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1 Introduction
A basic notion from the theory of spherical probability laws is that of the stochastic basis
which is a random vector following the uniform distribution on the Euclidean unit sphere
in the k-dimensional Euclidean space Rk , see e.g. Fang et al. (1990). In this monograph,
multivariate uniform distributions are introduced in an algebraic way without referring
to any type of surface measure. Numerous authors deal with the (singular) uniform dis-
tribution by considering the density of its k − 1-dimensional marginal distribution, an
approach which will, however, not further be discussed, here. Instead, the point of view of
uniformity of which is the speech here is to define it by having a constant Radon-Nikodym
derivative with respect to the Euclidean surface content measure. This geometric view
onto the class of spherical distributions is the background of the corresponding geometric
measure representation (2) in Richter (1991). This representation extends the one given
in (3) in Richter (1985) for the Gaussian law and was exploited later on in a series of papers
on probabilities of large deviations and on various statistical distributions. For a related
survey see e.g. Richter (2015b).
Many authors studied more general or modified multivariate distribution classes. Just

for getting an impression of this research area taking into account different points of view
we refer to the more recent papers Field and Genton (2006), Arnold et al. (2008), Kamiya
et al. (2008), Balkema et al. (2010), Balkema and Nolde (2010), Richter (2014), Richter
(2015a) and Nolan (2016) as well as the references given there.
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A detailed geometric description of uniformity of the stochastic basis of lk,q-spherical
distributions, q > 0, k ∈ {2, 3, . . .}, is given in Richter (2009). The mathematical back-
ground there is based upon both a study of the different notions of Euclidean and
lk,q-surface content measures on lk,q-spheres and on using suitable coordinates for evalu-
ating the uniform measure of given subsets of spheres. The coordinates mentioned were
introduced in Richter (2007) solving a long standing problem apparently conclusively
treated as insolvable in Szablowski (1998).
It is a natural next step of research to consider random vectors having p-spherical uni-

form distributions with positive components of p = (p1, . . . , pk). The studies of (limit laws
in) high risk scenarios in Balkema and Embrechts (2007) and of natural image patches in
Sinz et al. (2009), e.g., deliver well motivating examples from this direction. A stochastic
matrix times vector and a dynamic geometric measure representation were proved for the
corresponding two-dimensional case in Richter (2017). More generally, the necessities of
flexible probabilistic modeling in the era of big statistical data make it desirable to further
study the class of p-spherical or lk,p-symmetric distributions. For technical reasons, we
deal exclusively with the case

pi �= pj for i �= j, (1)

here. As a consequence, distributions studied here are not invariant w.r.t. the class of
orthogonal transformations or at least w.r.t. particular rotations but still appear to be
sign-invariant meaning invariance w.r.t. multiplication with sign matrixes. While sam-
ple schemes for identically distributed variables automatically imply exchangeability of all
variables in the present paper this property is excluded due to assumption (1). Distribu-
tions considered here are therefore fully outside the scope of the spherical distribution
part and in consequence of the remaining parts of the classical monograph by Fang et al.
(1990) and numerous work following it.
The present paper is structured as follows. The class of p-spherical uniform distribu-

tions is introduced in a geometrically motivated way in Section 2 and extended to the
class of p-spherical or lk,p-symmetric distributions in Section 3.1. The Sections 3.2 and
3.3 deal with a geometric measure representation and a combination of the principles of
specialization and marginalization in dependence modeling, respectively.

2 The class of p-spherical uniform distributions
Let us consider the functional

|x|(p) = |x1|p1
p1

+ . . . + |xk|pk
pk

, x = (x1, ..., xk)T ∈ R
k

where the vector p = (p1, ..., pk) consists of pairwise different components throughout
this paper. The set

Bp(r) =
{
x ∈ R

k : |x|(p) ≤ r
}

will be called the p-ball with p-spherical radius parameter r > 0. Clearly, the ”unit
ball” Bp= Bp(1) is not a norm or antinorm ball, r is not a radius in the sense
of Euclidean or any lk,q-geometry and the Minkowski functional of Bp(r) is not
homogeneous. But if we would allow, for a meantime ignoring assumption (1), to put
p1 = ... = pk = q ≥ 1 or p1 = ... = pk = q ∈ (0, 1) then Bp(r) would be a convex norm
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ball or a radially concave antinorm ball with norm or antinorm radius (qr)1/q, respectively.
In these cases the notation Bp(r) would coincide with the notation Bq

(
(qr)1/q

)
in Richter

(2014); Richter (2015a) where q is just a scalar while p is a k-dimensional vector, here.
For the notions of antinorm and radial concavity we refer to Moszyńska and Richter
(2012). The functional x → |x|(p) is invariant w.r.t. multiplication with sign matrixes,
that is |Sx|(p) = |x|(p) if S is a diagonal matrix with entries s1, ..., sk which can be arbitrarily
chosen from {−1, 1}. The topological boundary Sp(r) of Bp(r) is called the p-sphere with
p-spherical radius parameter r. We call Sp(r) (positive) matrix-homogeneous meaning
that it allows the representation Sp(r) = Dp(r)Sp where

Dp(r) = diag
(
r

1
p1 , ..., r

1
pk

)

is a diagonal matrix and Sp = Sp(1) denotes the ”unit sphere”. Note that Bp(r1) ⊂
Bp(r2) if r1 < r2 and

Bp(r) =
r⋃

�=0
Sp(�).

