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Abstract
Motivated by an engineering pullout test applied to a steel strip embedded in earth, we
show how the resulting linearly decreasing force leads naturally to a new distribution, if
the force under constant stress is modeled via a three-parameter Weibull. We term this
the LDSWeibull distribution, and show that inference on the parameters of the
underlying Weibull can be made upon collection of data from such pullout tests.
Various classical finite-sample and asymptotic properties of the LDSWeibull are studied,
including existence of moments, distribution of extremes, and maximum likelihood
based inference under different regimes. The LDSWeibull is shown to have many
similarities with the Weibull, but does not suffer from the problem of having an
unbounded likelihood function under certain parameter configurations. We
demonstrate that the quality of its fit can also be very competitive with that of the
Weibull in certain applications.

Keywords: Pullout test, Reliability, Extreme values, Maximum likelihood estimate,
Wind speed data

Introduction
Mechanically stabilized earth is a method of constructing vertical retaining walls which
is often seen in overpasses in populated metropolitan areas where space is at a premium.
It consists of reinforcements which are buried in soil in layers. These reinforcements are
attached to a vertical facing wall. The types of reinforcements vary, but are generally clas-
sified as either inextensible (steel) or extensible (polymeric). Of interest here are the steel
reinforcements which are generally flat steel strips, flat steel strips with ribs on them, or
welded wire mats which look like a ladder or a grid. The strip reinforcements are generally
50 mm (2 inches) wide and 4 mm (0.16 inches) thick.
Consider the case of the smooth steel strip. These types of reinforcements are not gen-

erally used in construction, but are often studied in the laboratory. If a smooth steel strip
were used, while in service the stress that it would be subject to would be equal along its
entire length (nominally, assuming a constant soil pressure). To establish the serviceabil-
ity of these reinforcements, they are subjected to what is known as a pullout test. That is,
they are embedded in backfill and an axial force is applied to the head of the reinforce-
ment. A frictional stress is generated along the reinforcement and soil interface, and this
frictional stress is cumulative so that the stress at the head of the reinforcement is equal to
the total frictional stress that the entire strip is experiencing, while the stress at the middle
is half of that, and so on. This results in a continuous, linearly decreasing force within the
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reinforcement from the head to the tail. This is much like the linkage between two cars
in a train, which must withstand only the stress placed upon it by the cars behind. Thus
if a train is being pulled by only locomotives in the front, the linkages between cars at the
front of the train are subjected to much more stress than those near the rear of the train.
(This train analogy is apt because ribbed strip or the wire mat reinforcements will largely
behave in this manner.)
The data gathered from pullout tests can be used to estimate the survival distribution of

reinforcements under the conditions of the pullout test, but how can it be used to estimate
the survival distribution under actual service conditions?
The Weibull distribution, named for Waloddi Weibull, was popularized by Weibull in

his papers from 1939 through 1961, the key paper being (Weibull 1951). It has found wide
applicability in engineering practice. In his work, Weibull was studying the strength of
materials, but the distribution actually appeared somewhat earlier than that in the late
1920’s in the study of extreme values; see (Rinne 2009) for a thorough review. (It should be
noted thatWeibull was unaware of this earlier work and derived his distribution indepen-
dently.) In particular, it arises as the minimum (or maximum) of a random sample with
support that is bounded below (for the minimum) or above (for the maximum). The old
proverb is that the strength of a chain is equal to the strength of its weakest link (the min-
imum). The proverb may also be applied to the strength of materials in that the strength
of the material is equal to the strength of its weakest point. So it is no surprise that the
Weibull distribution arises in the study of the strength of materials and has found wide
applicability.
Suppose that it is reasonable to assume that a smooth steel strip reinforcement has a

Weibull survival distribution were it exposed to a constant stress along its length. It is well
known that theminimum of independent and identically distributed (iid)Weibull random
variables has a Weibull distribution. That is, suppose that Y1,Y2, . . . ,Yn are iid Weibull
with shape β , location/thresholdμ, and scale σ under the following pasteurization for the
cumulative distribution function (cdf):

F(y;β ,μ, σ) = 1 − exp
{−[ (y − μ)/σ ]β

}
, y > μ, β > 0, σ > 0, μ > 0. (1)

This 3-parameter Weibull will be referred to as Weibull(μ,β , σ). Then Y(1) =
min(Y1,Y2, . . . ,Yn) has cdf given by:

F1(y;β ,μ, σ) = 1 − {
1 − F(y;β ,μ, σ)

}n = 1 − exp
{
− [

n1/β(y − μ)/σ
]β} .

That is, Y(1) is Weibull with shape β , location μ, and scale σ/n1/β .
Consider now a continuous system of length L that is viewed as being composed of

n independent “links” of equal length. Assume that the strength of the entire system is
Weibull(β ,μ, σ ), and that the strengths of the individual links are also Weibull. Then
each link must have a Weibull

(
β ,μ, σn(1/β)

)
distribution. Note that this requires that as

the number of links, n, increases, the scale increases in a corresponding fashion. That is,
shorter links are stronger links (stochastically).
One end is denoted the “head” (location 0) and the other the “tail” (location L). The

head is exposed to a stress S0, which decreases linearly along the system to 0 at the tail.
The stress at location l is thus Sl = S0

(
1 − l

L

)
. If we view the system as before; that is,

as having a Weibull strength with it being viewed as n independent “links” that are also
Weibull, what is the distribution of the system under these conditions as a function of S0?
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Suppose that we have Y1,Y2, . . . ,Yn that are iid Weibull
(
β ,μ, σn(1/β)

)
. The system

reliability is given by:

R(S0) = P(All segments survive)

= P
(
Y1 > S0

[
1 − 0

n

]
,Y2 > S0

[
1 − 1

n

]
, . . . ,Yn > S0

[
1 − n − 1

n

])

=
n−1∏

i=0
P
(
Yi+1 > S0

[
1 − i

n

])
.

(2)

Note that if S0
[
1 − i

n
]

< μ, then the probability associated with that i is 1 since the
strength Yi must be greater than μ. so the product need only run to the largest k such that

S0
(
1 − k

n

)
> μ ⇐⇒ k < n

(
1 − μ

S0

)
⇐⇒ k = min

{
n − 1,

⌊
n
(
1 − μ

S0

)⌋}
,

(3)

where �·� is the floor function.
Thus,

R(S0) =
k∏

i=0
exp

{

−
[(

S0
(
1 − i

n

)
− μ

)
/
(
σn1/β

)]β
}

, S0 > μ

= exp

⎧
⎨

⎩
−

k∑

i=0

[(
S0

(
1 − i

n

)
− μ

)
/
(
σn1/β

)]β

⎫
⎬

⎭
.

