaf indices, w ∈ R

T is leaf weight, and T
is the number of leaves in the tree. Suppose that K regression trees in F , fk(·) ∈ F with
k = 1, · · · ,K , are used to predict the output:

ŷ·j =
K∑

k=1
fk
(
x·j

)

for an example with the input x·j.
To learn the set of functions used for classification, we minimize the regularized

objective function

L(y, ŷ) =
n∑

j=1
L(y·j, ŷ·j) +

K∑

k=1
�(fk), (31)

where � is the regularization used to measure the model complexity, given by

�(f ) = γT + 1
2
λ ‖w‖2 (32)

with tuning parameters γ and λ. Here L(·) is the loss function which measures how well
the model fits the training data. With the multiclass classification problem discussed in
“Classification with predictor graphical structures accommodated” section, we specify
L(·) as



Chen et al. Journal of Statistical Distributions and Applications             (2019) 6:6 Page 15 of 25

n∑

j=1
L(y·j, ŷ·j) = −

I∑

i=1

n∑

j=1
yij log

(
pij

)

with pij = exp(̂yij)

1+
I−1∑

l=1
exp

(
ŷlj

)
for i = 1, . . . , I − 1 and pIj = 1 −

I−1∑

i=1
pij.

While the formulation of the objective function in (31) is conceptually easy to balance
the tradeoff between predictive accuracy andmodel complexity, minimizing the objective
function (31) cannot be directly carried out using traditional optimization procedures.
One approach is to invoke the gradient boosting tree algorithm iteratively to call for a
second order approximation to the objective function. Specifically, at iteration t, we define

ŷ(t)
·j =

t∑

k=1
fk
(
x·j

) = ŷ(t−1)
·j + ft

(
x·j

)

with ŷ(0)
·j = 0, and hence the objective function

L(t)(y, ŷ) =
n∑

j=1
L
(
y·j, ŷ(t)

·j
)

+ �(ft). (33)

Applying the second-order approximation to (33) gives

L(t)(y, ŷ) ≈
n∑

j=1

{

L
(
y·j, ŷ(t−1)

·j
)

+ gjft
(
x·j

) + 1
2
hjf 2t

(
x·j

)
}

+ �(ft), (34)

where gj and hj are the first and second order gradients of the loss function L(y·j, ŷ(t−1))

with respect to ŷ(t−1), respectively.
Let Im = {

j : q(x·j) = m
}
denote the instance set of leafm. Then by (32), (34) becomes

L(t)(y, ŷ) ≈
T∑

m=1

⎧
⎨

⎩

⎛

⎝
∑

j∈Im
gj

⎞

⎠wm + 1
2

⎛

⎝
∑

j∈Im
hj + λ

⎞

⎠w2
m

⎫
⎬

⎭
+ γT . (35)

For a given tree structure q(·), minimizing (35) gives the optimal weight w∗
m of leafm and

the optimal value of (35), respectively, given by

ŵm = −

∑

j∈Im
gj

∑

j∈Im
hj + λ

and L̂(t) = −1
2

T∑

m=1

(
∑

j∈Im
gj

)2

∑

j∈Im
hj + λ

+ γT .

Numerical studies
In this section, we first conduct simulation studies to evaluate the performance of the proposed
procedures in “Classification with predictor graphical structures accommodated” section,
and then we apply the procedures to analyze a real dataset to illustrate their usage.
The discussion is carried out in contrast to the classification methods reviewed in
“Evaluation of the performance” section as well as the usual multiclass logistic regression
model in “Logistic regression model for multiclass response” section. The R packages,
svm(e1071), lda(MASS), knn.cv(class), and xgboost are used to implement
the SVM, LDA, KNN, and XGBOOST methods, respectively.
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Simulation study

