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Abstract
Various applications in natural science require models more accurate than well-known
distributions. In this context, several generators of distributions have been recently
proposed. We introduce a new four-parameter extended normal (EN) distribution,
which can provide better fits than the skew-normal and beta normal distributions as
proved empirically in two applications to real data. We present Monte Carlo simulations
to investigate the effectiveness of the EN distribution using the Kullback-Leibler
divergence criterion. The classical regression model is not recommended for most
practical applications because it oversimplifies real world problems. We propose an EN
regression model and show its usefulness in practice by comparing with other
regression models. We adopt maximum likelihood method for estimating the model
parameters of both proposed distribution and regression model.

Keywords: Kullback-Leibler divergence criterion, Maximum likelihood procedures,
Monte Carlo simulation, Normal distribution, Regression
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1 Introduction
In recent years, several methods for generating new models from classic distributions
have been proposed. A detailed study about “the evolution of methods for generaliz-
ing classic distributions” was made by Lee et al. (2013). A generalization of the standard
normal distribution is sought because it can provide more accurate statistical models
and inferential procedures. For instance, the beta normal distribution was pioneered by
Eugene et al. (2002), who discussed some of its structural properties.
Additionally, the beta generalized normal (BGN) distribution was proposed by Cintra

et al. (2013) to extend the beta normal distribution. They applied the BGN model to the
synthetic aperture radar image processing. This paper presents a new extended normal
(EN) distribution based on the family introduced by Cordeiro et al. (2013).
For any continuous cumulative distribution function (cdf) G(x), Cordeiro et al. (2013)

defined the cdf of the exponentiated generalized (EG) family by

F(x) = [
1 − {1 − G(x)}a]b , (1)

where a > 0 and b > 0 are two additional shape parameters whose role is to generate dis-
tributions with heavier/lighter tails and provide wider ranges for skewness and kurtosis.
These parameters are sought as a manner to furnish a more flexible distribution.
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Because of its tractable cdf (1), the EG family can be used quite effectively even if the
data are censored. This family is capable to return univariate models for any type of sup-
port. Further, it allows for greater flexibility of its tails and can be widely applied in many
areas such as engineering and biology.
Its probability density function (pdf) has a very simple form

f (x) = a b {1 − G(x)}a−1 [1 − {1 − G(x)}a]b−1 g(x). (2)

An important advantage of the density (2) is its ability of fitting skewed data that can
not be often fitted by existing distributions. Based on the cdf G(x) and pdf g(x) of any
baseline G distribution, we can associate the EG-G pdf (2) with two extra parameters. The
EG family can be used for discriminating between the G and EG-G distributions.
The baseline distributionG(x) is a special case of (2) when a = b = 1. For a = 1, it gives

the exponentiated-G (“Exp-G”) class. If b = 1, we obtain the Lehmann type II-G (LTII-G)
class. Eq. (2) generalizes both Lehmann types I and II alternative classes (Lehmann 1953).
In fact, this equation can be defined as the exponentiated generator applied to the LTII-G
class.
Note that even if g(x) is a symmetric density, the density f (x) will not be symmetric.

The cdf (1) has tractable properties especially for simulations, since its quantile function
(qf ) has a simple form

x = QG

{[
1 −

(
1 − u

1
b
) 1

a
]}

,

where QG(u) is the baseline qf.
This paper is outlined as follows. In Section 2, we define the EN distribution and provide

plots of its density function. A linear representation for the EN density function is derived
in Section 3. We obtain an explicit expression for its moments in Section 4. In Section 5,
we provide the maximum likelihood estimates (MLEs) of the parameters. In Section 6, we
define the EN regression model and discuss the estimation of the model parameters. In
Section 7, we perform some simulations and present three applications to real data sets.
Finally, some concluding remarks are addressed in Section 8.

2 The EN distribution
Due to the analytical tractability of its pdf and its importance in asymptotic theory
(such as the central limit theorem and delta mehtod), the normal distribution is the most
popular model distribution in applications to real data with support in R.
When the number of observations is large, it can serve as an approximate distribution

for several other models. The normal N(μ, σ) pdf (for x ∈ R) is

g(x;μ, σ) = 1√
2π σ

e− 1
2

(
x−μ
σ

)2

= 1
σ

φ

(
x − μ

σ

)
, (3)

whereμ ∈ R is a mean parameter, σ > 0 is a scale parameter and φ(x) = (2π)−1/2 e−x2/2

is the standard normal pdf.
Its cdf has the form

G(x;μ, σ) =
∫ x

−∞
g(t;μ, σ) dt = �

(
x − μ

σ

)
, (4)

where �(x) = ∫ x
−∞ φ(t) dt is the standard normal cdf.
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By inserting (3) and (4) in Eqs. (1) and (2), the cdf and pdf of the EN distribution (for
x ∈ R) can be expressed, respectively, as