(4)

Taking the natural log and the limit as n tends to infinity:

lim
n→∞ logR(S0) = − lim

n→∞

k∑

i=0

[(
S0

(
1 − i

n

)
− μ

)
/
(
σn1/β

)]β

, (5)

where k = min
{
n − 1,

⌊
n
(
1 − μ

S0

)⌋}
. For sufficiently large n, we can approximate this

sum using an integral as:

lim
n→∞ logR(S0) ≈ 1

σβ

∫ 1−μ/S0

0
[S0(1 − x) − μ]β dx

= − (S0 − μ)β+1

σβ(β + 1)S0
, S0 > μ.

(6)

Thus, R(S0) = exp
{
− (S0−μ)β+1

σβ(β+1)S0

}
, S0 > μ. Note that in the case of the standard two-

parameter Weibull (μ = 0), the resulting reliability is Weibull with shape β and scale
σ(β + 1)1/β .
Consider a reparametrization with θ = μ, γ = β + 1, and δ = [

σβ(β + 1)
]1/(β+1). This

yields a cdf (which is one minus the reliability) of the form:

F(x; θ , γ , δ) = 1 − exp
{−(x − θ)γ

xδγ

}
, for x ≥ θ . (7)

Note that this bridges the gap and allows us to estimate the reliability of in-service steel
strip reinforcements (which are exposed to a constant stress along its length and have a
Weibull survival distribution) via the results of pullout tests (which expose the strip to a
linearly decreasing stress along its length and have the distribution derived above). That
is, if we obtain a sample under pullout test conditions and estimate the parameters θ , γ ,
and δ viamaximum likelihood estimation (MLE) and obtain θ̂ , γ̂ , and δ̂, then by invariance
the MLEs for the parameters of the Weibull are:
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μ̂ = θ̂ , β̂ = γ̂ − 1, σ̂ =
[
δ̂γ̂ /γ̂

]1/(γ̂−1)
. (8)

We term the distribution arrived at in the above discussion the linearly decreasing
stress Weibull (LDSWeibull); a new Weibull-like distribution. A formal definition along
with the derivation of basic and classical properties is presented in “Formal definition,
basic properties, and results” section. Maximum likelihood and other types of estimation
procedures, along with accompanying asymptotic results, are developed in “Estimation
procedures and asymptotic results” section. These procedures are subsequently investi-
gated with simulation studies in “Simulation results” section. We conclude the paper with
an application on real data in “Real data application” section.

Formal definition, basic properties, and results
This section formally introduces the LDSWeibull and derives basic properties. It is obvi-
ous from (7) that θ is a pseudo-location parameter, γ is a shape parameter, and δ a
pseudo-scale parameter. For ease of handling, it will be more convenient to work with the
following one-to-one reparametrization, (θ , γ , δ) 
→ β = (θ , γ , τ), where τ = δγ ⇔ δ =
τ 1/γ , whence τ > 0 is more obviously seen to be a pseudo-scale parameter.

Definition 1 The LDSWeibull(θ , γ , τ) has parameter space:� = {(θ , γ , τ) : θ ≥ 0, γ >

1, τ > 0}. Its cdf is given by:

F(x; θ , γ , τ) =
∞∫

θ

f (x; θ , γ , τ) dx = 1 − exp
{
− (x − θ)γ

xτ

}
, for x ≥ θ . (9)

The density function is therefore:

f (x; θ , γ , τ) = (x − θ)γ

xτ

[
γ

x − θ
− 1

x

]
exp

{
− (x − θ)γ

xτ

}
I[θ ,∞)(x). (10)

Note that the LDSWeibull inherits parameter identifiability from the Weibull, since the
transformation (8) is one-to-one.

Remark 1 For θ = 0 the LDSWeibull(0, γ , τ) is a two-parameter Weibull with shape
γ − 1, and scale τ 1/(γ−1).

Apart from its intimate connection with the Weibull, there are possibly many related
distributions that overlap with the proposed LDSWeibull. Note that written in the form

G(x;α,β) = 1 − exp {−αH(x;β)} , α > 0,

the cdf can more generally be seen to be a member of the very broad class of distributions
introduced by (Gurvich et al. 1997), that can be generated from the Weibull by taking
H(x;β) to be a non-negative and monotone increasing function, possibly depending on
the vector of parameters β . In our case, the LDSWeibull(θ , γ , τ) is obtained by setting
α = 1/τ and H(x; θ , γ ) = (x − θ)γ /x. (Bourguignon et al. 2014) introduce an interesting
variant ofG(x;α,β) by takingH(x;β) to be a positive power of the ratio of any continuous
cdf and its survival function, but the LDSWeibull(θ , γ , τ) does not appear to obey that
particular construct.
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Existence of moment generating function

We have managed to determine necessary and sufficient conditions for existence of the
moment generating function (mgf). These conditions impose a restriction on the shape
parameter γ .

Theorem 1 The mgf of the LDSWeibull(θ , γ , τ) satisfies M(t) = EetX < ∞, for all t ∈ R

in the restricted parameter range:

�C = {(θ , γ , τ) : θ ≥ 0, γ > 2, τ > 0} ⊂ �.

Otherwise, M(t) = ∞ for all t ∈ R if γ ≤ 2.

Proof See Appendix: Proof of Theorem 1.

Attempts at finding a closed form for M(t) (in terms of known special functions) have
not, however, yielded positive results. This leads to challenges in devising preliminary
parameter estimators such as method of moments. Due to the lack of an analytic expres-
sion for the quantile function, and the usual intractability of moments of order statistics,
alternative treatments such as probability weighted moments (Greenwood et al. 1979)
and L-moments (Hosking 1990), do not appear to be feasible either.

Completeness andminimal sufficiency

There is little hope in being able to determine a complete statistic, but it’s not hard to
show that the order statistics are minimal.

Theorem 2 For a random sample X = (X1, . . . ,Xn) from the LDSWeibull(θ , γ , τ), the
order statistics T(X) = (X(1), . . . ,X(n)) are minimal sufficient.

Proof Let x = (x1, . . . , xn) and y = (y1, . . . , yn) denote two independent random
samples from the LDSWeibull(θ , γ , τ), where the log-density of f (x) is given by:

log f (x) =
∑

log f (xi) = (γ − 1)
∑

log(xi − θ) +
∑

log[ (γ − 1)xi + θ ]−
∑ (xi − θ)γ

τxi
− n log τ −

∑
log xi2.

We note that the family is (trivially) dominated by Lebesgue measure, and hence invoking
(Schervish (1995), Theorem 2.29), we need only show that, for any fixed choice of (θ , γ , τ):

log f (x) − log f (y) = h(x, y) ⇐⇒ T(x) = T(y).

To this end, and ignoring summands that depend on x and/or y only, note that

log f (x) − log f (y) = (γ − 1)
∑

log
(
xi − θ

yi − θ

)
+
∑

log
(

(γ − 1)xi + θ

(γ − 1)yi + θ

)
+ 1

τ

∑[
(yi − θ)γ

yi
− (xi − θ)γ

xi

]
.