Let μ and Bk denote the Lebesgue measure and the Borel σ -field in R
k , respectively.

Assume the random vector X follows the uniform distribution onB(Bp) = Bk ∩ Bp, that
is

P(X ∈ M) = μ(M)

μ(Bp)
,M ∈ B(Bp),

and let R(p) = |X|(p). What can we say then about the distribution of the random vector

Up = Dp

(
1

R(p)

)
X?

The answer to this question is basic for disclosing the main message of this paper and will
be given below. The sets

CPCp(A) = {Dp(r)x : x ∈ A, r > 0}

and

Sep(A, r) = CPCp(A) ∩ Bp(r)

defined for A ∈ Bk ∩ Sp = B(Sp) are called Dp-transformed central projection cone and
Dp-transformed ball sector, respectively. For evaluating the volume of the latter type of
sets we shall use the following coordinates.

Definition 1 Let p > 0 be a parameter and Mk = (0,∞) × M∗
k where M∗

k =
[ 0,π)×(k−2)×[ 0, 2π). The (p, p)-spherical coordinate transformation Polp,p,k : Mk → R

k

with

(x1, ..., xk)T = Polp,p,k(r,ϕ1, ...,ϕk−1)
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is defined by

x1 = (p1r)
1
p1 sign(cosp ϕ1)| cosp ϕ1|

p

p1 ,

x2 = (p2r)
1
p2 sign(cosp ϕ2)(sinp ϕ1| cosp ϕ2|)

p

p2 ,

x3 = (p3r)
1
p3 sign(cosp ϕ3)(sinp ϕ1 sinp ϕ2| cosp ϕ3|)

p

p3 ,
...

xk−1 = (pk−1r)
1

pk−1 sign(cosp ϕk−1)(sinp ϕ1 · . . . · sinp ϕk−2| cosp ϕk−1|)
p

pk−1 ,

xk = (pkr)
1
pk sign(sinp ϕk−1)(sinp ϕ1 · . . . · sinp ϕk−2| sinp ϕk−1|)

p

pk .

(2)

Here, the q-generalized trigonometric functions sinq ϕ = sinϕ
Nq(ϕ)

and cosq ϕ = cosϕ
Nq(ϕ)

with Nq(ϕ) = (| sinϕ|q + | cosϕ|q)1/q, q > 0 are introduced in Richter (2007) and
used in studying and geometrically representing generalized spherical power exponential
distributions in a series of papers starting from Richter (2009).

Remark 1 The map Polp,p,k is almost one-to-one and its inverse is given by

r =
k∑

i=1

|xi|pi
pi

, (3)

ϕi = arccosp[ sign(xi)
(

|xi|pi/pi∑k
j=1 |xj|pj/pj

)1/p

] , i = 1, ..., k − 2 (4)

and

ϕk−1 = arctan
[
sign

(
xk−1
xk

)( |xk|pk/pk
|xk−1|pk−1/pk−1

)1/p
]
. (5)

Evaluating the Jacobian of the transformation Polp,p,k , the volume of the Dp-
transformed ball sector satisfies

μ(Sep(A, r)) = 1
1
p1 + ... + 1

pk

r
1
p1

+...+ 1
pk π∗

p (A) (6)

where

π∗
p (A) =

∫

Pol∗−1
p,p,k(A)

J∗k (ϕ)dϕ

with J∗k (ϕ)dϕ being equal to

pk−1p
1
p1

−1
1 · ... · p

1
pk

−1
k

k−1∏
i=1

| cosp ϕi|
p

pi
−1| sinp ϕi|

p

pk
+...+ p

pi+1
−1 dϕi

N2
p(ϕi)

. (7)

Here and below, the exponent of | sinp ϕk−1| is defined to be p

pk − 1 and

Pol∗p,p,k(ϕ) = Polp,p,k(1,ϕ),ϕ = (ϕ1, ...,ϕk−1)
T

is the restriction of the function Polp,p,k to radius parameter 1.
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Remark 2 If the expression in (7) is equivalently rewritten by substituting xi=cosϕi,i=
1, ..., k then π∗

p (A) can be represented as

π∗
p (A) = pk−1p

1
p1

−1
1 · ... · p

1
pk

−1
k

⎛
⎝

∫

M+
+

∫

M−

⎞
⎠ J�k (x1, ..., xk−1)d(x1, ..., xk−1) (8)

where

J�k (x1, ..., xk−1) =
k−1∏
i=1

|xi|
p

pi
−1 (1 − x2i

) 1
2 (

p

pk
+...+ p

pi+1
)−1

(
|xi|p + (

1 − x2i
)p/2

) 1
pi

+ 1
pi+1

+...+ 1
pk

and

M+(−) =

⎧
⎪⎨
⎪⎩

(x1, ..., xk−1)
T :

⎛
⎜⎝x1, ..., xk−1, +(−)

⎛
⎝1 −

k−1∑
j=1

|xj|pj
⎞
⎠

1/pk
⎞
⎟⎠

T

∈ A

⎫
⎪⎬
⎪⎭
.

