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Abstract

We present a novel Bayesian approach to random effects meta analysis of binary data
with excessive zeros in two-arm trials. We discuss the development of likelihood
accounting for excessive zeros, the prior, and the posterior distributions of parameters
of interest. Dirichlet process prior is used to account for the heterogeneity among
studies. A zero inflated binomial model with excessive zero parameters were used to
account for excessive zeros in treatment and control arms. We then define a modified
unconditional odds ratio accounting for excessive zeros in two arms. The Bayesian
inference is carried out using Markov chain Monte Carlo (MCMC) sampling techniques.
We illustrate the approach using data available in published literature on myocardial
infarction and death from cardiovascular causes. Bayesian approaches presented here
use all the data, including the studies with zero events and capture heterogeneity
among study effects, and produce interpretable estimates of overall and study-level
odds-ratios, over the commonly used frequentist’s approaches. Results from the data
analysis and the model selection also indicate that the proposed Bayesian method,
while accounting for zero events, adjusts for excessive zeros and provides better fit to
the data resulting in the estimates of overall odds-ratio and study-level odds-ratios that
are based on the totality of the information.

Keywords: Dirichlet process, Model selection, Markov chain Monte Carlo, Simulation

1 Introduction
An arm is a standard term for describing clinical trial and it represents a treatment group
or a set of subjects. A two-arm study compares a drug with a placebo or drug A with
drug B. Sometimes in these studies, the outcome may be binary. A binary outcome is an
outcome whose unit can take on only two possible states “0" and “1". For example, out-
comes of clinical trials data such as the morbidity and mortality studies are often binary
in nature.
The natural distribution for modeling these types of binary data is the binomial

distribution given by

f (y; p) =
(
n
y

)
py(1 − p)n−y for y = 0, 1, . . . , n, p ∈ (0, 1).

The mean and variance for the binomial random variable are E(Y ) = np and Var(Y ) =
np(1 − p) respectively. In a two-arm trial with binary outcomes, it is typically assumed
that YT1 , ...,YTk and YC1 , ...,YCk are random samples from YTi ∼ Bin

(
nTi ,PTi

)
and YCi ∼

Bin
(
nCi ,PCi

)
respectively, where k is the number of studies. In a random effects meta
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analysis of these types of data, the effect size is assumed to vary from study to study.
Random effects meta analysis assumes that study effects are a random sample from an
underlying relevant distribution of effects, and the combined effect estimates the mean
effect of this distribution.
There are a variety of different approaches to analyze these types of data as indicated by

some recent literature. See Albert (1995) for various parametrization of binomial models
for discrete data within Bayesian settings. Chang et al. (2001) use a mixed effects model
to investigate between and within-study variation using rate difference and logit models.
Gamalo et al. (2011) propose a Bayesian procedure for testing noninferiority in two-arm
studies with a binary primary endpoint that allows the incorporation of historical data on
an active control via the use of informative priors but did not consider excessive zeros.
Carlin (1992) consider a Bayesian meta-analysis approach for two way contingency table
data while Smith et al. (1995) discuss how a full Bayesian analysis can be used to deal
with issues in meta-analysis in a natural way using the BUGS language. In this paper,
we consider a Bayesian approach for binary data with excessive zeros in two-arm trials.
More specifically, we model the excessive zeros using zero inflated binomial distribution
and use the Dirichlet process Ferguson (1974) to handle the heterogeneity among studies.
There are various zero inflated methods available in the literature. Hall (2000) introduced
the framework for count data with many zeros using Poisson and binomial models and
likelihood ratio tests based inference for zero inflated Poisson models are discussed in
Huang et al. (2014). A Bayesian inference framework for zero inflated Poisson regression
models is discussed in Ghosh et al. (2006). A rich class of nonparametric Bayesian priors
for study effects and Bayesian nonparametric Polya tree mixture model are developed in
Branscum and Hanson (2008) and Burr and Doss (2005).
In Section 2, we describe Bayesian model specification used in the paper. The like-