(11)

Now, it is obvious that T(x) = T(y) immediately implies log f (x) − log f (y) = 0, which is
therefore independent of the parameters. To see that the converse is also true, note that
the only way (11) can be independent of (θ , γ , τ), is if each of the three summands is itself
free of (θ , γ , τ), whence we must have
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∑
log(xi − θ) =

∑
log(yi − θ)

∑
log[ (γ − 1)xi + θ ] =

∑
log[ (γ − 1)yi + θ ]

∑ (xi − θ)γ

xi
=

∑ (yi − θ)γ

yi

Because of the intimate connections with θ and γ , these three requirements can only be
met if T(x) = T(y).

Distribution of the extremes

For a random sample X1, . . . ,Xn from the LDSWeibull(θ , γ , τ), we now consider the dis-
tributions of the minimum and maximum order statistics, X(1) and X(n), respectively.
Some exact results can be obtained using the usual techniques. Specifically, the survival
function of X(1) is given by

P(X(1) > x) =[ 1 − F(x)]n = exp
{
− (x − θ)γ

x(τ/n)

}
,

which implies that X(1) is therefore LDSWeibull(θ , γ , τ/n). The cdf of X(n) is of course
F(x)n, but this does not appear to have an immediately recognizable form.
It is also possible to obtain the asymptotic distribution of the (appropriately normalized)

extremes by invoking the Fisher-Tippett Theorem; see e.g., David and Nagaraja (2003,
§10.5). The following theorem reveals that the extremes of the LDSWeibull are in the
domain of attraction of the Gumbel.

Theorem 3 Let X(1) and X(n) denote the minimum and maximum order statistics,
respectively, in a random sample from the LDSWeibull(θ , γ , τ) with parameter space �,
as in Definition 1. Then we have the following convergence in distribution results, for any
x ∈ R.

• For the maximum,

lim
n→∞P

(
X(n) − an

bn
≤ x

)
= exp

{−e−x} .

• For the minimum,

lim
n→∞P

(
X(1) − an

bn
≤ x

)
= 1 − exp

{−ex
}
.

In each case, the normalizing constants an and bn can be chosen to satisfy the pair of
equations

(an − θ)γ − τan log(n) = 0, and bn = an(an − θ)

[ an(γ − 1) + θ ] log(n)
.

Proof Note that the derivative of the inverse of the hazard function is

∂

∂x

[
1 − F(x)
f (x)

]
= ∂

∂x

[
x2τ

(x − θ)γ−1[ x(γ − 1) + θ ]

]

= 2xτ
(x − θ)γ−1(x(γ − 1) + θ)

− x2τ(γ − 1)
(x − θ)γ [ x(γ − 1) + θ ]

− x2τ(γ − 1)
(x − θ)γ−1[ x(γ − 1) + θ ]2

.

(12)
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Since γ > 1, each of these terms is of order O(1/xε), for some ε > 0, and thus they
all converge to zero as x → ∞. The required result now follows by invoking (David and
Nagaraja (2003), Theorem 10.5.2).

Estimation procedures and asymptotic results
For a random sample x1, . . . , xn from the LDSWeibull(θ , γ , τ), we have the log-likelihood
function:

�(β) =
{

(γ − 1)
∑

log(xi − θ) + ∑
log[ (γ − 1)xi + θ ]−∑ (xi−θ)γ

τxi − n log τ − ∑
log xi2, θ ≤ x(1),

−∞, θ > x(1).

(13)

Denote by β0 = (θ0, γ0, τ0)T the true parameter vector.

Remark 2 Note that, unlike the Weibull, this log-likelihood function is bounded and will
therefore have a non-degenerate extremum for all (θ , γ , τ) ∈ �. As discussed in (Rinne
(2009), §11.3.2), a known issue with the 3-parameter Weibull in (1) is that as μ → x(1),
(β−1) log(x(1)−μ) → ∞ for β < 1, and therefore theMLE of β does not exist when β < 1.

To demonstrate the spectrum of possibilities for the various regimes of the MLEs, we
will now consider the following subset of just three special cases taken from the exhaustive
list of all 7 possible combinations of known and unknown parameter values.

Case 1: (γ , τ) known

It would appear that the maximizer of θ would occur at the boundary value of x(1),
however the first two derivatives yield:

ψ1(β) ≡ ∂�(β)

∂θ
= −

∑ (γ − 1)
xi − θ

+
∑ 1

(γ − 1)xi + θ
+
∑ γ (xi − θ)γ−1

τxi
∂2�(β)

∂θ2
= −

∑ (γ − 1)
(xi − θ)2

−
∑ 1

[ (γ − 1)xi + θ ]2
−
∑ γ (γ − 1)(xi − θ)γ−2

τxi
.

Since each of the summands in the second derivative is positive, it follows that ∂2�/∂θ2 <

0, whence �(β) is concave in θ , and thus the MLE is the unique maximum of �(β), and
occurs at an interior point, albeit close to x(1) (which can therefore be used as an initial
estimate).

Theorem 4 Let β0 be in the restricted parameter range �C, with γ0 and τ0 known. Then
the MLE θ̂γ0,τ0 of θ0 is consistent.

Proof Take the (continuous) estimating equation (of which θ̂γ0,τ0 is the unique root by
the above argument) to be

gγ ,τ (θ)≡ 1
n

∂�(β)

∂θ
= 1

n

n∑

i=1

1
(γ − 1)xi + θ

+ γ

τ

1
n

n∑

i=1

(xi − θ)γ−1

xi
− (γ − 1)

1
n

n∑

i=1

1
xi − θ

p−→ E

[
1

(γ − 1)X + θ

]
+ γ

τ
E

[
(X − θ)γ−1

X

]
− (γ − 1)E

[
1

X − θ

]
,
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by the weak law of large numbers applied to each of the sample averages. Since this limit-
ing value is well-defined for each θ , consistency of the unique root θ̂γ0,τ0 follows by (Van
der Vaart (1998), Lemma 5.10).

Case 2: θ known

With the argument r as placeholder for γ , first define the terms:

Qθ =
n∑

i=1
log(xi − θ), Rθ (r) =

n∑

i=1

xi
(r − 1)xi + θ

, Sθ (r) =
n∑

i=1

(xi − θ)r

xi
, (14)

and note that

S′
θ (r) = ∂Sθ (r)

∂r
=

∑ (xi − θ)r log(xi − θ)

xi
.