F(x) =
[
1 −

{
1 − �

(
x − μ

σ

)}a ]b
(5)

and

f (x) = a b
σ

{
1 − �

(
x − μ

σ

)}a−1 [
1 −

{
1 − �

(
x − μ

σ

)}a]b−1

×φ

(
x − μ

σ

)
. (6)

Hereafter, a random variable X having density (6) is denoted by X ∼ EN(a, b,μ, σ).
Evidently, this density does not involve any complicated function and the normal distri-
bution arises as the basic exemplar when a = b = 1. It is a positive point of the current
generalization. Moreover, the qf of X is

QEN(p) = μ + σ �−1
(
1 −

[
1 − p

1
b
] 1
a
)
.

m = E(X) = σ a b Ia,b + μ,

where

Ia,b =
∫ ∞

−∞
z φ(z) [ 1 − �(z)]a−1 {1− [ 1 − �(z)]a

}b−1 dz.

In next sections, other moment results are proved. Moreover, from the previous qf of the
EN distribution, the associated median, sayM, is

M = QEN(1/2) = σ za,b + μ,

where za,b = �−1
(
1 − [

1 − 2−1/b]1/a
)

is the standard normal quantile at 1 −
[
1 − 2−1/b]1/a. Thus, the next function suggests a symmetric discussion:

⎧
⎪⎨

⎪⎩

right asymmetry, if za,b > a b Ia,b
symmetry, if za,b = a b Ia,b
left asymmetry, if za,b < a b Ia,b.

Wemotivate the paper by comparing the performances of the EN, normal, skew-normal
(SN) and beta-normal (BN) models fitted to two real data sets. Figure 1 displays possible
shapes of the density function (6) for some parametervalues. We can note the flexibility
of the EN distribution with respect to the normal distribution.

3 Linear representation
A useful linear representation for (2) can be derived using the concept of exponentiated
distributions. For an arbitrary baseline cdf G(x), a random variable T is said to have the
exponentiated-G (Exp-G) distribution with power parameter a > 0, say T ∼Exp-G(a), if
its pdf and cdf are

Ha(x) = Ga(x) and ha(x) = a g(x)Ga−1(x),

respectively. Several properties of the exponentiated distributions have been studied by
some authors recently such as those for the exponentiated Weibull (Mudholkar and Sri-
vastava 1993) and exponentiated generalized gamma (Cordeiro et al. 2013) distributions.
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(a) (b)
Fig. 1 Plots of the EN density functions for some parameter values. a (μ, σ) = (0, 1), b (μ, σ) = (0, 1)

Theorem 1 Let X ∼ EN(a, b,μ, σ). The pdf of X can be written as

f (x) =
∞∑

j=0
wj+1 hj+1(x), (7)

where hj+1(x) is the exponentiated-normal (Exp-N) density with power parameter j + 1,
say Exp- N(μ, σ , j + 1), namely

hj+1(x) = (j + 1)
σ

φ

(
x − μ

σ

)
�

(
x − μ

σ

)j
.

The proof of this theorem is given in Appendix A.
It is possible to verify using symbolic software (such as Maple) that

∑∞
j=0 wj+1 = 1 as

expected.
Equation (7) is the main result of this section. It reveals that the EN density is a lin-

ear combination of Exp-N densities. So, several mathematical properties of the proposed
distribution can then be obtained from those of the Exp-N distribution using previous
results given by Rêgo et al. (2012).

4 Moments
First, we determine the probability weighted moments (PWMs) of the standard normal
distribution since they are required for the ordinary moments of the EN distribution. The
standard normal PWMs are defined by

τn,j =
∫ ∞

−∞
zn �(z)j φ(z) dz,

for n ≥ 0 and j ≥ 0 integers.
The result holds

�(z) = 1
2

{
1 + erf

(
z√
2

)}
, z ∈ R.