lihood function and the priors are described. Study effects have a Dirichlet process
prior distribution for capturing heterogeneity among studies. We then obtain posterior
summary statistics which describe key features in the model. In particular, posterior
expectations are approximated through Markov chain Monte Carlo (MCMC) methods.
In Section 3, the model is applied to a large dataset available in the literature Nissen
and Wolski (2007). We perform the model selection using the log-pseudo marginal like-
lihood (LPML) comparing the Binomial and zero-inflated Binomial (ZIB). The results
suggest that when the data has a high percentage of observed zeros, ZIB model is a
more appropriate model to use. Furthermore, the use of Dirichlet process has advan-
tage over the more commonly used random effects model with normally distributed
random effects based on DerSimonian-Laird approach DerSimonian and Laird (1986)
or a Bayesian approach using normal priors, in terms of its inherent clustering property
resulting in the studies with similar effects to cluster, and thus providing more robust
estimates. We also test the approach using simulation studies in Section 4 and study
the effect of excessive zeros in the ZIB models. We conclude with a short discussion in
Section 5.

2 Model development

Consider two-arm trials with binary outcomes and let YTi
ind∼ Bin

(
nTi ,PTi

)
and YCi

ind∼
Bin

(
nCi ,PCi

)
, i = 1, . . . , k, where k is the number of studies. Then the joint likelihood

L = L
(
yT1 , . . . , yTk , yC1 , . . . , yCk |μ,PT ,PC

)
is
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L =
k∏

i=1

{
nTi CyTi P

yTi
Ti

(1 − PTi)
nTi−yTi

} k∏
i=1

{
nCi CyCi P

yCi
Ci

(1 − PCi)
nCi−yCi

}
. (1)

In random effects meta-analysis formulation, we assume that PT and PC follow logistic
models, and define
PTi = exp{μ+Tr+αi+ei}

1+exp{μ+Tr+αi+ei} and PCi = exp{μ+ei}
1+exp{μ+ei} .

That is, logit(PTi) = μ + Tr + αi + ei; logit(PCi) = μ + ei, i = 1, . . . , k. This gives,

logit(PTi) − logit(PCi) = Tr + αi ; i = 1, . . . , k,

where logit(p) = log
(

p
1−p

)
is the log-odds ratio of p, μ is the intercept, Tr

is the treatment effect, αi and ei are the study effects and error terms. As pro-
posed by Muthukumarana and Tiwari in Muthukumarana and Tiwari (2016), con-
sider a Bayesian approach and assume that {αi ; i = 1, . . . , k} is a sample from a
Dirichlet process with concentration parameter ρ and the baseline distribution H.
We assume that the baseline distribution H is N

(
0, σ 2

H
)
. More specifically, we

assume that

αi ∼ DP (ρ,H)

H ∼ N
(
0, σ 2

H
)

ei ∼ N
(
0, σ 2

e
)

f (μ) ∝ constant

Tr ∼ N
(
0, σ 2

Tr
)

ρ ∼ U [0.1, 1000]

(2)

where hyper parameters σ 2
H , σ 2

Tr and σ 2
e are assumed to be known. We now obtain the

posterior characterizations of parameters using Neal’s algorithm Neal (2000) using Gibbs
sampling as follows.

f
(
αc|yTj : cj = c

) ∝
k∏

j:cj=c

(
1

1 + exp
{
μ + Tr + αc + ej

}
)nTj

exp

⎧⎪⎨
⎪⎩

−1
2σ 2

H

⎛
⎝αc − σ 2

H
∑
j:cj=c

yTj

⎞
⎠

2
⎫⎪⎬
⎪⎭

(3)

f
(
ei|y

)
∝
(

1
1 + exp {μ + Tr + αi + ei}

)nTi
(

1
1 + exp {μ + ei}

)nCi

exp
{ −1
2σ 2

e

(
ei − σ 2

e
(
yTi + yCi

))2} (4)

f
(
μ|y

)
∝

k∏
j=1

(
1

1 + exp
{
μ + Tr + αj + ej

}
)nTj

(
1

1 + exp
{
μ + ej

}
)nCj

exp

⎧⎨
⎩
⎛
⎝ k∑

j=1
yTj + yCj

⎞
⎠μ

⎫⎬
⎭

(5)
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f
(
Tr|y

)
∝

k∏
j=1

(
1

1 + exp
{
μ + Tr + αj + ej

}
)nTj

exp

⎧⎪⎨
⎪⎩

−1
2σ 2

Tr

⎛
⎝Tr − σ 2

Tr

k∑
j=1

yTj

⎞
⎠

2
⎫⎪⎬
⎪⎭

(6)

f
(
ρ|y
)

∝ ρr−1 (ρ + k)B (ρ + 1, k) I[0.1,1000](ρ) (7)

Note that the likelihood in (1) does not account for excessive zeros in the data. For this
reason, we now consider a zero inflated binomial model for the data as follows.