The corresponding score functions are then:

ψ2(β) ≡ ∂�(β)

∂γ
= Qθ + Rθ (γ ) − 1

τ
S′
θ (γ )

ψ3(β) ≡ ∂�(β)

∂τ
=

∑ (xi − θ)γ

τ 2xi
− n

τ

Solving ψ3(β) = 0 leads to the profile MLE for τ , τ̂θ = Sθ (γ )/n, whence substitution into
ψ2 leads to the profile score equation for γ

ψ2(θ , γ , τ̂θ ) = Qθ + Rθ (γ ) − nS′
θ (γ )

Sθ (γ )
= 0, (15)

with solution γ̂θ .
It will be more convenient to write the score function (15) in normalized form:

hθ (r) ≡ 1
n

ψ2(θ , γ , τ̂θ ) = 1
n
Qθ + 1

n
Rθ (r) − S′

θ (r)
Sθ (r)

. (16)

Thus the MLEs for γ0 and τ0 satisfy the equations

hθ0(γ̂θ0) = 0, and τ̂θ0 = 1
n
Sθ0(γ̂θ0),

where, due to the monotonicity property in Proposition 1, γ̂θ0 is easily determined as
either the boundary value γ̂θ0 = 1, or as the unique root of hθ0(r) in (16).

Proposition 1 The function hθ (r) in (16) is monotone decreasing over the interval r > 1.

Proof First note that Rθ (r) is monotone decreasing, since

R′
θ (r) = −

∑[
xi

(r − 1)xi + θ

]2
< 0.

We now show that the term Tθ (r) = S′
θ (r)/Sθ (r) is monotone increasing, whence the

desired result will follow since hθ (r) will then be the sum of a constant term, Qθ , and
two monotone decreasing functions. To this end, write Sθ (r) = ∑

yri /xi = tM(r), where
yi = xi − θ > 0, t = ∑

x−1
i , andM(r) = ∑

pierzi corresponds to the moment generating
function of a discrete random variable (say Z), with values zi = log yi, and masses 0 ≤
pi = (txi)−1 ≤ 1, i = 1, . . . , n. This is sufficient to establish the result, since noting that
the cumulant generating function K(r) = logM(r) is convex1, we have

1Standard result for the cumulant generating function of any random variable, easily established by invoking Holder’s
Inequality.
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T ′
θ (r) = Sθ (r)S′′

θ (r) − S′
θ (r)2

Sθ (r)2
= Mθ (r)M′′

θ (r) − M′
θ (r)2

Mθ (r)2
= K ′′(r) > 0.

The question of whether or not γ̂θ0 ever attains the boundary value of 1 is interesting.
It is certainly possible to construct a set of real values x1, . . . , xn such that hθ (1) < 0, but
whether or not such values correspond to bona fide realizations from an LDSWeibull over
some set with positive measure remains an open issue. It is however possible to establish
a limiting result as follows.

Proposition 2 Let β0 be in the restricted parameter range �C, and suppose that
plimn→∞hθ (1) > 0. Then, with probability 1 in the limit as n → ∞, γ̂θ0 is the unique root
of hθ0(r).

Proof Due to Proposition 1, it suffices to show that plimn→∞hθ (∞) < 0. Defining Y =
X − θ , note that Y > 0 a.s., and plimn→∞Qθ /n = E logY by the weak law of large
numbers. (Note that the finiteness of all moments for logY follows from the finiteness
of all moments for X with parameters in �C .) Since Rθ (∞) = limr→∞ Rθ (r)/n = 0, it
follows that Rθ (∞)/n

p−→ 0. Now assume (without loss of generality) that 0 < y1 = y(1) ≤
· · · ≤ y(n) < ∞ are ordered, and note that in view of the representation

Tθ (r) =
∑

i

(
yri /xi∑
j yrj /xj

)

log yi =
∑

i

(
yi
y1

)r
/xi

∑
j

(
yj
y1

)r
/xj

log yi,

Lemma 1 in the Appendix is applicable with ci(r) = (
yi
y1 )/x

1/r
i , since for sufficiently large

r, we have for i < j:

ci(r)r =
(
yi
y1

)r 1
yi + θ

<

( yj
y1

)r 1
yj + θ

= cj(r)r ,

whence it follows that Tθ (∞) = log y(n) and therefore plimn→∞Tθ (∞) = ∞. Putting
everything together gives:

h(∞)
p−→E logY + 0 − ∞ < 0.

Identifiability of the LDSWeibull model combined with third order differentiability
of log f (x;β), plus domination of appropriate derivatives of the latter as well as f (x;β)

by integrable functions, establishes consistency and asymptotic efficiency of the MLEs
directly via classical conditions.

Theorem 5 Let β0 be in the restricted parameter range �C, with θ0 known. Then, the
MLEs γ̂θ0 and τ̂θ0 of γ0 and τ0, respectively, satisfy:

√
n
((

γ̂θ0

τ̂θ0

)

−
(

γ0
τ0

))
d−→ N

(
0, J−1(β0)I(β0)J−1(β0)

)
,
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where J(β) is the Hessian matrix of log f (x;β), and I(β) is the Fisher Information matrix
(per observation), each defined accordingly as:

J(β) ≡ E

⎡

⎣
∂2 log f (x;β)

∂γ 2
∂2 log f (x;β)

∂γ ∂τ

∂2 log f (x;β)

∂γ ∂τ

∂2 log f (x;β)

∂τ 2

⎤

⎦ , I(β) ≡ E

⎡

⎢
⎣

(
∂ log f (x;β)

∂γ

)2
∂ log f (x;β)

∂γ

∂ log f (x;β)

∂τ

∂ log f (x;β)

∂γ

∂ log f (x;β)

∂τ

(
∂ log f (x;β)

∂τ

)2

⎤

⎥
⎦ .

(17)

Proof See Appendix: Proof of Theorem 5.

Case 3: All parameters unknown

To start, a nonparametric estimator of the survival (or reliability) function should be
provided for each x(i), where x(i) is the i-th order statistic. The usual empirical sur-
vival function is Ŝ(x(i)) = (n − i)/n, but we employ instead a common adjustment,
Ŝ(x(i)) = (n − i + 1)/(n + 1) to avoid the problematic situation of log(0) when i = n.
Now replace θ with the consistent estimate x(1), and equate empirical and population

survival functions at x(i):

1 − F̂(x(i)) = n − i + 1
n + 1

≈ exp
(

− (x(i) − x(1))γ

τx(i)

)
= 1 − F(x(i)). (18)

(A perhaps more common justification of (18) is to note the well-known property of uni-
form order statistics: E[ F(X(i))]= i/(n+1).) Performing a log-log transformation of both
sides then leads to:

yi ≡ log
(

− log
(
n − i + 1
n + 1

))
+ log(x(i)) ≈ γ log (x(i) − x(1)) − log τ ≡ γ zi − log τ .