For class i = 1, · · · , I, the predictors are generated from the multivariate normal distri-
bution with mean zero and covariance matrix i = �−1

i , where �i is a matrix associated
with the network structure in class i with all diagonal elements 1 and off-diagonal ele-
ments 0 or 1; for s �= t, entry (s, t) is 1 if the edge exists betweenXs andXt and 0 otherwise.
The relationship between a multivariate normal distribution N(0,i) and the Gaussian
graphical model with edges determined by �i = −1

i is discussed by Hastie et al. (2015,
p.246 and p.263).
We specifically consider two scenarios of network structures where the dimension of

predictors is p = 12. In the first scenario we specify �i to reflect the network structures
displayed in Fig. 1. For example, element (1, 5) for �1 is 1, but element (1, 5) for �i is 0 if
i = 2, 3, 4. For a given class i and a subject j in this class, we calculate π i

j (x·j) by (16) where
we set γ i

0 = γ i
st = 1. The outcome measurements are set to be Y i

j = 1 if π i
j (x·j) > c, and

Y i
j = 0 otherwise, where the threshold c is chosen such that the size in class i equals ni.

Fig. 1 Covariate network structures of four classes for the simulation study
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In the second scenario, �i is taken as the identity matrix for i = 1, · · · , I, showing that
the predictors have no network structures. For subject j, the predictor X·j is generated
from the multivariate normal distribution with mean zero and identity matrix. To gener-
ate Y·j for subject j, we first calculate πij(x·j) for every i = 1, · · · , I by (2) and (3) where
γ0i and γi are both set as log(i) + 1 for class i. Then we set Y·j = i∗ if i∗ = argmax

i
πij(x·j).

Continue this process until the desired size ni is achieved for i = 1, · · · , I. We consider
the case with I = 4 and ni = 50 for i = 1, · · · , I and run 500 simulations. We use criteria
(22) and (23) to report the performance of each method. The results are summarized in
Table 2. It is seen that the proposed LR-ClassGraph method outperforms all the classifi-
cation methods with larger values of PRE, REC and F from both micro and macro view
points. The SVM performs the second best, and the performance of the LR-HomoGraph
method is ranked the third, followed by that of the XGBOOST method.
To understand how the proposed methods perform with the binary classification, we

repeat the preceding simulations by setting I to be 2 and taking the network structures
of classes 1 and 2 when considering scenario 1. The results are in Table 3. When covari-
ates are associated with a network structure, the proposed LR-ClassGraph method still
performs the best, and the improvement of the LR-ClassGraphmethod over existing clas-
sifiers is a lot more noticeable for I = 2 than for I = 4. Interestingly, when covariates
are uncorrelated, unlike the multiclass case with I = 4, the LR-HomoGraph method
outperforms the LR-ClassGraph method; and in this case, the SVM is the best classifier.

Glass identification dataset

We analyze a dataset concerning glass identification. The study of classification of glass
types was motivated by criminological investigation. At the scene of the crime, the glass
left can be used as evidence if it is correctly identified. It is of interest to predict the glass
type based on the information of the predictors.
The dataset contains 7 types of glass, including

• building windows float processed (Glass-1),
• building windows non float processed (Glass-2),
• vehicle windows float processed (Glass-3),

Table 2 Simulation study with and without network structures for covariates, respectively, indicated
by Scenarios 1 and 2: I = 4

Scenario Criteria Agresti SVM LDA KNN XGBOOST LR-HomoGraph LR-ClassGraph

1 PREmicro 0.635 0.830 0.640 0.678 0.690 0.841 0.890

RECmicro 0.635 0.830 0.640 0.700 0.690 0.841 0.890

Fmicro 0.635 0.830 0.640 0.689 0.690 0.841 0.890

PREmacro 0.637 0.843 0.643 0.686 0.688 0.847 0.898

RECmacro 0.635 0.830 0.640 0.704 0.690 0.842 0.891

Fmacro 0.636 0.836 0.641 0.695 0.689 0.844 0.894

2 PREmicro 0.703 0.855 0.739 0.672 0.790 0.851 0.861

RECmicro 0.717 0.855 0.734 0.672 0.790 0.851 0.866

Fmicro 0.710 0.855 0.736 0.672 0.790 0.851 0.863

PREmacro 0.706 0.805 0.740 0.704 0.792 0.859 0.860

RECmacro 0.717 0.855 0.733 0.672 0.790 0.862 0.866

Fmacro 0.711 0.830 0.736 0.687 0.791 0.860 0.863
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Table 3 Simulation study with and without network structures for covariates, respectively, indicated
by Scenarios 1 and 2: I = 2