YTi
ind∼ ZIB

(
p0, nTi ,PTi

)
, YCi

ind∼ ZIB
(
q0, nCi ,PCi

)
, i = 1, . . . , k.

That is,

YTi =
{
0 with probability p0
Bin

(
nTi ,PTi

)
with probability 1 − p0.

Similarly,

YCi =
{
0 with probability q0
Bin

(
nCi ,Pci

)
with probability 1 − q0.

This modification brings two more extra parameters to the model and we assume that

p0 ∼ Beta (a, b)

q0 ∼ Beta (c, d) .
(8)

where hyper parameters a, b, c and d are assumed to be known. We obtain the the pos-
terior characterizations of parameters under zero inflated binomial likelihood as follows.

f
(
αc|yTj : cj = c

) ∝
k∏

j:cj=c

[
p0 + (1 − p0)

(
1

1 + exp
{
μ + Tr + αc + ej

}
)nTj

]uj

[
(1 − p0)

(
1

1 + exp
{
μ + Tr + αc + ej

}
)nTj

exp
{
αcyTj

}]1−uj

exp
{

−1
2σ 2

H
α2
c

}
(9)

f
(
ei|y

)
∝
[
p0 + (1 − p0)

(
1

1 + exp {μ + Tr + αi + ei}
)nTi

]ui
[
(1 − p0)

(
1

1 + exp {μ + Tr + αi + ei}
)nTi

exp
{
yTiei

}]1−ui

[
q0 + (1 − q0)

(
1

1 + exp {μ + ei}
)nCi

]wi

[
(1 − q0)

(
1

1 + exp {μ + ei}
)nCi

exp
{
yCiei

}]1−wi

exp
{ −1
2σ 2

e
e2i
}

(10)
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f
(
μ|y

)
∝

k∏
j=1

[
p0 + (1 − p0)

(
1

1 + exp
{
μ + Tr + αj + ej

}
)nTj

]uj

[
(1 − p0)

(
1

1 + exp
{
μ + Tr + αj + ej

}
)nTj

exp
{
yCjμ

}]1−uj

[
q0 + (1 − q0)

(
1

1 + exp
{
μ + ej

}
)nCj

]wj

[
(1 − q0)

(
1

1 + exp
{
μ + ej

}
)nCj

exp
{
yCjμ

}]1−wj

(11)

f
(
Tr|y

)
∝

k∏
j=1

[
p0 + (1 − p0)

(
1

1 + exp
{
μ + Tr + αj + ej

}
)nTj

]uj

[
(1 − p0)

(
1

1 + exp
{
μ + Tr + αj + ej

}
)nTj

exp
{
yTjTr

}]1−uj

exp
{

−1
2σ 2

Tr
Tr2

}
(12)

f
(
ρ|y
)

∝ ρr−1 (ρ + k)B (ρ + 1, k) I[0.1,1000](ρ) (13)

f
(
p0|y

)
∝
[
p0 + (1 − p0)

(
1

1 + exp
{
μ + Tr + αj + ej

}
)nTj

]uj

[
(1 − p0)

(
1

1 + exp
{
μ + Tr + αj + ej

}
)nTj

exp
{
yTj

(
μ+Tr+αj+ej

)}]1−uj

pa−1
0 (1 − p0)b−1

(14)

f
(
q0|y

)
∝
[
q0 + (1 − q0)

(
1

1 + exp
{
μ + ej

}
)nCj

]wj

[
(1 − q0)

(
1

1 + exp
{
μ + ej

}
)nCj

exp
{
yCj

(
μ + ej

)}]1−wj

qc−1
0 (1 − q0)d−1

(15)

where uj =
{
1, yTj = 0
0, yTj = 1

and wj =
{
1, yCj = 0
0, yCj = 1.

We investigate the suitability of the zero inflated binomial distribution using the log
pseudo marginal likelihood (LPML) Gelfand et al. (1992) in Section 4.