The following definition is well motivated by the fact that for the case p = (q, . . . , q)
(not considered here) the lk,q-surface content measure is similarly introduced in Richter
(2009) and proved to be equivalent to the differential-geometric definition. Much more
general results of this type of equivalence are proved for norm and antinorm spheres in
Richter (2015a).

Definition 2 Let fA(r) = μ(Sep(A, r)) for r > 0 and A ∈ B(Sp). We call

Op(Dp(r)A) = f ′
A(r)

the p-spherical surface content of Dp(r)A or its Sp-surface content, for short.

It follows from this definition and equation (6) that

Op(A) = f ′
A(1) = π∗

p (A).

Let us emphasize again that differently from what is assumed in a broad literature p is a
vector, here. In particular, as because

Pol∗−1
p,p,k(Sp) = M∗

k

and
π/2∫

0

(cosp ϕ)a−1(sinp ϕ)b−1 dϕ

N2
p(ϕ)

=
B
(
a
p
, b
p

)

p
(9)

there holds

Op(Sp) = 2kB
(

1
p1

, ...,
1
pk

) k∏
i=1

p
1
pi

−1
i . (10)

Here,

B(x1, ..., xk) = �(x1) · ... · �(xk)
�(x1 + ... + xk)

, xi > 0, i = 1, ..., k
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denotes the poly Beta function where �(x) =
∞∫
0
tx−1e−tdt, x > 0 is the Gamma function,

and B(., .) is the classical Beta function. Moreover,

Op(Dp(r)A) = π∗
p (A)r

1
p1

+...+ 1
pk

−1. (11)

Definition 3 The density

f ∗
p,a,b(ϕ) = p

B
(
a
p
, b
p

) (cosp ϕ)a−1(sinp ϕ)b−1

N2
p(ϕ)

,ϕ ∈ (0,π/2)

is called angular Beta density with parameters p > 0, a > 0 and b > 0.

Remark 3 The notion of Sp-surface content of Dp(r)A is different from the notion of
Euclidean surface content of Dp(r)A (unless for the case p = (2, ..., 2) which, however,
because of assumption (1) is not allowed to appear, here).

Definition 4 The p-spherical uniform probability law on the Borel σ -field B(Sp) is
defined by

ωp(A) = Op(A)

Op(Sp)
.

This definition corresponds to Definition 8 in Richter (2007) where, however, p is a
scalar while it is a k-dimensional vector, here. Similarly, the notation Up = Dp

(
1

R(p)

)
X

introduced above is closely connected to that given in the same paper where p is a scalar.
However, while R(p) = |X1|p1

p1 + ...+ |Xk |pk
pk denotes a certain ”mixed-power-of-radius”, here,

not being the power of a norm or antinorm, in Richter (2007) the symbol R actually means
a norm or antinorm. The proof of the following theorem is analogous to that of Theorem
2 in Richter (2017) and will therefore be omitted, here.

Theorem 1 (a) The random vector Up follows the p-spherical uniform distribution,
Up ∼ ωp, is independent of R(p), and R(p) has the following density with respect to
the Lebesgue measure on the real line

(
1
p1

+ ... + 1
pk

)
r

1
p1

+...+ 1
pk

−1I[0,1)(r)dr. (12)

(b) If, vice versa, ξ and W are independent where ξ has density (12) andW ∼ ωp then
η = Dp(ξ) · W is uniformly distributed on the unit ball Bp.

We are now in a position to disclose the basic message of this paper as follows: matrix-
multiplication of a p-spherical uniformly distributed random vector Up by Dp(R) where
Up and the random variable R ≥ 0 are independent generates the world of distributions
being of main interest, here.

Remark 4 If the random variable Y is uniformly distributed on (0, 1) then Zp =
Y 1/

(
1
p1

+...+ 1
pk

)
follows the density (12), that is Zp

d= R(p). Thus R(p) can be simulated by Zp.

Theorem 2 Let the random vector X be uniformly distributed on the unit p-ball Bp.
Then the p-spherical radius variable R(p) and the p-spherical angles Φ1, ...,Φk−1 of X are
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independent and the angle Φi follows the angular Beta density with parameters p, ai and
bi, fp,ai,bi , where ai = p

pi , bi = p

pk + ... + p

pi+1
, i = 1, ..., k − 2 and ak−1 = p

pk−1
, bk−1 = p

pk .

Proof According to Definition 1, the vector Up allows the representation

Up =

⎛
⎜⎜⎜⎜⎜⎝

(p1)
1
p1 | cosp Φ1|

p

p1 S1
(p2)

1
p2 | sinp Φ1 cosp Φ2|

p

p2 S2
...

(pk)
1
pk | sinp Φ1 sinp Φ2 · . . . · sinp Φk−2 sinp Φk−1|

p

pk Sk

⎞
⎟⎟⎟⎟⎟⎠

(13)

where the signature vector S = (S1, . . . , Sk)T is independent of �1, . . . ,�k−1 and uni-
formly distributed in {−1, 1}×k . It follows from the evaluation of the Jacobian of the
transformation Polp,p,k that the vector

(
R(p),Φ1, ...,Φk−1

)T has the density

fp(r,ϕ) = r
1
p1

+...+ 1
pk

−1J∗k (ϕ1, ...,ϕk−1)

where J∗k satisfies representation (7). For i = 1, ..., k − 1, the independent angles Φi thus
have the densities

fp,p,i(ϕ) = p

B
(

1
pi ,

1
pk + . . . + 1

pi+1

) | cosp ϕ| ppi −1| sinp ϕ|
p

pk
+...+ p

pi+1
−1

N2
p(ϕ)

. (14)

Now, Definition 3 applies.