Denoting by yi the left-hand-side term of the above expression, and zi = log(x(i) − x(1)),
we have, with the addition of the error term εi = yi−(a+bzi), the linear regressionmodel

yi = a + bzi + εi, i = 2, . . . , n, with b = γ and a = − log τ . (19)

Obtaining the least squares estimates â and b̂ for the regression parameters, yields the
following starting values for the LDSWeibull model parameters:

θ(0) = x(1), γ (0) = b̂, τ (0) = exp (−â). (20)

Armedwith these initial values, which are consistent by the next theorem, one can employ
an efficient optimization algorithm to maximize (13) and obtain the MLEs (θ̂ , γ̂ , τ̂ ). We
note in passing that the procedure outlined above is nearly identical to the so-called
“regression method” for estimating the parameters of the generalized extreme value
distribution; see e.g., (Rinne (2009), Chapter 10).

Remark 3 (Central quantile limiting behavior) Note that consistent estimation of the
right-hand-side of (18) subsumes the following limiting behavior for the integer 2 ≤ i ≤ n
appearing in the left-hand-side of (18):

lim
n→∞

i
n + 1

= qi, 0 < qi = F(ξi) < 1, (21)

where ξi is the population quantile corresponding to qi, and for notational expedience we
omit the implicit dependence i ≡ i(n) in the limiting behavior of order statistics for the
central quantile case (David and Nagaraja (2003), Chapter 10). (Note however that qi and
ξi on the right-hand-side of (21) do not depend on n.)
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Theorem 6 Let β0 be in the restricted parameter range �C, and assume the central
quantile limiting behavior in Remark 3. Then, the initial estimates β(0) = (

θ(0), γ (0), τ (0))T

given by (20) resulting from a random sample X1, . . . ,Xn from the LDSWeibull(θ , γ , τ), are
consistent for β0.

Proof See Appendix: Proof of Theorem 6.

Simulation results
In this section we carry out a small simulation study to investigate the sampling properties
of theMLEs for the three cases defined in “Estimation procedures and asymptotic results”
section. To this end, Tables 1, 2, and 3 report the bias, variance, mean squared error
(MSE), and coefficient of variation (CV) of the MLEs, empirically determined from 1000
simulated realizations.
We see a consistent decrease in all themetrics (bias, variance,MSE, CV) with increasing

sample size, as expected. Interestingly, it appears that in general the parameter τ suffers
from themost uncertainty, particularly noticeable in some large CV values at low samples.

Real data application
The motivating derivation of the LDSWeibull in Section 1 would behoove us to apply it
to the results of a pullout test in order to infer the parameters of the underlying Weibull
according to (8). In lack of such data, in this section we illustrate an application where the
LDSWeibull(θ , γ , τ) provides a competitive fit to the Weibull(μ,β , σ).
To assess the prospective wind power at a given site, a distribution is often fit to

the observed wind speeds. Although different locations tend to have different wind
speed profiles, the Weibull has been found to closely mirror the actual distribution of
hourly/ten-minute wind speeds at many locations (Masters 2013). In these cases the
Weibull shape parameter β is often close to 2, and a Rayleigh distribution can therefore
be used, offering a less accurate but simpler model.
The R package bReeze contains the data set “winddata”, consisting of measured

wind speed and direction at 10-min intervals collected by a meteorological mast, for a
total of 36,548 consecutive observations on 17 variables. Of these variables, we selected
winddata$v1_40m_max, which contains the maximum wind speed (m/s) over each
10-min interval recorded by the mast at a height of 40m above ground level. We divided
up this long time series into 252 shorter time series of length n = 144, each comprising
the maximum wind speeds over a 24 h period (144 10-min intervals). The 6 (anomalous)

Table 1 Summary statistics for the MLE of θ under Case 1: γ and τ are known

True values Sample size MLE summary statistics

(θ0, γ0, τ0) n Bias Variance MSE CV (%)

(1, 2.1, 4) 10 2.0031 × 10−01 1.4643 × 10−01 1.87 × 10−01 31.9

100 2.5252 × 10−02 7.7759 × 10−03 8.41 × 10−03 8.6

(5, 2.1, 0.5) 10 6.6475 × 10−02 4.2303 × 10−02 4.67 × 10−02 4.1

100 8.5100 × 10−03 3.0405 × 10−03 3.11 × 10−03 1.1

(0.01, 2, 1) 10 5.0499 × 10−02 4.4876 × 10−03 7.04 × 10−03 110.7

100 5.2245 × 10−03 7.4338 × 10−05 1.02 × 10−04 56.6

In each row the summary statistics pertain to the parameter shown in bold, and are empirically determined from 1,000 simulated
realizations. The CV value is the coefficient of variation expressed as a percentage
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Table 2 Summary statistics for the MLEs of γ and τ under Case 2: θ is known

True values Sample size MLE summary statistics

(θ0, γ0, τ0) n Bias Variance MSE CV (%)

(1, 2.1, 4) 10 2.3542 × 10−01 2.3323 × 10−01 2.89 × 10−01 20.7

100 5.8590 × 10−03 1.0389 × 10−02 1.04 × 10−02 4.8

(1, 2.1, 4) 10 7.1172 3.0262 × 1004 3.03 × 1004 494.8

100 9.7368 × 10−02 7.7996 × 10−01 7.89 × 10−01 21.6

(5, 2.1, 0.5) 10 3.3009 × 10−01 4.5556 × 10−01 5.65 × 10−01 27.8

100 8.6870 × 10−03 2.0057 × 10−03 2.08 × 10−03 6.7

(5, 2.1, 0.5) 10 2.8176 × 10−01 1.4363 1.52 153.3

100 5.3589 × 10−03 6.2479 × 10−03 6.28 × 10−03 15.6

(0.01, 2, 1) 10 1.7786 × 10−01 1.3863 × 10−01 1.70 × 10−01 17.1

100 4.3410 × 10−03 6.1919 × 10−03 6.21 × 10−03 3.9

(0.01, 2, 1) 10 8.0762 × 10−02 2.6575 × 10−01 2.72 × 10−01 47.7

100 −5.4320 × 10−03 1.1486 × 10−02 1.15 × 10−02 10.7

In each row the summary statistics pertain to the parameter shown in bold, and are empirically determined from 1000 simulated
realizations. The CV value is the coefficient of variation expressed as a percentage

wind speed values of zero were simply discarded before creating the resulting 252 time
series data sets.
Parameters for the two distributions were estimated for each of these 252 data sets, and

the differences in the attained maximized log-likelihood (LDSWeibull minus Weibull)
recorded. No parameter restriction were placed on the LDSWeibull(θ , γ , τ), but for com-
patibility with the LDSWeibull and the reason mentioned in Remark 2, the parameter

Table 3 Summary statistics for the MLEs of θ , γ and τ under Case 3: all parameters are unknown

True values Sample size MLE summary statistics

(θ0, γ0, τ0) n Bias Variance MSE CV (%)