Applying the binomial expansion and interchanging terms gives

τn,j = 1
2j

√
2π

j∑

m=0

(
j
m

) ∫ ∞

−∞
zn erf

(
z√
2

)j−m
exp

(
−z2

2

)
dz.
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Based on the power series for the error function

erf(z) = 2√
π

∞∑

r=0

(−1)rz2r+1

(2r + 1) r!
,

we can obtain τn,j from Eqs. (9)–(11) given by Nadarajah (2008).
For n + j − r even, we have

τn,j = 2n/2 π−(j+1/2)
j∑

r=0
(n+j−r) even

(
j
r

) (π

2

)r
�

(
n + j − r + 1

2

)
×

F(j−r)
A

(
n + j − r + 1

2
;
1
2
, . . . ,

1
2
;
3
2
, . . . ,

3
2
;−1, . . . ,−1

)
, (8)

where F(j−r)
A (·) is the Lauricella function of type A. See, for example, Exton (1978)1. If

n + k − j is odd, the corresponding terms in τn,j vanish.

Corollary 1 Suppose that μ′
n = E(Xn) exists. Then,

μ′
n = E(Xn) =

∞∑

j=0
(j + 1)wj+1 τn,j, (9)

where τn,j is given by (8).

The skewness and kurtosis ofX can be computed fromQEN(p) using Bowley andMoors
well-known quantities. Figure 2 displays plots of the skewness and kurtosis measures of
X for selected values of a and b. We note that the skewness and kurtosis values for the
normal distribution are obtained when values for (a, b) tend to (1, 1).

5 Estimation
Consider a random variable X ∼ EN(a, b, μ, σ) and let θ = ( a, b, μ, σ )� be the model
parameters, where (·)� is the transposition operator. Thus, the associated log-likelihood
function for one observation x is

�(θ ; x) = log(a) + log(b) − log(σ ) + (a − 1) log
[
1 − �

( x−μ
σ

)]

+ (b − 1) log
{
1 − [

1 − �
( x−μ

σ

) ]a} + log
[
φ
( x−μ

σ

)]
. (10)

Given a data set x1, . . . , xn, the MLE of θ is determined by maximizing �n(θ) =
∑n

i=1 �(θ ; xi).
Based on Eq. (10), the score vector is

Uθ = (Ua, Ub, Uμ, Uσ )�

=
(

∂ �n(θ)

∂a
,

∂ �n(θ)

∂b
,

∂ �n(θ)

∂μ
,

∂ �n(θ)

∂σ

)�
,

whose components are

Ua = n
a

+
n∑

i=1
log
[
1 − �

(
xi − μ

σ

)]

− (b − 1)
n∑

i=1

[[
1 − �

( xi −μ
σ

)]a log
[
1 − �

( xi − μ
σ

)]

1 − [
1 − �

( xi − μ
σ

) ]a

]

,
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(a) (b)

(c) (d)
Fig. 2 The skewness and kurtosis of the EN distribution. a For (μ, σ) = (0, 1), b For (μ, σ) = (0, 1), c For
(μ, σ) = (0, 1), d For (μ, σ) = (0, 1)

Ub = n
b

+
n∑

i=1
log
{
1 −

[
1 − �

(
xi − μ

σ

)]a}
,

Uμ =
(
a − 1

σ

) n∑

i=1

[
φ
( xi −μ

σ

)

1 − �
( xi −μ

σ

)

]

− 1
σ

n∑

i=1

[
φ′ ( xi − μ

σ

)

φ
( xi − μ

σ

)

]

−a (b − 1)
σ

n∑

i=1

{
φ
( xi − μ

σ

) [
1 − �

( xi −μ
σ

)]a−1

1 − [
1 − �

( xi − μ
σ

)]a

}

and

Uσ = n
σ

− μ(a − 1)
σ 2

n∑

i=1

[
φ
( xi − μ

σ

)

1 − �
( xi − μ

σ

)

]

+ μ

σ 2

n∑

i=1

[
φ′ ( xi − μ

σ

)

φ
( xi − μ

σ

)

]

+ aμ(b − 1)
σ 2

n∑

i=1

{
φ
( xi −μ

σ

) [
1 − �

( xi − μ
σ

)]a−1

1 − [
1 − �

( xi −μ
σ

)]a

}

.
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An advantage of the EN distribution is that the MLE b̂ has a partially closed-form
expression. Suppose that the observed information matrix is non-negative definite. The
MLE of b can be expressed in terms of the MLEs â, μ̂ and σ̂ as

b̂ = ϕ(̂a, μ̂, σ̂ , {x1, . . . , xn})

=
(

n−1
n∑

i=1
log
{

1 −
[
1 − �

(
xi − μ̂

σ̂

)]â})−1

. (11)

This fact is important at least for two reasons. The estimates become the solutions of
a system with three equations and three variables (say “(3, 3) system”) instead of a (4, 4)
system. Further, Eq. (11) clarifies the relationship of b̂ with â, μ̂ and σ̂ . More details are
described in the simulation section.
Additionally, in order to make inference on the model parameters, the total observed

information matrix is J(θ) = {−Urs}, where Urs = ∂2 �(θ)/∂θr ∂θs, for r, s ∈ {a, b,μ, σ }.
By differentiating the score function, we obtain the Hessian matrix elements Urs given in
Appendix B.