3 Data analysis
We illustrate the approach discussed in Section 2 using a published data set on counts
of the number of people experiencing myocardial infarction from the use of drugs with
an active ingredient “rosiglitazone" Nissen and Wolski (2007). The data used in this
section provides information on diabetes patients, 42 diabetes trials having zero events
in both arms, and possible heart condition or death resulting from the use of rosiglita-
zone. Rosiglitazone is a treatment used to treat patients with type 2 diabetes. The data
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provide information on diabetes patients, 42 diabetes trials, and possible heart condition
or death resulting from the use of rosiglitazone. Rosiglitazone is a treatment for diabetes
widely used in treating patients with type 2 diabetes. We separately apply the model on
myocardial infarction and death from cardiovascular based on these 42 studies. There
were 86 myocardial infarctions in the rosiglitazone group and 72 in the control group.
There were 39 deaths from cardiovascular causes in the rosiglitazone group and 22 in
the control group. Note that the percentages of observed zeros from the 42 studies in the
treatment and control arms for myocardial infarction are 23% and 57% respectively. Sim-
ilar percentages for cardiovascular causes are 50% and 80% respectively. We set the hyper
parameters as a = b = c = d = 1, σ 2

H = 2, σ 2
Tr = 2 and σ 2

e = 2. Note that the choice of
these values result sufficiently diffuse priors in the range of logit scale of primary param-
eters. We implement the models developed in Section 2 using R. The results are based
on a MCMC simulation with a burn-in period of 1000 iterations followed by 30,000 iter-
ations using thinning of 5. We use the data from the 42 studies, without stratifying them
into small and large studies, as the purpose of the proposed work is an illustration of the
method and not in in-depth analysis of the data by using different methods or by slicing
and dicing the data. The posterior box plots of study effects under twomodels onmyocar-
dial infarction are given in Figs. 1 and 2. The advantage of using DP prior is the flexibility
and also the ability to cluster studies appropriately. The clustering is based on the values
assigned to each study effects based on their posterior distributions, which are approxi-
mated using MCMC. Those studies that share the same study effects will be considered
to belong to the same group. Note that there were 5 clusters in myocardial infarction and
4 clusters in cardiovascular causes based on study effects. To evaluate the performance
between Binomial and ZIB models, we use the LPML which is based on Conditional Pre-
dictive Ordinates(CPO). A detailed discussion of the CPO statistic and its applications to
model selection can be found in Geisser (1993) and Gelfand and Dey (1994). The LPML

is computed as
k∑

i=1
logp(yi|y−i) where y−i denotes the observation vector y with the ith

Fig. 1 Posterior summaries of study effects on Myocardial Infarction
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Fig. 2 Posterior summaries of study effects on Myocardial Infarction

observation deleted. The model with larger value of LPML is preferred. The estimates of
μ, Tr and the LPML values are given in Table 1. The LPML prefers binomial model over
the ZIB model and the two models estimate the parameter Tr differently.
We now investigate the study effects on death from cardiovascular causes. The pos-

terior box plots of study effects under two models on death from cardiovascular causes
are given in Figs. 3 and 4. The plots indicate that ZIB model is capable in capturing the
heterogeneity of study effects. The estimates of μ, Tr and the LPML values are given in
Table 1. In this case, the LPML strongly prefers ZIB model over the binomial model. This
is in agreement with the fact that there are large amount of excessive zeros on death from
cardiovascular causes relative to myocardial infarction.
A summary of estimates of odds ratios under Binomial, zero inflated Binomial and

DerSimonian- Laird random effects models are given in Figs. 5 and 6. For myocardial
infarction, DerSimonian- Laird random effects model gives an overall odds ratio of 1.29
with a 95% confidence interval of (0.9, 1.85). On the other hand, Binomial and zero
inflated Binomial models provide an overall summary of odds ratio of 1.04 (0.98, 1.1) and
1.07 (0.97, 1.17) respectively. These estimates and 95% credible intervals for cardiovas-
cular causes are 1.2 (0.64, 2.24), 1.03 (0.97, 1.09) and 1.13 (0.93, 1.33) respectively. It is
clear that our approach provides overall odds ratios estimates that are slightly lower than
that fromDerSimonian- Laird overall estimate. Note that DerSimonian-Laird approach is
based on the non-zero studies. Also note that Binomial and zero inflated Binomial mod-
els identify more heterogeneous study effects than DerSimonian- Laird random effects