Scenario Criteria Agresti SVM LDA KNN XGBOOST LR-HomoGraph LR-ClassGraph

1 PREmicro 0.625 0.835 0.625 0.685 0.615 0.825 0.965

RECmicro 0.625 0.835 0.625 0.685 0.615 0.825 0.965

Fmicro 0.625 0.835 0.625 0.685 0.615 0.825 0.965

PREmacro 0.625 0.866 0.626 0.688 0.615 0.828 0.965

RECmacro 0.626 0.835 0.625 0.685 0.615 0.825 0.965

Fmacro 0.625 0.850 0.626 0.686 0.615 0.825 0.965

2 PREmicro 0.860 0.985 0.850 0.565 0.775 0.825 0.795

RECmicro 0.860 0.985 0.850 0.565 0.775 0.825 0.795

Fmicro 0.860 0.985 0.850 0.565 0.775 0.825 0.795

PREmacro 0.861 0.981 0.605 0.850 0.775 0.820 0.770

RECmacro 0.860 0.984 0.605 0.850 0.775 0.820 0.772

Fmacro 0.861 0.982 0.605 0.850 0.775 0.820 0.771

• vehicle windows non float processed (Glass-4),
• containers (Glass-5),
• tableware (Glass-6), and
• headlamps (Glass-7),

and the predictors include 9 different chemical materials, refractive index

(RI), Sodium (NA), Magnesium (MG), Aluminum (AL), Silicon (SI),
Potassium (K), Calcium (CA), Barium (BA), and Iron (FE). The complete
dataset is available at https://archive.ics.uci.edu/ml/datasets/glass+identification. The
sample size in each class is, respectively, n1 = 70, n2 = 76, n3 = 17, n4 = 0, n5 = 13,

n6 = 9, and n7 = 29, yielding the total sample size n =
7∑

i=1
ni = 214. To see the correla-

tion among the predictors, we draw a scatter plot of those 9 predictors, displayed in Fig. 2.
It is seen that some predictors, such as RI and CA, are highly correlated, and that many
pairwise predictors are generally correlated.
We first present the network structures for different chemical materials in each class.

The network structure for each class is determined by (9) and (11). The graphical results

RI
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Fig. 2 Pairwise scatter plots of predictors in glass data

https://archive.ics.uci.edu/ml/datasets/glass+identification


Chen et al. Journal of Statistical Distributions and Applications             (2019) 6:6 Page 19 of 25

are reported in Fig. 4. It is seen that the network structure of the predictors is different
from class to class. We notice that RI has no connection with other variables in every
class and the predictor FE also has no connection with others except in class 6.
Wenext evaluate theperformanceof ourproposedmethods as opposed to the conventional

approaches, SVM, LDA, KNN, and XGBOOST, which are respectively implemented
by the R packages svm(e1071), lda(MASS), knn.cv(class), and xgboost. To
examine the performance of LR-HomoGraph proposed in “Logistic regression with
homogeneous graphically structured predictors” section, we first construct the network
structures, displayed in Fig. 3, of the predictors with the class information ignored,
and we then apply the procedure described in “Logistic regression with homogeneous
graphically structured predictors” section. To implement the LR-ClassGraph method in
“Logistic regression with class-dependent graphically structured predictors” section, we
apply model (16) with respect to six different network structures in Fig. 4, and then
determine the predictive class using (18).
To measure the classification results in each class, we define the misclassification rate

in class i to be

MISi = 1
ni

n∑

j=1
I
(
y·j = i, ŷ·j �= i

)
for i = 1, · · · , I.