6 The EN regressionmodel
The classical normal linear regression model is usually applied in science and engineer-
ing to describe symmetrical data for which linear functions of unknown parameters are
used to explain the phenomena under study. However, it is well-known that several phe-
nomena are not always in agreement with the classical regression model due to lack of
symmetry and/or the presence of heavy and lightly tails in the empirical distribution. As
an alternative to overcome this shortcoming, we propose a new regression model based
on the EN distribution thus extending the normal linear regression.
Let vi = (vi1, . . . , vip)� be the p × 1 explanatory variable vector associated with the

ith response variable xi (for i = 1, . . . , n). Let Xi be a response variable having the EN
distribution given by (6) re-parameterized as

Xi = v�
i β + σ Zi, (12)

where the random error Z ∼ EN(a, b, 0, 1) has the standardized EN distribution, β =
(β1, . . . ,βp)� is the unknown vector of coefficients, σ > 0 is an unknown dispersion
parameter and vi is the explanatory vector modeling the location parameter μi = v�

i β .
Hence, the location parameter vector μ = (μ1, . . . ,μn)� of the EN regression model

has the linear structure μ = Vβ , where V =[ v1| . . . |vn]� is a known model matrix.
The EN regression model (12) opens new possibilities for fitting many different types of

data, since the EN distribution is much more flexible then the normal distribution. The
most important special regressions are:

• For a = 1, it gives the exponentiated-normal (Exp-N) regression model, which has
not been explored, but it can be understood as a regression under the power normal
distribution pioneered by Kundu and Gupta (2013).

• For b = 1, it reduces to the LTII-normal (LTII-N) regression model defined as a
linear model under the LTII-N distribution.

• If a = b = 1, it reduces to the normal linear regression.
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For statistical inference on the EN regression model, we consider a sample
(X1, v1), . . . , (Xn, vn) of n independent observations. The log-likelihood function for the
vector of parameters η = (

a, b, σ ,β�)� of model (12) is

�(η) = n log
(
a b
σ

)
+

n∑

i=1
log[φ(zi)] + (a − 1)

n∑

i=1
log[ 1 − �(zi)]

+ (b − 1)
n∑

i=1
log{1−[ 1 − �(zi)]a }, (13)

where zi = (xi − v�
i β)/σ and xi is a possible outcome of Xi.

The components of the score vector U(η) are

∂l(η)

∂a
= n

a
+

n∑

i=1
log[ 1 − �(zi)]−(b − 1)

n∑

i=1

[ 1 − �(zi)]a log[ 1 − �(zi)]
{1−[ 1 − �(zi)]a } ,

∂l(η)

∂b
= n

b
+

n∑

i=1
log{1−[ 1 − �(zi)]a },

∂l(η)

∂σ
= − n

σ
− 2

σ

n∑

i=1
z2i + (a − 1)

σ

n∑

i=1

ziφ(zi)
[ 1 − �(zi)]

− a (b − 1)
σ

n∑

i=1

ziφ(zi)[ 1 − �(zi)]a−1

{1−[ 1 − �(zi)]a } ,

∂l(η)

∂βj
= − 2

σ

n∑

i=1
vijzi + (a − 1)

σ

n∑

i=1

vijφ(zi)
[ 1 − �(zi)]