Table 1 Parameter estimates with each model along with LPML

Myocardial infarction Cardiovascular causes

Parameter Binomial model ZIB model Binomial model ZIB model

μ 0.0394 (0.0277) 0.0709 (0.0503) 0.0709 (0.0503) 0.1235 (0.0876)

Tr -1.1989 (0.3945) -3.3612 (0.4870) -3.3612 (0.4870) -4.5339 (0.5707)

LPML -173.5474 -179.7584 -156.3964 -125.0447
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Fig. 3 Posterior summaries of study effects on death from cardiovascular causes

model. According to Figs. 5 and 6, we notice that zero inflated Binomial model identifies
more heterogeneous effects than Binomial model while Binomial model identifies more
heterogeneous effects than DerSimonian- Laird approach. DerSimonian- Laird estimated
random effects variances are zero for both scenarios and this suggests that our approach
is superier than DerSimonian- Laird random effects model when there is heteregeniety
among studies and LPML model selection criteria will choose the best model in terms of
prediction ability.
We now examine the effects of zero inflated parameters p0 and q0 on the analysis. The

graphical posterior summaries of p0 and q0 on myocardial infarction and cardiovascular
causes are given in Figs. 7, 8, 9 and 10. In addition, the numerical posterior summaries
of p0 and q0 are given in Table 2. It is clear that the posterior distributions of p0 and q0

Fig. 4 Posterior summaries of study effects on death from cardiovascular causes
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Fig. 5 95% C.I. for odds ratios on Myocardial Infarction

and their numerical summaries for myocardial infarction and cardiovascular causes make
sense with respect to the percentages of zeros in the data.We also consider a Beta(0.5, 0.5)
prior on p0 and q0 in order to investigate the prior sensitivity. The numerical posterior
summaries of p0 and q0 under Beta(0.5, 0.5) prior are given in Table 3.We notice a magni-
tude change in estimates of p0 and q0 in this case but the estimates of primary parameters
μ and Tr are very close indicating that odds ratios are not sensitive to the choice of prior
settings. This indicates that inference on p0 and q0 will be sensitive to the choice of priors
so one should select these priors carefully based on application specific apriori knowledge
on zero inflated parameters.
It is important to look at some convergence assessment plots related to the MCMC

simulation as this is a high dimensional problem. The trace plot, histogram and autocor-
relation plot of μ under binomial model on Myocardial Infarction are given in Fig. 11.
The trace plot appears to stabilize immediately and hence provides no indication of lack
of convergence in the Markov chain. The autocorrelation plot also appears to dampen
quickly. Trace plots of study effects on Myocardial Infarction are given in Fig. 12. The
trace plots of study effects on death from cardiovascular causes indicate similar behavior.
Similar plots were obtained for all of the parameters under each model and provide the
evidence of the convergence of the Markov chains.
Note that one can also assign a simpler parametric normal prior on study effects αi in

place of the DP prior. We now re-analyze the data assuming that study effects are arising
from a N

(
0, σ 2

H
)
prior distribution. We remark that this is the baseline distribution of the
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Fig. 6 95% C.I. for odds ratios on death from cardiovascular causes

Fig. 7 Posterior summaries of p0 on Myocardial Infarction
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Fig. 8 Posterior summaries of q0 on Myocardial Infarction

DP prior in (2). In this case, forest plots of odds ratios for each model are given in Fig. 13.
The estimates of primary parameters of interest and LPML values are given in Table 4.
The LPML model selection criteria clearly indicates that the DP prior in (2) is superior
than the conventional parametric prior.
Note that the overall decision to assess the safety should be based on p0, q0 and the

overall odds ratio (OR). For example, the treatment can be declared is to be safer than the
control, if OR ≤ 1, and p0 > q0. Also notice that estimates of (p0, q0) are independent
of the odds ratio because the counts cannot be in “true" zero arms and “Binomial" arms.
We combine the two metrics, conditional OR and (p0, q0), to come up with an overall