The results obtained from SVM, LDA, KNN, XGBOOST, and the proposed methods are
reported in Table 4. The misclassification rate of our proposed methods in each class are
smaller than other methods, and the LR-ClassGraph yields the smallest misclassification

Fig. 3 Network structures of the covariates in glass data: without classes distinguished
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Fig. 4 Network structures of the covariates in glass data: within each class

rate for each class. Among the four compared methods, the SVM outperforms the other
three methods.
Finally, we use criteria (22) and (23) to compare the overall performance of all the meth-

ods and summarize the results in Table 5. It is clear that both LR-HomoGraph and LR-
ClassGraph produce higher values of the F, PRE and REC measures, regardless of micro
and macro, implying that our proposed methods perform better than other multiclassi-
fication methods considered here. In addition, we further implement the two methods
in “Classification with predictor graphical structures accommodated” section by respec-
tively extendingmodels (12) and (17) with the linear terms in each predictor included, and
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Table 4 Classification results for glass data

Glass-1 Glass-2 Glass-3 Glass-5 Glass-6 Glass-7

Agresti Glass-1 52 19 10 0 0 0

Glass-2 18 54 7 3 0 2

Glass-3 0 0 0 0 0 0

Glass-5 0 1 0 9 0 0

Glass-6 0 0 0 0 9 0

Glass-7 0 2 0 1 0 27

MISi 0.257 0.289 1.000 0.307 0.000 0.069

SVM Glass-1 59 15 10 0 0 1

Glass-2 11 61 7 0 1 0

Glass-3 0 0 0 0 0 0

Glass-5 0 0 0 13 0 0

Glass-6 0 0 0 0 8 0

Glass-7 0 0 0 0 0 28

MISi 0.157 0.197 1.000 0.000 0.111 0.034

LDA Glass-1 46 16 3 0 1 0

Glass-2 14 41 3 2 1 1

Glass-3 10 12 11 0 0 1

Glass-5 0 4 0 10 0 2

Glass-6 0 3 0 0 7 1

Glass-7 0 0 0 1 0 24

MISi 0.343 0.461 0.353 0.231 0.222 0.172

KNN Glass-1 51 17 14 0 0 1

Glass-2 12 52 1 3 2 2

Glass-3 7 2 2 0 0 0

Glass-5 0 3 0 8 0 1

Glass-6 0 2 0 0 4 2

Glass-7 0 0 0 2 3 22

MISi 0.271 0.316 0.882 0.385 0.556 0.241

XGBOOST Glass-1 56 7 7 0 0 1

Glass-2 8 61 5 6 2 0

Glass-3 5 2 4 0 0 0

Glass-5 0 4 0 6 1 2

Glass-6 1 1 1 0 6 0

Glass-7 0 1 0 1 0 26

MISi 0.200 0.197 0.765 0.538 0.333 0.103

LR-HomoGraph Glass-1 60 15 8 0 0 1

Glass-2 10 60 6 0 0 0

Glass-3 0 1 3 0 0 0

Glass-5 0 0 0 13 0 0

Glass-6 0 0 0 0 9 0

Glass-7 0 0 0 0 0 28

MISi 0.143 0.211 0.824 0.000 0.000 0.034

LR-ClassGraph Glass-1 61 10 8 0 0 1

Glass-2 9 66 6 0 0 0

Glass-3 0 0 3 0 0 0

Glass-5 0 0 0 13 0 0

Glass-6 0 0 0 0 9 0

Glass-7 0 0 0 0 0 28

MISi 0.129 0.132 0.824 0.000 0.000 0.034
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Table 5 Overall performance of classification methods applied to glass data

Agresti SVM LDA KNN XGBOOST LR-HomoGraph LR-ClassGraph LR-HomoGraph LR-ClassGraph

+main +main

PREmicro 0.706 0.790 0.649 0.653 0.677 0.808 0.841 0.776 0.783

RECmicro 0.706 0.790 0.650 0.653 0.730 0.808 0.841 0.776 0.794

Fmicro 0.706 0.790 0.649 0.653 0.703 0.808 0.841 0.776 0.788

PREmacro 0.681 0.743 0.651 0.583 0.615 0.876 0.929 0.817 0.816

RECmacro 0.680 0.755 0.703 0.563 0.644 0.800 0.814 0.774 0.816

Fmacro 0.680 0.749 0.676 0.573 0.629 0.836 0.868 0.795 0.816

we denote those methods as LR-HomoGraph+main and LR-ClassGraph+main, respec-
tively, and report the results in the last two columns of Table 5. Such an extension of the
models, however, does not help increase the values of these measures.