− a (b − 1)
σ

n∑

i=1

vijφ(zi)[ 1 − �(zi)]a−1

{1−[ 1 − �(zi)]a } ,

where j = 1, . . . , p.
Note that a closed-form expression for the MLE η̂ is analytically intractable and,

therefore, its computation has to be performed numerically by means of a nonlinear
optimization algorithm.
We can maximize the log-likelihood function (13) based on the Newton-Raphson

method. In particular, we use the matrix programming languageOx (MaxBFGS function)
(see Doornik 2007) to calculate η̂. Initial values for β and σ can be taken from the fit of
the classical regression model (a = b = 1).
Under general regularity conditions, the asymptotic distribution of (̂η − η) is multi-

variate normal Np+3(0,K(η)−1), where K(η) is the expected information matrix. These
conditions can be found in Cox and Hinkley’s Theoretical Statistics book (1974). The
asymptotic covariance matrix K(η)−1 of η̂ can be approximated by the inverse of the
(p+3)×(p+3) observed informationmatrix J(η) and then the inference on the parameter
vector η can be based on the normal approximation Np+3(0, J(η)−1) for η̂.
Besides estimation of the model parameters, hypotheses tests can be considered using

likelihood ratio (LR) statistics.
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7 Numerical results
Three studies are presented in this section. First, we perform a Monte Carlo simulation
study. Subsequently, two applications to real data show the potential uses of the new dis-
tribution. Third, the usefulness of the proposed regression model in Section 6 is proved
empirically based on quality of life data.

7.1 Simulation study

Here, we provide a Monte Carlo simulation study in order to quantify the effectiveness of
the EN distribution based on the symmetrized Kullback-Leibler divergence as a goodness-
of-fit comparison criterion.
Initially, we provide a brief discussion on the Kullback-Leibler divergence. According to

Cover and Thomas (1991), this measure is the quantification of the error by assuming that
the Y model is true when the data follow the X distribution. For example, it has been pro-
posed as essential parts of test statistics and strongly applied to contexts of radar synthetic
aperture image processing in both univariate (Nascimento et al. 2010) and polarimetric
(or multivariate) (Nascimento et al. 2014) perspectives.
In order to work withmeasures which satisfy non-negativity, symmetry and definiteness

properties, Nascimento et al. (2010) considered the measure dKL, namely

dKL(X,Y ) = 1
2 [ D(X||Y ) + D(Y ||X) ]

= ∫
D ( fX(x; [ ax, bx,μx, σx] ) − fY (x; [ ay, by,μy, σy] ) ) log

(
fX(x; [ ax, bx,μx, σx] )
fY (x; [ ay, by,μy, σy] )

)

︸ ︷︷ ︸
≡ IntegrandKL(x,y)

dx.

Figure 3 displays both functions IntegrandKL(x, y) and dKL(X,Y ) at the parametric
point [ a, b,μ, σ ]=[ a, b, 0, 1] when a, b = 4, 5, 6. It is noticeable that this measure can
be understood as a distance between the two points–θ1 = (a1, b1,μ2, σ1) and θ2 =
(a2, b2,μ2, σ2)–in the parametric space, say dKL(θ1, θ2).

(a) (b) (c)

Fig. 3 Illustration of both IntegrandKL(x, y) and dKL(X , Y) for the parametric point [ a, b,μ, σ ]=[ a, b, 0, 1]
with a, b = 4, 5, 6. a Behavior of the function IntegrandKL with (a, b) = (2, 4), b Influence of a under b = 3
and (μ, σ) = (0, 1), c Influence of b under a = 6 and (μ, σ) = (0, 1)
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For increasing values of ε, the IntegrandKL(X,Y ) has different forms. Further,
IntegrandKL(X,Y ) → 0 when ε → 0.
Figure 3b and c reveal the influence of a and b, respectively, when we employ a perturba-

tion in each parameter under (μ, σ) = (0, 1). As expected, when the value of ε increases,
the distance dKL also increases in both cases. However, this distance is most evident when
we take smaller negative values of ε.
Table 1 gives the asymptotic performance of the maximum likelihood procedure dis-

cussed in the previous section with respect to the Kullback-Leibler distance, where we
identify critical scenarios under the parametric space, which can require a harder maxi-
mum likelihood estimation. The results support the fact: “when we wish to estimate one
additional parameter (a or b) given that the MLE for the other parameter is known and
higher than one, then the biases of the estimates tend to increase for high values of the
parameter of interest.” In particular, at the MLE of b given â, the above information finds
strong justification in Eq. (11). Based on this equation, when â takes high values, the MLE
of b collapses for an indetermination algebraic.