Fig. 9 Posterior summaries of p0 on cardiovascular causes
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Fig. 10 Posterior summaries of q0 on cardiovascular causes

unconditional odds ratio. We define it to be modified odds ratio= OR×(1− p0)/(1− q0).
Note that when p0 = q0, modified odds ratio is same as OR. If p0 > q0, this adjusts
OR, by multiplying by a factor less than 1, and if p0 < q0, it adjust OR by multiplying
by a factor > 1. This factor, h(p0, q0) = (1 − p0)/(1 − q0) is the ratio of probabilities of
observing Bernoulli counts in the two arms, and can be considered as odds for observing
Bernoulli counts in the two arms. In frequentist setup, h(p̂0, q̂0) is independent of μ̂, and
hence independent of conditional odds ratio. In fact, p̂0 and q̂0 converge to p0 and q0 with
probability 1, and hence h(p̂0, q̂0) also converge to h(p0, q0) with probability 1, as h is a
continuous function (from Slutsky’s theorem). So, the estimated modified odds ratio is a
consistent estimator for unconditional odds ratio defined as OR × (1 − p0)/(1 − q0). We
provide the estimates of themodified odds ratio for variousmodels in Table 5. As estimate
of p0 is less than q0 for both examples (Myocardial Infarction and cardiovascular causes),
the modified OR values are higher than the corresponding OR values.

4 Results from simulation studies
To understand the role of p0 and q0 in themodel, different simulation studies were carried
out. For this purpose, we generate random ZIB values with empirical binomial parame-
ters. We first generate 42 pairs of independent binary, 0 and 1, variables from Bernoulli
(p0) and Bernoulli (q0) where p0 and q0 are from the set of values {(0.1, 0.1) , ..., (0.9, 0.9)}.
We then assign the true-zeros at the places with 1s, and generate binomial outcomes from
B(n̄T , P̂Ti) and from B(n̄C , P̂Ci), where n̄T , n̄C , P̂Ti and P̂Ci are empirical estimates. Then,
MCMC sampling scheme described in Section 2 was carried out using R to obtain the

Table 2 Posterior mean and standard deviation (in parentheses) of p0 and q0
Parameter Myocardial infarction Cardiovascular causes

p0 0.0495 (0.044) 0.231 (0.117)

q0 0.27 (0.118) 0.566 (0.137)
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Table 3 Posterior mean and standard deviation (in parentheses) of p0 and q0 under Beta(0.5, 0.5)
prior distribution

Parameter Myocardial infarction Cardiovascular causes

p0 0.0254 (0.036) 0.179 (0.125)

q0 0.247 (0.125) 0.538 (0.161)

μ 0.073 (0.051) 0.118 (0.084)

Tr -3.357 (0.444) -4.707 (0.632)

posterior estimate of p0 and q0. This was done 1000 times for each pair to obtain the
mean and standard error of each estimate. For various scenarios of excessive zeros, the
results are given in Table 6. The results indicate that when true values of p0 is small and
the observed values of zeros in the simulated data in treatment arm (control arm) is also
small (large), the estimated values of p0 and q0 are also small (large), whereas when the
values of p0 and q0 are large the simulated data has large proportion of zeros in both the
arms, this results in large estimated values of p0 and q0. In both the situations, the esti-
mated values of p0 and q0 are in conformity with the observed percentages of zeros in the
simulated data. The estimates of p0 and q0 remain high in spite of their true choices from
the parameter values. Note that our primary interest is on alphas and on treatment arm
not on the control arm, so we may not need to investigate q0 very well as it can be trated
as nuisance parameter. In practice, one should have a very good apriori knowledge of q0
which will allow to assign an informative prior as it is reflecting the zeros in the control
arm. This indicates that the use of ZIB is more appropriate when there are excessive zeros
in the data.

5 Discussion
Binary data naturally arise in clinical trials in health sciences. In some cases, they arise
with excessive zeros. In this paper, we have provided a random effects meta analysis

Fig. 11 The trace plot, histogram and autocorrelation plot of μ under binomial model on Myocardial
Infarction
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Fig. 12 Trace plots of some study effects on Myocardial Infarction under binomial model

approach for binary data with excessive zeros in two-arm trials. The suitability of the bino-
mial and zero inflated binomial model was assessed in the presence of Dirichlet process
as the prior for the study effects. The approach can be used as a template for meta analysis
of binary data and a user may choose the proper model using log pseudo marginal like-
lihood. We have shown that our approach is superior than DerSimonian- Laird random

Fig. 13 Forest plots of odds ratios for models under normal prior on study effects
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Table 4 Parameter estimates for various models under N
(
0, σ 2

H

)
prior on study effects

Model μ Tr LPML Overall odds ratio with 95% C.I.