Remark 5 If �i follows the density in (14) then Y = | cosp �i|p ∼ B(l,m) where
l = 1

pi ,m = 1
pi+1

+ ... + 1
pk . Let (V0,1,V0,2) be uniformly distributed in (0, 1) × (0, 1), then

there holds

P(Y ∈ B) = P
(

V 1/l
0,1

V 1/l
0,1 + V 1/m

0,2
∈ B|V 1/l

0,1 + V 1/m
0,2 ≤ 1

)
, B ∈ B∩[ 0, 1] .

This allows to simulate Y by an acceptance-rejection method, see equation (A5) and algo-
rithm A.1, step 2 in Kalke and Richter (2013). Thus, methods for simulating vectors Up
and X being p-spherical uniformly distributed on Sp and uniformly distributed on Bp,
Up ∼ U(Sp) and X ∼ U(Bp), respectively, can now be established as follows.

Simulation Algorithm 1[p-spherical uniform distribution in Sp, p = (p1, ..., pk)T ]

Step 1 For i ∈ {1, . . . , k-1}, simulate (Vi,1,Vi,2) ∼ U([ 0, 1]×[ 0, 1] )

until Vpi
i,1 + V

1/
(

1
pi+1

+...+ 1
pk

)

i,2 ≤ 1.

Step 2 CalculateWi = Vpi
i,1

Vpi
i,1+V

1/
(

1
pi+1 +...+ 1

pk

)

i,2

, i = 1, ..., k − 1.

Step 3 Simulate independently (S1, . . . , Sk) ∼ U
({−1,+1}×k).

Step 4 Calculate Up,i = Si

(
i−1∏
j=1

(1 − Wj)Wi

)1/pi

for i = 1, . . . , k − 1

and Up,k = Sk
k∏

j=1
(1 − Wj)1/pk .

Step 5 Return Up = (Up,1, ...,Up,k)
T .

Simulation Algorithm 2 [Uniform distribution in Bp, p = (p1, ..., pk)T ]
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Step 1 Simulate Up ∼ U(Sp) according to Algorithm 1.
Step 2 Simulate independently: Y ∼ U(0, 1).

Calculate R(p) = Y 1/( 1
p1

+...+ 1
pk

).
Step 3 Return X = R(p) · Up

Remark 6 By symmetry, the distribution center of Up is E(Up) = 0k where 0k =
(0, ..., 0)T ∈ R

k is the zero vector of the sample space. The vector Up has uncorrelated
components. Using formulas (9), (13) and (14) one can show that the variances of U ′

ps
components are

V(Up,i) = γ1 · . . . · γi · p
2
pi
i

�( 3
pi )�

(
1
p1 + ... + 1

pk

)

�( 1
pi )�

(
3
pi + ∑

j �=i

1
pj

) , i = 1, ..., k

where γ1 = ... = γk−2 = 2 and γk−1 = γk = 4.

Remark 7 (a) Let us call

smp(A) = μ(Sep(A, 1))
μ(Bp)

the Dp-transformed-sector measure onB(Sp) (or, more precisely, the uniform
probability measure of the Dp-transformed sector Se(A, 1) of Bp). It follows from the
obvious equations

OP(A)

OP(Sp)
= f ′

A(1)
f ′
Sp(1)

= π∗
p (A)

π∗
p (Sp)

= μ(Sep(A, 1))
μ(Sep(Sp, 1))

= μ(Sep(A, 1))
μ(Bp)

that

ωp(A) = smp(A).

Thus, the p-spherical uniform probability law ωp can also be called a
Dp-transformed-sector measure. For an interpretation of ωp as cone measure see (e)
and Remark 9 (b).

(b) According to Remark 3, the notion of p-spherical uniform distribution onB(Sp) is
different from the notion of uniform distribution with respect to Euclidean surface
content (unless for p1 = ... = pk ∈ {1, 2,∞}).

(c) Fine properties of the Euclidean surface content measure defined on the Borel σ -field
of the Euclidean unit sphere, a precursor of the Sp-surface content measure Op
considered here, are exploited by the author in the eighties and nineties of the last
century in a series of papers on large deviations. A main idea in the background of
those work is the development and application of a generalized method of
indivisibles extending a classical approach by Cavalieri and Torricelli, see Richter
(1985), Richter (2015b) and Günzel et al. (2012).

(d) It is a challenging problem to find a differential-geometric interpretation of Op as it
was found in Richter (2009) for the lk,q-surface content measure and in Richter
(2015a) for norm and antinorm spheres. This problem was first stated for the
two-dimensional case in Richter (2017).
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(e) Several authors who study uniform distributions on (non-Dp-transformed)
generalized spheres make use of the notion cone measure instead of sector measure
and rely on the last representation in (a), that is on relating volumes to each other, see
e.g. Naor and Romik (2003) and Barte et al. (2005) and a series of follow up papers.