7.2 Two applications to real data

Here, we perform two applications to real data sets. First, we consider the data the
strengths of glass fibres analyzed by Jones and Faddy (2004). These data were obtained
at the National Physical Laboratory (UK) to explain the breaking strength of sixty three
glass fibres having length 1.5 cm.
As a second application, we consider the fatigue life data (Meeker and Escobar 1998) for

sixty seven specimens of Alloy T7987 that failed before having accumulated three hundred
thousand cycles of testing. The data set was rounded to the nearest thousand cycles.
We prove empirically the efficiency of the EN distribution versus the normal, skew-

normal (SN) (Azzalini 1984) and beta normal (BN) (Eugene et al. 2002) distributions.
The SN density [T ∼ SN(a,μ, σ)] has the form (for x, a, μ ∈ R and σ > 0)

f (x; a,μ, σ) = 2
σ

φ

(
x − μ

σ

)
�

[
a
(
x − μ

σ

)]

and the BN density [T ∼ BN(α,β ,μ, σ)] is (for x, μ ∈ R and α,β , σ > 0)

f (x;α,β ,μ, σ) = J φ

(
x − μ

σ

) [
�

(
x − μ

σ

)]α−1 [
1 − �

(
x − μ

σ

)]β−1
,

where J = �(α + β)/[�(α) �(β) σ ].
We compare the distributions using three goodness-of-fit (GoF) measures: Anderson-

Darling (A∗), Cramer-Von Mises (W∗) and Kolmogorov-Smirnov (KS) statistics. We

Table 1 The KL distance between fitted and theoretical densities for n = 100 and different values for
a and b

b

a 0.5 0.8 1.0 1.5 2.0 2.5

0.5 6.837 5.984 5.662 4.064 2.690 0.545

0.8 4.259 5.628 4.636 4.497 3.581 1.263

1.0 4.663 5.149 4.999 4.834 4.242 2.135

1.5 1.988 3.450 4.349 5.791 5.549 4.301

2.0 1.527 2.884 3.687 6.786 7.075 7.517

2.5 1.435 2.728 3.837 6.590 7.287 10.148
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adopt the goodness.fit function from the R program through the BFGS method. Accord-
ing to detailed discussion in Quang (1989), these measures are more indicated than the
Akaike information criterion (AIC) and Bayesian information criterion (BIC) or some of
their variations, which are more useful for nested models. Table 2 gives the GoFmeasures
for each fitted distribution with respect to both data sets.
The GoF’s measures for the EN distribution correspond to the lowest values among the

discrimination criteria (highlighted in Table 2). These results provide evidence that the
EN distribution is the most suitable model (among those considered) to describe both
data sets.

7.3 Application for regression models

We assess changes on the oral health-related quality of life (OHRQL) of schoolchildren.
To that end, a follow-up exam of three years was made to evaluate the impact of caries
incidence on the OHRQL of adolescents. The data were obtained from a study (for more
details, see Paula et al. 2012) developed by the Department of Community Dentistry, Divi-
sion of Health Education and Health Promotion, Piracicaba Dental School, University of
Campinas-UNICAMP.
The variables employed are (for i = 1, . . . , 291):

• xi: overall score of the OHRQL at time of follow up;
• vi1: number of teeth decayed, missing and filled (TDMF)

(0 = without TDMF increment; 1 = with TDMF increment).

We analyze these data based on the EN regression model

Xi = β0 + β1 vi1 + σ Zi, i = 1, . . . , 291,

where the errors Zi’s are independent random variables having the EN(a, b, 0, 1) distribu-
tion.
The gamma-normal (GN) (Lima et al. 2015) distribution extends the normal distribu-

tion and can be used to fit data that come from a distribution with heavy tails reducing
the influence of aberrant observations. The GN density with location parameter μ ∈ R,
dispersion parameter σ > 0 and shape parameter a > 0 takes the form

f (x) = 1
σ�(a)

φ

(
x − μ

σ

){
− log

[
1 − �

(
x − μ

σ

)]}a−1
.

Further, the EN regression model is compared with the Exp-N, LTII-N, normal and GN
regression models. Table 3 provides the MLEs of the parameters for the EN regression
and these models.
Iterative maximization of the log-likelihood function (13) starts with initial values for β

and σ taken from the fit of the classical regression model (a = b = 1). In general, all fitted
regression models reveal that v1 is significant at a 1% level of significance and that there
is a significant difference between the levels of the numbers of teeth decayed, missing
and filled. As expected, we find reciprocal relations between μi = E(Xi) and v1i in the
EN, LTII-N, GN and normal regression models, except for the Exp-N regression (which-
although well adjusted-does not seem to be a coherent model). On the other hand, based
on the estimates of σ , the EN regression model reveals advantages in relation to the other
models.
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Table 3MLEs, SEs in (·) and p-values between [ ·] for the EN, Exp-N, LTII-N, normal and GN
regressions fitted to the OHRQL data