Myocardial - Bin 0.039 (0.028) -1.148 (0.369) -179.5883 1.04 (0.979, 1.101)

Myocardial - ZIB 0.073 (0.052) -3.311 (0.435) -182.5765 1.07 (0.961, 1.194)

Cardiovascular - Bin 0.036 (0.025) -1.892 (0.427) -161.3744 1.04 (0.983, 1.094)

Cardiovascular - ZIB 0.123 (0.089) -4.585 (0.568) -125.5402 1.13 (0.917, 1.356)

effects model when there is heterogeneity among studies and LPML model selection cri-
teria can be used to selection the best model among the Bayesian models (not including
DerSimonian-Laird model) for a given data set.
The Bayesian approaches discussed in this paper allowed to incorporate the zero-

studies in the likelihood, and we found that the point estimates of the overall odds-ratio
from these methods, were lower than the estimates reported in the literature Nissen and
Wolski (2007). The use of ZIB model was to identify the percentage of excessive zeros,
that is, the studies where the events could not occur, from the (Binomially) modeled zeros
where the zero events occurred. Note that under ZIB, some zeros are observed with prob-
ability p0 and some from Binomial model, making the probability of zero-event to be
p0 + (1 − p0)(1 − PT )nT in the treatment arm. With the use of ZIB model, the Bayes
estimates of the odds-ratio went slightly up than with the use of Binomial model, but
still they were lower than the results from DerSimonian-Laird random effects model and
the resulting estimates in Nissen and Wolski (2007). Note also that DP model being dis-
crete with probability 1, has a clustering property, where the study effects, that are alike,
fall in the same cluster. We also investigated the suitability of the DP prior over the con-
ventional parametric normal prior on study effects. The LPML model selection indicated
that DP prior is superior than the conventional parametric normal prior. Finally, as the
results from ZIB model on the parameters p0, q0 and OR need to be interpreted together,
a modified OR was introduced.
As a future direction of research, we would like to extend the approach discussed

in this article for ordinal category data. For example, in some applications, the clinical
trial end point could be a response variable in an ordinal scale with multiple categories
such as Good/Moderate/Critical etc. This type of ordinal response data can be viewed
as multivariate responses arising from continuous latent variables with cut-points. We
assume that there is a continuous latent outcome behind these ordinal outcomes such
that Xi = (Xi1, . . . ,Xim)′ ∼ Normal(μ,�) where X’s are the latent outcomes and m is
the number of ordinal categories. Then the latent variables Xij’s can be converted to the
observed Yij using a cut-point vector λ. However the choice of cut-points and their priors
need to be carefully selected as there are two arms and the counts on categories could be

Table 5Modified odds ratios, standard deviations (in parentheses) and credible intervals under DP
and normal priors

Model Modified odds ratio 95% credible interval

Myocardial - DP Prior 1.448 (0.277) (1.05, 2.11)

Myocardial - Normal Prior 1.446 (0.275) (1.05, 2.11)

Cardiovascular - DP Prior 2.209 (0.830) (1.15, 4.27)

Cardiovascular - Normal Prior 2.224 (0.837) (1.16, 4.33)
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Table 6 Simulation studies for the myocardial infarction data

Initial pair (p0, q0) Mean of the pos-
terior means of p0
estimates

Standard error of
p0 estimates

Mean of the pos-
terior means of q0
estimates

Standard error of
q0 estimates

(0.1,0.1) 0.19888206 0.0907763 0.52069774 0.08299897

(0.2,0.2) 0.29206103 0.10530334 0.59059405 0.05131143

(0.3,0.3) 0.33836514 0.09115085 0.62706227 0.06062431

(0.4,0.4) 0.3587838 0.10839263 0.63652 0.06102938

(0.5,0.5) 0.4977337 0.1267577 0.7200964 0.04900527

(0.6,0.6) 0.6180761 0.1255134 0.7705962 0.06610487

(0.7,0.7) 0.6525938 0.1885614 0.8096615 0.07434429

(0.8,0.8) 0.796206 0.09240875 0.8696273 0.06536744

(0.9,0.9) 0.8958989 0.0501579 0.935196 0.03310256

sparse. In this case, one can consider an objective Bayes approach following the develop-
ment in Bayarri et al. (2008). Yet another extension of the proposed model is where there
are multinomial data with some particular cell(s) being observed excessively. This kind of
data may arise from trials with patient reported outcomes.