(f) Only a few days before finishing the present paper, Amir Ahmadi-Javid kindly let me
know his joint article Ahmadi-Javid and Moeini (2019) where the authors follow
another way of considering a uniform distribution onB(Sp). They start, in Definition
2.3, with a random vector being uniformly distributed in a parallelepiped and,
referring to the work of Schechtman and Zinn (1990), Rachev and Rüschendorf
(1991), Song and Gupta (1997), Liang and Ng (2008), Harman and Lacko (2010) and
Lacko and Harman (2012), later make use of a common (non-dynamical) notion of
cone measure (just like the one mentioned in (e)) for studying a certain type of
uniform distributions onB(Sp). A closer comparison with the method presented
here, where we start with a uniform distribution on a ball Bp and continue with a
dynamically transformed-cone measure, would be of interest for future work.

3 The class of p-spherical distributions
A random vector distributed according to the p-spherical uniform distribution builds the
stochastic basis of any p-spherical distributed random vector considered in Section 3.1.
Examples of light and heavy distribution centers and tails are possible. A geometric mea-
sure representation and its applications allow studying exact distributions of generalized
χ2-, t- and F-statistics in Section 3.2. The final Section 3.3 gives a sketch of an alterna-
tive approach to describing dependence of random variables following one-dimensional
specializations of k-dimensional distributions instead of marginal distributions.

3.1 Definitions and Examples

Definition 5 Let the random vector Up follow the p-spherical uniform distribution on
the Borel σ -fieldB(Sp), Up ∼ ωp, and R be a nonnegative random variable having cumu-
lative distribution function (cdf ) F and characteristic function (cf ) φ and being independent
of Up, then

X = Dp(R)Up (15)

is said to follow the p-spherical distribution �
cdf (F)
p = �

cf (φ)
p . The vector Up is called the

p-spherical uniform basis and R the generating variate of X, and (15) a stochastic represen-
tation of X. The distribution of X will alternatively be denoted �

pdf (f )
p if R has probability

density function (pdf ) f.

Remark 8 If E
(
R(p) 1

min{p1,...,pk }
)

is finite then, due to Remark 6, E(X) = 0k and if

E

(
R(p) 2

min{p1,...,pk }
)

< ∞ then V(Xi) = E

(
R(p) 2

pi

)
V(Up,i), i = 1, ..., k. For the derivation

of moments in the case p1 = ... = pk we refer to Arellano-Valle and Richter (2012).
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Theorem 3 The characteristic function of a p-spherically distributed random vector X
satisfying representation (15) can be written as

φX(t) =
∞∫

0

φUp(Dp(r)t)PR(dr), t ∈ Rk

where PR and φUp denote the distribution law of R and the characteristic function of
Up, respectively.

Proof Because of the diagonal structure of Dp(r) we have

φX(t) = Eei(t,Dp(R)Up) = Eei(Dp(R)t,Up).

If E(Y |R) denotes the conditional expectation of Y given R = r then

φX(t) = EE

(
ei(Dp(r)t,Up)|R = r

)
=

∞∫

0

φUp(Dp(r)t)PR|Up(dr)

from where the result follows by independence of Up and R.

Corollary 1 (a) The distribution of a p-spherically distributed random vector X is
uniquely determined by the distribution of its generating variate R.

(b) If a p-spherically distributed random vector X has a density, then it is of the form
fX = ϕg;p,

ϕg;p(x) = C(g; p)g
(
|x|(p)

)
, x ∈ R

n

where g :[ 0,∞) →[ 0,∞) is a density generating function (dgf) satisfying

0 < I(g; p) =
∞∫

0

r
1
p1

+...+ 1
pk

−1g(r)dr < ∞,

and the normalizing constant allows the factorization
1

C(g; p)
= I(g; p)Op(Sp).

This density is invariant w.r.t. multiplication with sign matrices, or sign-invariant or
sign-symmetric. For a general class of symmetric distributions we refer to
Arellano-Valle et al. (2002) and Arellano-Valle and del Pino (2004).

Both this result and the following definition transfer earlier statements from Richter
(2014) to the present case. The following definition adopts notation inMüller and Richter
(2016) and is aimed to make the notion of dgf unique.

Definition 6 A dgf g satisfying the equation

I(g; p)Op(Sp) = 1 (16)

is called density generator (dg) of a continuous p-spherical distribution.

Example 1 (a) The dg of the p-spherical Kotz type distribution having parameters M >

1 − 1
p1 − ... − 1

pk and β and γ from (0,∞) is

g(p)
Kt;M,β ,γ (r) = C(p)

Kt;M,β ,γ r
M−1e−βrγ I(0,∞)(r)
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where

C(p)
Kt;M,β ,γ = γβ

(
M−1+ 1

p1
+...+ 1

pk

)
/γ

�
((

M − 1 + 1
p1 + ... + 1

pk

)
/γ

)
2kB

(
1
p1 , ...,

1
pk

) k∏
i=1

p1/pi−1
i

.