Estimates

Model a b σ β0 β1

EN 0.1058 0.1624 7.0973 30.8602 -10.3707

(0.0156) (0.0139) (0.1076) (0.5989) (0.5728)

[< 0.001] [< 0.001]

Exp-N 1 0.0489 9.6059 64.4529 14.2817

(0.0024) (0.1431) (2.2873) (1.3420)

[< 0.001] [< 0.001]

LTII-N 0.1900 1 10.5286 4.6992 -7.4972

(0.0129) (0.2224) (1.5689) (0.8623)

[ 0.0030] [< 0.001]

Normal 1 1 19.3853 25.6139 -7.2402

(0.8035) (1.9289) (2.3872)

[< 0.0001] [0.0026]

GN 5.1249 23.5382 -31.2214 -7.0051

(2.9739) (1.4877) (28.4676) (2.2982)

[ 0.2737] [0.0025]

The values of the AIC, Consistent Akaike Information Criterion (CAIC) and BIC to
compare the fitted models are given in Table 4.
It is clear that the EN regression model outperforms the other regressions irrespective

of the criteria and then we can conclude that the new regression model can be used effec-
tively in the analysis of the current data set. A comparison of the proposed regression
model with some of its sub-models using LR statistics is addressed in Table 5.
The figures in this table, specially the p-values, indicate that the EN regression model

yields a better fit to these data than the other sub-models.
A graphical comparison among the fitted regression models is reported in Figure 4. The

plots of these curves are the empirical cdf and the estimated cdf. Based on these plots, it
is evident that the EN regression model provides a superior fit to the current data.

8 Conclusions
Flexible statistical distributions have been sought for describing data from practical situ-
ations in which the use of classical ones is not recommended. In this paper, we propose
an extension of the normal distribution based on the exponentiated generalized family
defined by Cordeiro et al. (2011), which adds two extra shape parameters to a baseline
distribution. We provide some structural properties of the new extended normal (EN)
distribution. The model parameters are estimated by maximum likelihood. The efficiency

Table 4 AIC, CAIC and BIC Statistics

Statistic

Model AIC CAIC BIC

EN 2515.4 2515.6 2533.7

Exp-N 2725.8 2725.9 2740.5

LTII-N 2523.6 2523.8 2538.3

Normal 2557.2 2557.3 2568.3

GN 2545.0 2545.1 2559.7
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Table 5 LR statistics

Model Hypotheses λ p-value

EN vs Exp-N H0 : a = 1 vs H1 : H0 is false 212.4 < 0.001

EN vs LTII-N H0 : b = 1 vs H1 : H0 is false 10.2 0.0014

EN vs Normal H0 : a = b = 1 vs H1 : H0 is false 45.8 < 0.001

of this distribution is illustrated by means of two applications to real data sets. There is
a clear evidence that the EN distribution outperforms the skew-normal distribution and
can be a competitive alternative to the beta normal distribution. The classical regression
model does not produce good results in many real problems, and for this reason several
extensions have arisen in recent years. We propose a new regression model based on the
EN distribution and prove its importance in real applications. This new regression model
opens a wide range of research topics following the basic inference concepts of the normal
linear regression model.

Endnote
1 Exton H. Handbook of hypergeometric integrals: theory, applications, tables, com-

puter programs, 1978

Appendix A: Proof for the Theorem 3.1
We consider the power series

(1 − z)b =
∞∑

k=0
(−1)k

(
b
k

)
zk ,

Fig. 4 Estimated cdf and the empirical cdf of the EN regression model
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which holds for any real non-integer b and |z| < 1. Using this generalized binomial
expansion twice in Eq. (1), we can write the EG-G cumulative distribution as

F(x) =
∞∑

j=0
wj+1Hj+1(x),

where wj+1 = ∑∞
m=1(−1)j+m+1 ( b

m
) (ma

j+1
)
and Hj+1(x) is the Exp-G cdf with power

parameter j + 1. By differentiating the last equation, we obtain (7).

Appendix B: The Hessianmatrix
The elements of the Hessian matrix are:

Uaa = − n
a2

− (b − 1)
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Abbreviations
AIC: Akaike information criterion; BGN: Beta generalized normal; BIC: Bayesian information criterion; cdf: Cumulative
distribution function; CAIC: Consistent Akaike information criterion; EG: Exponentiated generalized; Exp-G:
Exponentiated-G; EN: Extended normal; Exp-N: Exponentiated-normal; GoF: Goodness-of-fit; GN: Gamma-normal; LTII-G:
Lehmann type II-G; LTII-N: LTII-normal; LR: Likelihood ratio; MLEs: Maximum likelihood estimates; N: Normal; OHRQL: Oral
health-related quality of life; pdf: Probability density function; SN: Skew-normal; TDMF: Teeth decayed, missing and filled

Acknowledgements
The authors would like to thank the financial support of CNPq and FACEPE, Brazil.