(1, 2.1, 4) 10 3.2041 × 10−01 4.3806 × 10−01 5.41 × 10−01 50.1

100 5.8064 × 10−02 1.7228 × 10−02 2.06 × 10−02 12.4

(1, 2.1, 4) 10 −1.0850 × 10−03 4.3741 × 10−01 4.37 × 10−01 31.5

100 −3.3220 × 10−02 1.8676 × 10−02 1.98 × 10−02 6.6

(1, 2.1, 4) 10 8.0234 1.2209 × 1003 1.29 × 1002 290.6

100 −1.7590 × 10−01 1.5449 1.58 32.5

(5, 2.1, 0.5) 10 1.0691 × 10−01 3.6471 × 10−01 3.76 × 10−01 11.8

100 4.4063 × 10−02 1.1865 × 10−02 1.38 × 10−02 2.2

(5, 2.1, 0.5) 10 1.3436 × 10−01 1.9815 2.00 63

100 −5.8553 × 10−02 5.0993 × 10−02 5.44 × 10−02 11.1

(5, 2.1, 0.5) 10 7.9145 7.9433 × 1002 8.57 × 1002 334.9

100 −2.3851 × 10−02 2.5798 × 10−02 2.64 × 10−02 33.7

(0.01, 2, 1) 10 6.2834 × 10−02 7.2434 × 10−03 1.1191 × 10−02 116.9

100 6.3975 × 10−03 9.8491 × 10−05 1.39 × 10−04 60.5

(0.01, 2, 1) 10 −6.0908 × 10−02 1.5017 × 10−01 1.54 × 10−01 20

100 −2.3752 × 10−02 7.3364 × 10−03 7.90 × 10−03 4.3

(0.01, 2, 1) 10 −1.0817 × 10−01 2.1851 × 10−01 2.30 × 10−01 52.4

100 −2.4058 × 10−02 1.1661 × 10−02 1.22 × 10−02 11.1

In each row the summary statistics pertain to the parameter shown in bold, and are empirically determined from 1000 simulated
realizations. The CV value is the coefficient of variation expressed as a percentage
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space for theWeibull(μ,β , σ) was restricted to μ > 0, β ≥ 1, and σ > 0. Summary statis-
tics for these log-likelihood differences are listed on Table 4. We can see that, although
Weibull fits better approximately 75% of the time, the difference is typically very small.
The top panels of Figs. 1 and 2 show some typical series where the differences in the

log-likelihood are in excess of 5, and between 1 and 5, respectively. The corresponding
LDS vs. Weibull marginal fits are displayed in the bottom panels as solid and dot-dash
lines, respectively. The dashed KDE line tracking the shaded histogram corresponds to
kernel density estimation. These plots typify two regimes: (i) generally calm days with a
moderate burst of wind in Fig. 1, and (ii) a windy day with higher bursts (possibly as a
consequence of a storm) in Fig. 2. The first regime is characterized by Weibull fits that
coincide with an exponential (β = 1), whereas the second is more of the Rayleigh type
(β ≈ 2).
Although we do not seek an exhaustive analysis here but merely an illustrative one,

it is interesting to consider the question of goodness-of-fit. Anderson-Darling (AD) and
Kolmogorov-Smirnov (KS) tests yield p-values lower than 10−4 in all the cases of Fig. 1,
confirming the suspicion that neither distribution is sufficiently rich to capture this
regime. The second regime of Fig. 2 is different however, as shown in Table 5. At the
usual 5% significance level, the Weibull model only resoundly fits on Day 116, whereas
the LDSWeibull fits in all but Day 26. In all of these examples, the distinctive feature is
that the LDSWeibull model appears to be better able to resolve the peaks.

Appendix
Lemmas

Lemma 1 Let 0 < y1 ≤ · · · ≤ yn < ∞ be an ordered sample of positive real numbers.
Then, for any continuous function g(·),

Un(r) ≡
n∑

i=1

ci(r)r∑n
j=1 cj(r)r

g(yi) −→ g(yn), as r → ∞,

provided that for some sufficiently large r∗, we have the ordering 0 < c1(r) < · · · < cn(r) <

∞ for all r ≥ r∗.

Proof

Un(r) =
∑

i

cri g(yi)∑
j crj

=
∑ g(yi)∑

(cj/ci)r

=
n∑

i=1

g(yi)
(c1/ci)r + · · · + (ci−1/ci)r + 1 + (ci+1/ci)r + · · · + (cn/ci)r

.

Table 4 Summary statistics for the attained differences in the maximized log-likelihoods between
LDSWeibull(θ , γ , τ) and Weibull(μ,β , σ) fits to each of the 252 daily time series data sets created
from “winddata”

Minimum 1st quartile Median Mean 3rd quartile Maximum

-15.98 -2.5405 -0.3960 -2.1065 -0.0126 13.7913
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Fig. 1 Illustration of the LDS vs. Weibull marginal fits for selected daily time series of “winddata” where the
difference in the attained maximized log-likelihood is in excess of 5. The dashed line tracking the shaded
histogram corresponds to kernel density estimation (KDE, with the Sheather-Jones plug-in bandwidth)

Fig. 2 Illustration of the LDS vs. Weibull marginal fits for selected daily time series of “winddata” where the
difference in the attained maximized log-likelihood is between 1 and 5. The dashed line tracking the shaded
histogram corresponds to kernel density estimation (KDE) with the Sheather-Jones plugin bandwith
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Table 5 Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) goodness-of-fit test p-values for the
fitted Weibull and LDSWeibull models of Fig. 2

Day 26 (AD/KS) Day 116 (AD/KS) Day 163 (AD/KS)

Weibull 0.0008/0.0006 0.1327/0.1448 0.0593/0.0317

LDS 0.0019/0.0020 0.1792/0.1717 0.1021/0.0627

Considering the terms in the denominator of the above summand, note that, for r ≥ r∗,
since ci/cj < 1 if i < j, and ci/cj > 1 if i > j, we have that:

lim
r→∞

(
ci
cj

)r
=

{
0, if i < j,
∞, if i > j.

Thus the first n − 1 denominators of Un(r), corresponding to i = 1, . . . , n − 1, converge
to ∞ as r → ∞, while the last denominator converges to 1, which gives:

lim
r→∞Un(r) = g(y1)

∞ + · · · + g(yn−1)

∞ + g(yn)
1

= g(yn).

Lemma 2 Let Xn,k , 1 ≤ k ≤ n, be a triangular array of random variables such that (i)
plimn→∞Xn,k = Xk, and (ii) |Xn,k| ≤ |Y | a.s. for all n, with E|Y | < ∞. Then, it follows
that:

plimn→∞
n∑

k=1
Xn,k =

∞∑

k=1
plimn→∞Xn,k =

∞∑

k=1
Xk .