The p-spherical Kotz type pdf with parameters M,β , γ is therefore

ϕ
(p)
Kt;M,β ,γ (x) = C(p)

Kt;M,β ,γ

( |x1|p1
p1

+ ... + |xk|pk
pk

)M−1
e
−β

(
|x1|p1
p1

+...+ |xk |pk
pk

)γ

. (17)

(b) Particularly, the dg of the p-spherical power exponential distribution is

g(p)
PE (r) =

⎛
⎝

k∏
i=1

Ci

⎞
⎠ e−rI(0,∞)(r)

and one may write then

�(p)(dx) =
⎛
⎝

k∏
i=1

Ci

⎞
⎠ exp

{
−|x|(p)

}
dx1...dxk

to denote the k-dimensional p-power exponential density where Ci = p1−1/pi
i

2�(1/pi)) , i =
1, ..., k are individual normalizing constants. In this case the random vector X consists of
independent components, and according to (a) there holds

k∏
i=1

Ci = C(p)
Kt;1,1,1.

Example 2 The dg of the p-spherical Pearson Type VII distribution having parameters
M > max

{
1, 1

p1 + ... + 1
pk

}
and ν > 0 is

g(p)
PT7;M,ν(r) = C(p)

PT7;M,ν

(
1 + r

ν

)−M
I(0,∞)(r)

where

C(p)
PT7;M,ν =

�(M)
k∏

i=1
p1−1/pi
i

2kν
1
p1

+...+ 1
pk · �

(
M − 1

p1 − ... − 1
pk

)
�
(

1
p1

)
· · · · · �

(
1
pk

) .

The p-spherical Pearson Type VII density with parameters M and ν is therefore

ϕ
(p)
PT7;M,ν(x) = C(p)

PT7;M,ν

(
1 + 1

ν

( |x1|p1
p1

+ ... + |xk|pk
pk

))−M
. (18)

3.2 Geometric measure representation

The following theorem is a geometric-measure theoretic counterpart to Theorem 3. Its
proof follows the line of author’s earlier work in Richter(1985, 1991, 2014, 2017). The
main aim of this section is to present first applications of the geometric measure repre-
sentation extending the classical Helmert-Pearson χ2-, Gosset alias Student t- and Fisher
F-distributions.
Let �

(p)
g denote the continuous p-spherical distribution law having dg g.
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Theorem 4 For every B ∈ Bk ,

�
(p)
g (B) = 1

I(g; p)

∞∫

0

r
1
p1

+...+ 1
pk

−1g(r)Fp(B, r)dr.

Let a random vector X follow the p-spherical distribution law with dg g, X ∼ �g;p, and
T = T(X) be any statistic. The statistic T satisfies T < λ if and only if the outcome of X
belongs to the sub-level set

BT (λ) =
{
x ∈ R

k : T(x) < λ
}
,

thus

P(T < t) = 1
I(g; p)

∞∫

0

r
1
p1

+...+ 1
pk

−1g(r)Fp(BT (λ), r)dr. (19)

Example 3 Chi-p statistic Let

T(X) = |X|(p)

denote the p-spherical radius variable of the random vector X, that is T(X) = R(p), then
the ipf of the set BT satisfies

Fp(BT (λ), r) = I(0,λ)(r), r > 0.

The Chi-(g; p) pdf is therefore

f (λ) = λ
1
p1

+...+ 1
pk

−1g(λ)I(0,∞)(λ). (20)

Differently from the χ2(k)-distribution where the parameter k corresponds to the dimen-
sion of a subspace of the sample space, here, the parameter 1

p1 + ...+ 1
pk itself does not allow

interpretation as dimension of a linear space or a linear subspace of the sample space, but
its number of summands k does.
Note that the density of T was dealt with for the particular dg of the generalized Gaussian

law in Taguchi (1978). For 1
p1 + ... + 1

pk = k
2 the pdf in (20) is called the g-generalization

of the Chi-square density with k degrees of freedom (d.f.) in Richter (1991) (note that there
holds p1 = . . . = pk but (16) is not assumed to be satisfied there). For more partial cases
and statistical applications of this distribution, see Richter (2007, 2009, 2016).
If we specify g = g(p)

PE in (19), see Example 1(b), then

fR(p) (λ) = λ
1
p1

+...+ 1
pk

−1e−λ
k∏

i=1

p1−1/pi
i

2�(1/pi)
.

In this case we have

ER(p) = �

(
1
p1

+ ... + 1
pk

+ 1
) k∏

i=1

p1−1/pi
i

2�(1/pi)

and

E(R(p)2) = �

(
1
p1

+ ... + 1
pk

+ 2
) k∏

i=1

p1−1/pi
i

2�(1/pi)
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as well as

E(R(p) 2
pi ) = �

⎛
⎝ 3
pi

+
∑
j �=i

1
pj

⎞
⎠

k∏
j=1

p1−1/pj
j

2�(1/pj)
.

It follows from Remarks 6 and 8 that

V(Xi) = γ1 · . . . · γi

2kB
(

1
p1 , ...,

1
pk

)
�
(

3
pi

)

�
(

1
pi

)p1+
1
pi

i
∏
j �=i

p
1− 1

pj
j . (21)

Similarly, if we put g = g(p)
Kt;M,β ,γ or g = g(p)

PT7;M,ν in (19) then fR(p) and V(Xi) will be
correspondingly specified.