Authors’ contributions
The authors, viz MCSL, GMC, EMMO and ADCN with the consultation of each other carried out this work and drafted the
manuscript together. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data andmaterials
Possible interested readers can contact authors.

Competing interests
The authors declare that they have no competing interests.

Author details
1Departamento de Estatística, Universidade Federal de Pernambuco, PE 50740-540 Recife, Brazil. 2Departamento de
Ciências Exatas, ESALQ, Universidade de São Paulo, Piracicaba/SP, Brazil. 3Departamento de Estatística, Universidade
Federal de Pernambuco, PE 50740-540 Recife, Brazil.

Received: 30 January 2019 Accepted: 28 May 2019

References
Azzalini, A: A class of distributions which includes the normal ones. Scand. J. Stat. 12, 171–178 (1984)
Cintra, RJ, Cordeiro, GM, Nascimento, ADC: Beta generalized normal distribution with an application for SAR. Image

Process. 48, 1–16 (2013)
Cordeiro, GM, Cunha, DCC, Ortega, EMM: The exponentiated generalized class of distributions. J. Data Sci. 11, 777–803

(2013)
Cordeiro, GM, Ortega, EMM, Silva, GO: The exponentiated generalized gamma distribution with application to lifetime

data. J. Stat. Comput. Simul. 81, 827–842 (2011)
Cover, TM, Thomas, JA, Ortega, EMM: Elements of Information Theory. Wiley-Interscience, New York (1991)
Doornik, JA: An Object-Oriented Matrix Language Ox 5. Timberlake Consultants Press, London (2007)
Eugene, N, Lee, C, Famoye, F: Beta-normal distribution and its applications. Commun. Stat.-Theory Methods. 31, 497–512

(2002)



Lima et al. Journal of Statistical Distributions and Applications             (2019) 6:7 Page 17 of 17

Frery, AC, Nascimento, ADC, Cintra, RJ: Analytic Expressions for Stochastic Distances Between Relaxed Complex Wishart
Distributions. IEEE Trans. Geosci. Remote Sens. 52, 1213–1226 (2014)

Jones, M, Faddy, MJ: A skew extension of the t-distribution, with applications. Biom. J. 65, 159–174 (2004)
Lee, C, Famoye, F, Alzaatreh, AY: Methods for generating families of univariate continuous distributions in the recent

decades. Wiley Interdiscip. Rev. Comput. Stat. 5, 219–238 (2013)
Lehmann, EL: The power of rank tests. Ann. Math. Statist. 24, 23–43 (1953)
Lima, MCS, Cordeiro, GM, Ortega, EMM: A new extendion of the normal distribution. J. Data Sci. 3, 385–408 (2015)
Meeker, WQ, Escobar, L: Statistical Methods for Reliability Data. Wiley, New York (1998)
Mudholkar, GS, Srivastava, DK: Exponentiated Weibull family for analyzing bathtub failure-real data. IEEE Trans. Reliab. 42,

299–302 (1993)
Nadarajah, S: Explicit expressions for moments of order statistics. Statistics and Probability Letters. 78, 196–205 (2008)
Nascimento, ADC, Cintra, RJ, Frery, AC: Hypothesis Testing in Speckled Data with Stochastic Distances. IEEE Trans. Geosci.

Remote Sens. 48, 373–385 (2010)
Paula, JS, Oliveira, M, Soares, MSP, Chaves, MGAM, Mialhe, FL: Perfil Epidemiológico dos Pacientes Atendidos no Pronto

Atendimento da Faculdade de Odontologia da Universidade Federal de Juiz de Fora. Arquivos em Odontologia
(UFMG). 48, 257–262 (2012)

Quang, HV: Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica. 57, 307–333 (1989)
Rêgo, LC, Cintra, RJ, Cordeiro, GM: On some properties of the beta normal distribution. Commun. Stat. - Theory Methods.

41, 3722–3738 (2012)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Abstract
	Keywords
	AMS Subject Classification

	Introduction
	The EN distribution
	Linear representation
	Moments
	Estimation
	The EN regression model
	Numerical results
	Simulation study
	Two applications to real data
	Application for regression models

	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