Acknowledgments
The authors thank Editor-in-Chief and three anonymous reviewers whose comments helped to improve the manuscript.
This article reflects the views of the authors and should not be attributed to FDA’s views or policies.

Authors’ contributions
All authors have contributed equally to the work and approved the final version of the paper.

Funding
Muthukumarana’s research has been partially supported by a Discovery grant from the Natural Sciences and Engineering
Research Council of Canada. Martell’s research internship was funded by Mitacs Globalink program.

Availability of data andmaterials
Data and code can be requested by contacting the authors.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Statistics, University of Manitoba, Machray Hall, Winnipeg, Canada. 2ITAM, Mexico City, Mexico. 3Office of
Biostatistics, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave,Silver
Spring, USA.

Received: 13 September 2018 Accepted: 2 July 2019

References
Albert, J.: Teaching Inference about Proportions Using Bayes and Discrete Models. J. Stat. Educ. 3 (1995). https://doi.org/

10.1080/10691898.1995.11910494
Bayarri, M. J., Berger, J. O., Datta, G. S.: Objective Bayes testing of Poisson versus inflated poisson models. Inst. Math. Stat. 3,

105–121 (2008)
Branscum, A. J., Hanson, T. E.: Bayesian nonparametric meta-analysis using Polya tree mixture models. Biometrics. 64,

825–833 (2008)
Burr, D., Doss, H.: A Bayesian semiparametric model for random-effects meta-analysis. J. Am. Stat. Assoc. 100, 242–251

(2005)
Carlin, J. B.: Meta-analysis for 2×2 tables: A bayesian approach. Stat. Med. 11, 141–158 (1992)
Chang, B. H., Waternaux, C., Lipsitz, S.: Meta-analysis of binary data: which within study variance estimate to use? Stat.

Med. 20, 1947–1956 (2001)
DerSimonian, R., Laird, N.: Meta-analysis in clinical trials. Control. Clin. Trials. 7, 177–188 (1986)
Ferguson, T. S.: Prior distributions on spaces of probability measures. Ann. Stat. 2, 615–629 (1974)
Gamalo, M., Wu, R., Tiwari, R.: Bayesian approach to noninferiority trials for proportions. J. Biopharm. Stat. 21, 902–919

(2011)
Geisser, S.: Predictive Inference: An Introduction. Chapman and Hall, London (1993)
Gelfand, A. E., Dey, D. K.: Bayesian Model Choice: Asymptotics and Exact Calculations. J. R. Stat. Soc. Ser. B. 56, 501–514

(1994)

https://doi.org/10.1080/10691898.1995.11910494
https://doi.org/10.1080/10691898.1995.11910494


Muthukumarana et al. Journal of Statistical Distributions and Applications            (2019) 6:10 Page 17 of 17

Gelfand, A. E., Dey, D. K., Chang, H.: Model determination using predictive distributions with implementation via
sampling-based methods (with discussion). Bayesian Statistics 4(Bernardo, J. M., Berger, J. O., Dawid, A. P., Smith,
A. F. M., eds.) Oxford University Press (1992)

Ghosh, S. K., Mukhopadhyay, P., Lu, J. C.: Bayesian analysis of zero-inflated regression models. J. Stat. Plan. Infer. 136(4),
1360–1375 (2006)

Hall, D. B.: Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study. Biometrics. 56, 1030–1039
(2000)

Huang, L., Zheng, D., Zalkikar, J., Tiwari, R.: Zero-inflated Poisson model based likelihood ratio test for drug safety signal
detection. Stat. Methods Med. Res. (2014). https://doi.org/10.1177/0962280214549590

Muthukumarana, S., Tiwari, R.: Meta-analysis using dirichlet process. Stat. Methods Med. Res. 25(1), 352–365 (2016)
Neal, RM: Markov Chain Sampling Methods for Dirichlet Process Mixture Models. J. Comput. Graph. Stat. 9(2), 249–265

(2000)
Nissen, S. E., Wolski, K.: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes.

New Eng. J. Med. 356, 2457–2471 (2007)
Smith, T. C., Spiegelhalter, D. J., Thomas, A.: Bayesian approaches to random-effects meta-analysis: a comparative study.

Stat. Med. 14, 2685–2699 (1995)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1177/0962280214549590

	Abstract
	Keywords

	Introduction
	Model development
	Data analysis
	Results from simulation studies
	Discussion
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