Example 4 Fisher-p statistic Let the vectors X(1)T = (X1, ...,Xm) and X(2)T =
(Xm+1, ...,Xk) be sub-vectors of X = (X1, ...,Xm,Xm+1, ...,Xk)

T and p(1) = (p1, ..., pm)T ,
p(2) = (pm+1, ..., pk)T be sub-vectors of the shape-tail parameter vector p =
(p1, ..., pm, pm+1, ..., pk)T , and assume that X ∼ �g;p. We consider the F-p statistic

T(X) = |X(1)|(p1)/m
|X(2)|(p2)/(k − m)

and recognize that T(x) = T(Dp(γ )x) for all γ > 0. Roughly spoken, BT has the curved
cone-type property

Dp(γ )BT (λ) = BT (λ), λ > 0. (22)

Thus the ipf of the set BT does not depend on r and equation (19) shows that

P(T < λ) = Fp(BT (λ), 1).

Making use of the coordinate transformations

Polp(1),p,m : (r1,ϕ1, ...,ϕm−1) → x(1)

and

Polp(2),p,m : (r2 = cos1 ϕm+1, ...,ϕk−1) → x(2)

instead of the coordinate transformations SPHp,1 and SPHp,2 used in Richter (2009), and

r1 = cos1 ϕ, r2 = sin1 ϕ, 0 ≤ ϕ < π/2,

and further following the line of the proof of Theorem 6 there, we get

Fp(BT (λ), 1) = 1

B
(

1
p1 + ... + 1

pm ,
1

pm+1
+ ... + 1

pk

)

·
π/2∫

arc cot
(

mλ
k−m

)

(cosϕ)
1
p1

+...+ 1
pm −1

(sinϕ)
1

pk+1
+...+ 1

pk
−1

N1(ϕ)
1
p1

+...+ 1
pk

dϕ.

Taking the derivative shows that the pdf of statistic T is

fm,k−m(λ) =
(

m
k−m

) 1
p1

+...+ 1
pm

λ
1
p1

+...+ 1
pm −1

B
(

1
p1 + ... + 1

pm ,
1

pm+1
+ ... + 1

pk

) (
1 +

(
mλ
k−m

))( 1
p1

+...+ 1
pk

) . (23)
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We call the pdf in (23) the Fisher-p density with (m, k − m) d.f. or Fm,k−m(p)-density, for
short.

Example 5 Student-p statistic Let the t-p statistic be defined by

T(X) = X1(|X(2)|(p2)/(k − 1)
)1/p1 .

The pdf of T is called Student p-density with k−1 d.f. or tk−1
(

1
p1 , ...,

1
pk

)
-density, for short:

d
dt

P(T < t) = p1
2
f1,k−1(tp1)t

= p1

2(k − 1)
1
p1 B

(
1
p1 ,

1
p2 + ... + 1

pk

)
(1 + |t|p1

k−1 )

.

Note that, as in Example 4, BT is a Dp-transformed-cone or curved-transformed-cone type
set satisfying (22).

Remark 9 (a) Because Fisher-p and Student-p distributions do not depend on the dg,
the F-p and t-p statistics are called g-robust. For a study of g-sensitivity and
g-robustness of certain statistics see Ittrich et al. (2000) and for a study of statistics
generating curved-transformed-cone type sets, see Ittrich and Richter (2005).

(b) Let BT (λ) be a curved-transformed-cone type set satisfying (22) and put
A = BT (λ) ∩ Sp. By Theorem 4, �(p)

g (BT (λ)) = ωp(A). It is reasonable therefore to
call C(p)(A) = ωp(A) the Dp-transformed-cone measure of A ∈ B(Sp).

(c) We recall that several representations of Student distributed statistics were given in
Richter (1995). In particular, the two facts are exploited there that the ipf of the cone
{T < λ} does not depend on its radius variable and that the multivariate standard
Gaussian law is invariant w.r.t. orthogonal transformations, together leading to
g-robustness of Fisher’s and Student’s statistics. Due to assumption (22), we observe
in the present situation that the ipf of BT (t) does not depend on the generalized
radius variable and we observe invariance of Fisher’s and Student’s statistics w.r.t. any
transformation Dp(r) where r > 0 is used to prove g-robustness of T.Thus, if an
arbitrary statistic T generates sub-level sets satisfying assumption (22) then such
statistic is g-robust.

3.3 Dependence modeling: specialization vs. marginalization

Let 1 ≤ m < k, 1 ≤ i1 < i2 < . . . < im ≤ k. We assume that

ϕm,Kt(xi1 , . . . , xim) = Cm,Kt

( |xi1 |pi1
pi1

+ . . . + |xim |pim
pim

)M−1

· e
−β

(
|xi1 |pi1

pi1
+...+ |xim |pim

pim

)

and

ϕm,PT7(xi1 , . . . , xim) = Cm,PT7

(
1 + 1

ν

( |xi1 |pi1
pi1

+ . . . + |xim |pim
pim

))−M

are suitably normalized densities and call them m-dimensional specializations of the
Kotz and Pearson type densities ϕ

(p)
Kt;M,β ,γ and ϕ

(p)
PT7;M,ν , respectively. It is well known that

marginal densities are not of the same type as specializations, in general. For the well
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known possibilities and problems of finding marginal densities of elliptically contoured
distributions we refer to Fang et al. (1990).
Imagine now each of k experimenters observe another random variable, let them com-

bine their (possibly dependent) observations by a vector and describe this vector by a
joint cdf F(k) (possibly including dependence). In hindsight, did the experimenters con-
struct the multivariate cdf F(k) starting from the specializations F1, ..., Fk of F(k) or from
the marginal cdfs F∗