Proof By (Serfling (1980), Theorem §1.3.6), the hypothesized conditions on the
sequence Xn,k imply that Xn,k

L1−→Xk , that is, limn→∞ E|Xn,k −Xk| = 0. Then, invoking the
triangle inequality, we have, with the understanding that Xn,k = 0 a.s. for k > n, that

∣∣∣∣∣

n∑

k=1
Xn,k −

∞∑

k=1
Xk

∣∣∣∣∣
=

∣∣∣∣∣∣

n∑

k=1

(
Xn,k − Xk

) −
∞∑

k=n+1
Xk

∣∣∣∣∣∣
≤

∞∑

k=1

∣∣Xn,k − Xk
∣∣ +

∞∑

k=n+1
|Xk| ,

whence

lim
n→∞E

∣∣∣∣∣

n∑

k=1
Xn,k−

∞∑

k=1
Xk

∣∣∣∣∣
≤ lim

n→∞

∞∑

k=1
E
∣∣Xn,k−Xk

∣∣+ lim
n→∞

∞∑

k=n+1
E |Y |=

∞∑

k=1
0+0 = 0,

and therefore
∑n

k=1 Xn,k
L1−→∑∞

k=1 Xk
(
and

∑∞
k=1 Xn,k

L1−→∑∞
k=1 Xk

)
. The result now fol-

lows because convergence in the L1 norm implies convergence in probability (Serfling
(1980), Theorem §1.3.2).

Proof of Theorem 1

We will show that

M(t) = E
(
etX

) =
∞∫

θ

1
τx

etx(x − θ)γ
[

γ

(x − θ)
− 1

x

]
e

−(x−θ)γ

xτ dx < ∞, (22)
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for γ > 2, τ > 0 and θ ≥ 0, in a neighborhood 0 < t < ε. (Note that it suffices to consider
t > 0 throughout since e−tx < etx, for t > 0). Letting x = y + θ , the mgf becomes

M(t) = etθ

τ

∞∫

0

[
yγ

y + θ

(
γ

y
− 1

y + θ

)]
exp

{
ty − yγ

(y + θ)τ

}
dy, (23)

and note that we only need to check convergence for θ near 0 and ∞. Hence we split the
proof into the following 3 cases.

Case θ = 0. Although this corresponds to a Weibull distribution, for which existence of
the mgf is well-known Rinne (2009), we outline here a new argument that will bound
the mgf, and will subsequently be repeated with minor changes in the θ > 0 case.

M(t) = 1
τ

∞∫

0

etxxγ−1
[

γ − 1
x

]
e

−xγ−1
τ dx = γ − 1

τ

∞∫

0

exp
{
tx − 1

τ
xγ−1

}
xγ−2 dx

= γ − 1
τ

∞∫

0

exp
{
tx − 1

2τ
xγ−1 − 1

2τ
xγ−1

}
xγ−2 dx.

Now, splitting the integral, we have

M(t) = γ − 1
τ

⎡

⎢⎢⎢⎢⎢
⎣

b∫

0

ex(t−
1
2τ x

γ−2)e−
1
2τ x

γ−1
xγ−2 dx

︸ ︷︷ ︸
A

+
∞∫

b

ex(t−
1
2τ x

γ−2)e−
1
2τ x

γ−1
xγ−2 dx

︸ ︷︷ ︸
B

⎤

⎥⎥⎥⎥⎥
⎦
,

and we seek to bound each of the integrals A and B, for some b > 0 sufficiently
large. Since A constitutes the integral of a smooth function over a finite range, it
follows immediately that A < ∞. For B, since for x > b sufficiently large, γ > 2,
and any fixed t > 0 and τ > 0, we have xt < xγ−1/(2τ) which implies exp{x(t −
τ−1xγ−2/2)} < 1, this term can be dropped from the integrand of B. Performing the
substitution y = xγ−1/(2τ), then leads to

0 < B <

∞∫

b

e
−xγ−1

2τ xγ−2 dx <

∞∫

0

e
−xγ−1

2τ xγ−2 dx = 2τ
γ − 1

∞∫

0

e−y dy < ∞.

Case θ > 0. Starting from (23), we also separate the integral into two,

M(t) = etθ

τ

b∫

0

ety−
yγ

2(y+θ)τ
− yγ

2(y+θ)τ

[
yγ−1

(y + θ)2
(γ (y + θ) − y)

]
dy

︸ ︷︷ ︸
A

+ etθ

τ

∞∫

b

ety−
yγ

2(y+θ)τ
− yγ

2(y+θ)τ

[
yγ−1

(y + θ)2
(γ (y + θ) − y)

]
dy

︸ ︷︷ ︸
B

,

whence by a similar argument to the previous case, we have 0 < A < ∞. In B, note
that when b is sufficiently large, we have, for y > b,

ty − yγ

2(y + θ)τ
= y

(
t − yγ−1

2y(1 + θ
y )τ

)
< 0,
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whence we can omit the exponential of this term, as before, since the part of the
integrand involving it would be bounded by e0 = 1. Thus,

B <

∞∫

b

exp

⎧
⎨

⎩
− yγ

2y
(
1 + θ

y

)
τ

⎫
⎬

⎭

⎡

⎢
⎣

yγ−1

y2
(
1 + θ

y

)2 (γ y(1 + θ/y) − y)

⎤

⎥
⎦ dy

=
∞∫

b

exp

⎧
⎨

⎩
− yγ−1

2
(
1 + θ

y

)
τ

⎫
⎬

⎭

⎡

⎢
⎣

yγ−2
(
1 + θ

y

)2 (γ (1 + θ/y) − 1)

⎤

⎥
⎦ dy,

Now, since 2−2 < (1 + θ/y)−2 < 1−2 for y > b sufficiently large, we have

B <

∞∫

0

yγ−2(2γ − 1)e−yγ−1/(4τ) dy ≡ C,

and performing the substitution x = yγ−1/(4τ), yields

C = 4τ(2γ − 1)
γ − 1

∞∫

0

e−x dx < ∞,

whenceM(t) = A + B < A + C < ∞.
Case γ = 2. To show γ = 2 is sharp, let γ = 2−ε, where 0 < ε is small, t > 0, and θ ≥ 0.