Discussion
In this paper, we propose to use logistic regression methods to make a prediction for data
with network structures in predictors. In ourmethods, we first identify the network struc-
tures of the predictors for every class using graphical models, and then we capitalize on
the identified network structures for the predictors to fit a logistic regression model to
do classification and prediction. Simulation studies demonstrate that in the presence of
network structures for covariates, our proposed methods produce more precise classifi-
cation results than conventional methods, such as SVM, LDA, KNN, and XGBOOST. To
allow interested readers to use the algorithms developed in “Classification with predic-
tor graphical structures accommodated” section, the implementation procedures will be
posted at CRAN.
Our development here focuses on examining pairwise dependence structures among

predictors using the formulation (7). This is primarily driven by the consideration that
such a dependence structure is intuitively interpretable and commonly exists in many
problems. Extensions to facilitating triplewise or higher order dependence structures or
even with the main effects (i.e., single variable effects), among predictors can be car-
ried out by extending (7) to the form (9.5) of Hastie et al. (2015). Such extensions are,
in principle, straightforward to implement technically, but the issue of overfitting may
arise. In addition, underlying constraints on themodel parametersmay become a complex
concern in numerical implementation. Discussions on this aspect were given by many
authors, including Yang et al. (2015), Yi (2017), and Yi et al. (2017). Our discussion in this
paper is directed to using the exponential family distribution to facilitate continuous pre-
dictor. It is easy to extend our methods to accommodate mixture graphical models which
feature both continuous and discrete predictors.
In obtaining the estimator (9), we use the L1-norm or the LASSO penalty, which is

driven by its popularity as well as the availability of the implementation software packages
(e.g., R packages huge and XMRF). However, the methods described in “Classification
with predictor graphical structures accommodated” section are not just confined to the
LASSO penalty. Our methods apply as well when other penalty functions are used. For
instance, penalty functions, such as the elastic-net, SCAD, adaptive LASSO, L2-norm
penalties can be used to replace the LASSO penalty in deriving the estimator (9); the
remaining procedures developed in “Classification with predictor graphical structures
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accommodated” section still carry through. It will be interesting to conduct numerical
studies for the use of different penalty functions to compare how results may differ with
and without incorporating the network structure in the analysis, as noted by a referee.
Though in this paper we are not able to exhaust numerical explorations for all possible
penalty functions, the implementation framework presented in “Classification with pre-
dictor graphical structures accommodated” section allows the users to take any penalty
functions that suit their own problems.
Finally, we comment that several aspects of the methods described in “Classification

with predictor graphical structures accommodated” section warrants further research.
As pointed out by a referee, our methods are developed for the problems with low
dimensional data (i.e., p < n) and they are not applicable to sizable data with p ≥ n.
In the current digital world, it is not uncommon that we often have to handle data
with thousands of predictor variables but the sample size is a lot smaller. In such cir-
cumstances, dimension reduction or feature screening techniques would be employed
before proceeding with formal data analysis. It is interesting to generalize our methods
to handle high-dimensional data with p being of a polynomial order of n or even ultra
high-dimensional data with p being of an exponential order of n.
Our methods basically involve two steps in using measurements for the covariates and

class labels. In the first step, we utilize undirected graphs to examine the covariate mea-
surements alone, and the class information only comes into play in the second step when
using logistic regression for classification. Alternatively, one may consider using directed
acyclic graphs to feature conditional independencies among variables and develop prob-
abilistic graphical models for classification. To evaluate the performance of the proposed
methods, we focus on the comparisons with the competing classifiers reviewed in
“Evaluation of the performance” section. While those algorithms cover a good range of
available classifiers, they are not exhaustive, or even far from being comprehensive, in
comparisons. Despite the frequentist nature of our methods, it is interesting to compare
the proposed methods to the Bayesian network classifiers which have proven useful in
applications (e.g., Geiger and Heckerman 1996; Pérez et al. 2006; Bielza and Larrañaga
2014). Furthermore, it is worthwhile to employ rigorous hypothesis testing procedures
to evaluate whether the differences in the results obtained from different classifiers are
statistically significant.
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