1 , ..., F∗
k of F(k)? In other words, are the experimenters searching for a

multivariate cdf F(k) such that their original observations followmarginal distributions or
specializations of F(k)? For an illustration, in the case p1 = ... = pk and at hand of certain
stock exchange indices, see Müller and Richter (2016).
A common way of studying dependence among components of random vectors makes

use of marginal distributions and copulas. Here, we approach dependence by comparing a
vector density with the product of all its one-dimensional specializations. To this end, let

csp(x) = J(x)/P(x), x ∈ R
k

where P(x) =
k∏

i=1
fi(xi) and J is the joint density which combines f1, . . . , fk by a certain

dependence construction.
For comparison, let x → c(p)(x), Fi and gi, i = 1, ..., k denote the Copula density, the

marginal cdfs and pdfs of the distribution law �
(p)
g , respectively. Then

c(p)(F1(x1), ..., Fk(xk)) = ϕ
(p)
g (x)/

k∏
i=1

gi(xi). (24)

The following definition is therefore well motivated.

Definition 7 We call csp the specialization copula density.

Example 6 Each of the functions

fi(xi) = γβ
1
γ

(M−1+ 1
pi

)

2p
1
pi

−1
i �

(
1
γ

(
M − 1 + 1

pi

))
( |xi|pi

pi

)M−1
e−β

( |xi |pi
pi

)γ

, i = 1, ..., k (25)

is a one-dimensional specialization of the Kotz type density (17) meaning that, vice versa,
ϕKt;M,β ,γ in (17) generalizes fi, i = 1, . . . , k. In other words, the function in (17) is thought
being build by a certain dependence construction applied to f1, ..., fk . Thus,

csp,Kt(x) = ϕ
(p)
Kt;M,β ,γ (x)/

k∏
i=1

fi(xi) x ∈ R
k .

and ϕ
(p)
Kt;M,β ,γ allows the representation

ϕ
(p)
Kt;M,β ,γ (x) = csp,Kt(x)

k∏
i=1

fi(xi) (26)

where the specialization copula density is explicitly given by

csp,Kt(x) = C ·

⎛
⎜⎜⎜⎝

k∑
i=1

|xi|pi
pi

k∏
i=1

|xi|pi
pi

⎞
⎟⎟⎟⎠

M−1
exp

{
β

k∑
i=1

( |xi|pi
pi

)γ
}

exp
{

β

(
k∑

i=1

|xi|pi
pi

)γ}
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with

C =
β

(k−1)(1−M)
γ �

(
M−1+ 1

p1
γ

)
· . . . · �

(
M−1+ 1

pk
γ

)

γ k−1B
(

1
p1 , ...,

1
pk

)
�

(
M−1+ 1

p1
+...+ 1

pk
γ

) .

Clearly, searching for marginal densities is not as easy as determining specializations, here,
and the corresponding copula density has not such nice structure.

Example 7 Each of the functions

fi(xi) = �(M)

2�
(
1 + 1

pi

)
�
(
M − 1

pi

)
(νpi)

1
pi

(
1 + |xi|pi

νpi

)−M

is a one-dimensional specialization of the Pearson Type VII pdf in (18). The pdf ϕ
(p)
PT7;M,ν

allows the representation

ϕ
(p)
PT7;M,ν(x) = csp,PT7(x)

k∏
i=1

fi(xi)

where the dependence function is

csp,PT7(x) = C ·

k∏
i=1

(
1 + |xi|pi

νpi

)−M

(
1 +

k∑
i=1

|xi|pi
νpi

)−M

with

C = p1 · . . . · pk
B
(
M − 1

p1 , ...,M − 1
pk−1

,M − 1
pk

)

B(M, ...,M︸ ︷︷ ︸
k−1

,M − 1
p1 − ... − 1

p1 )
.

As in the preceding example, the specialization copula density has a nice structure and is
explicitly given.

Remark 10 The univariate q-generalized normal distribution or q-power exponential
distribution has been parameterized in different ways in the literature, for a recent survey
see Dytso et al. (2018). For different purposes, any of these parameterizations can be used
to derive modified representations of the distributions considered in this paper.

4 Model extensions: a concluding remark
Although Definition 5 deals with the whole class of p-spherical distributions later con-
sideration is concentrated on continuous p-spherical distributions. To finally widen again
the view we refer to Remark 1 in Richter (2015a) where a way is described to derive new
distributions from the elements of a given class of distributions by restricting the region
of definition of such distributions. The following definition sums up that for the present
situation.

Definition 8 Let � ∈ B(Sp) with Op(�) > 0 and

ω�(A) = Op(A)

Op(�)
, A ∈ B(Sp) ∩ � = B(�).
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Then ω� is called p-uniform distribution onB(�).

The extension of the whole class of p-spherical distributions follows accordingly.
It might be a further task of future work to extend the class of q-spherical processes,

q > 0, introduced in Müller and Richter (2019) to a class of p-spherical processes, p =
(p1, ..., pk) ∈ (0,∞)×k .
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