With these substitutions, reverting back to the τ = δγ parametrization, we have

M(t) =
∞∫

θ

etx−
(x−θ)2−ε

xδ2−ε

[
2 − ε

x − θ
− 1

x

]
dx,

whence, letting x = y + θ , we can successively refine the lower bound on M(t) as
follows:

M(t) = etθ
∞∫

0

exp
{
ty − y2−ε

(y + θ)δ2−ε

}[
2 − ε

y
− 1

y + θ

]
dy

>

∞∫

0

exp
{
y
(
t − y1−ε

(y + θ)δ2−ε

)}[
(2 − ε)(y + θ) − y

y(y + θ)

]
dy

>

∞∫

b

ey(t−
y−ε

δ2−ε )

[
(2 − ε)(y + θ) − (y + θ)

y(y + θ)

]
dy

> exp
{−b−ε

δ2−ε

} ∞∫

b

ety
1
y
(1 − ε) dy,

for any 0 < b < ∞. Substituting x = ty, the mgf becomes

M(t)=e
−b−ε

δ2−ε (1 − ε)

∞∫

tb

ex
t
x
1
t
dx = e

−b−ε

δ2−ε (1 − ε)

∞∫

b

ex

x
dx > ebe

−b−ε

δ2−ε (1 − ε)

∞∫

b

1
x
dx=∞.

ThusM(t) will not be finite in any neighborhood of t = 0, whence γ = 2 is a sharp
upper bound on the divergence of the mgf.
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Proof of Theorem 5

We invoke (Serfling (1980), Theorem §4.2.2), and (Van der Vaart (1998), Theorem 5.41),
where we must establish (i)–(v) as follows.

(i) The absolute values of the two first order partials of f (x;β) are dominated by
measurable functions in the vicinity of (γ0, τ0), whose integrals are finite. These
derivatives are

1
f (x;β)

∂f (x;β)

∂γ
= x

x(γ − 1) + θ
+ 1 − (x − θ)γ

xτ
log(x − θ),

1
f (x;β)

∂f (x;β)

∂τ
= xτ − (x − θ)γ

xτ 2
,

whose absolute value is dominated by the function g1(x) = A(1 + xB)(1 + | log x|),
for sufficiently large constants A and B, that is,

∣∣∣∣
∂f (x;β)

∂γ

∣∣∣∣ ≤ g1(x)f (x;β), and
∣∣∣∣
∂f (x;β)

∂τ

∣∣∣∣ ≤ g1(x)f (x;β),

whence
∫
g1(x)f (x;β)dx = Eg1(X) < ∞.

(ii) The absolute values of the three 2nd order partials of f (x;β) are dominated by
measurable functions in the vicinity of (γ0, τ0), whose integrals are finite. For
example, the derivative with highest order terms is

1
f (x;β)

∂2f (x;β)

∂γ 2 =
[

2x
x(γ − 1) + θ

− (x − θ)γ

τ (x(γ − 1) + θ)

]
log(x − θ)

+
[
1 + (x − θ)2γ

τ 2x2
− 3(x − θ)γ

x

]
log2(x − θ),

whose absolute value is dominated by the function
g2(x) = A

(
1 + xB

) (
1 + | log x| + | log x|2), for sufficiently large constants A and B,

that is,
∣∣∣∣
∂2f (x;β)

∂γ 2

∣∣∣∣ ≤ g2(x)f (x;β),

whence
∫
g2(x)f (x;β)dx = Eg2(X) < ∞. Tedious computations show that the

remaining second order partials are likewise dominated by g2(x)f (x;β).
(iii) The absolute values of the four third order partials of log f (x;β) are dominated by

integrable measurable functions in the vicinity of (γ0, τ0). The appropriate derivatives
are:

∂3 log f (x;β)

∂γ 3 = 2x3

[(γ − 1) x + θ ]3
− (x − θ)γ

xτ
log3 (x − θ) ,

∂3 log f (x;β)

∂γ 2∂τ
= (x − θ)γ

xτ 2
log2(x − θ),

∂3 log f (x;β)

∂γ ∂τ 2
= −2 (x − θ)γ

xτ 3
log(x − θ),

∂3 log f (x;β)

∂τ 3
= 6 (x − θ)γ − 2 xτ

xτ 4
,

and we see that for (γ , τ) ranging over a sufficiently small neighborhood of (γ0, τ0),
the absolute values of all of these are dominated by the general (integrable) function

g3(x) = A
(
1 + xB

) (
1 + | log x| + · · · + | log x|3) , (24)

since for sufficiently large constants A and B, we have Eg3(X) < ∞.
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(iv) The Hessian matrix,

J(β) = E

[
− x2

[(γ−1)x+θ ]2 − (x−θ)γ

xτ log2 (x − θ)
(x−θ)γ

xτ 2 log (x − θ)

(x−θ)γ

xτ 2 log (x − θ)
−2(x−θ)γ +xτ

xτ 3

]

,

exists and is nonsingular at (θ0, γ0, τ0). The existence part is verified by noting that, as
in case (v) below, each term is finite due to the fact that it is dominated by the general
integrable function (24). The matrix will be nonsingular if the first and second
columns are linearly independent (a.s.). A glance at these terms reveals that it is
impossible for one to be a multiple of the other (with positive probability).

(v) The diagonal entries of I(β) are finite, I11(β) < ∞ and I22(β) < ∞, when evaluated
at (θ0, γ0, τ0). Once again this follows similarly to case (iv) above by noting that the
squares of each of the terms

∂ log f (x;β)

∂γ
= log (x − θ) + x

(γ − 1) x + θ
− (x − θ)γ

xτ
log (x − θ) ,

and
∂ log f (x;β)

∂τ
= (x − θ)γ − xτ

xτ 2
,

are both dominated by the general integrable function (24). Note that the finiteness
of the diagonals immediately implies that the off-diagonal term of I(β) is also finite.

Proof of Theorem 6

With α = (a, b)T , write model (19) in vector/matrix form,

y = Zα + ε, (25)

and note that the (limit in probability of the) least squares estimates can be written as

plimn→∞α̂ = α +
(
plimn→∞

1
n − 1

ZTZ
)−1 (

plimn→∞
1

n − 1
ZTε

)

≡ α + (
plimn→∞W

)−1 (plimn→∞w
)
.

To establish the required result, we will show that w = op(1), and W = Op(1). We will
first derive the following basic results.

(i) plimn→∞X(1) = θ . This follows easily by noting that

P(X(1) > x) = exp
{
− (x − θ)γ

xτ/n

}
,

whence X(1) ∼ LDSWeibull(θ , γ , τ/n), so that for x > θ , P(X(1) > x) → e−∞ = 0,
which implies P(X(1) ≤ x) → 1 as n → ∞; whereas P(X(1) > θ) = e−0 = 1, so that
P(X(1) ≤ θ) = 0.

(ii) plimn→∞X(i) = ξi = F−1(qi), for 2 ≤ i ≤ n. This is a consequence of the asymptotic
normality of X(i), which is a consistent estimate of the central quantile ξi. The
asymptotic normality follows from the fact that F(·) is differentiable and f (ξi) > 0
(David and Nagaraja (2003), Chapter 10).

(iii) From (i) and (ii), it follows immediately that
plimn→∞yi = log

[− log(1 − qi)
] + log ξi, and plimn→∞zi = log(ξi − θ).
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(iv) In fact, since yi and zi are dominated by an integrable function (simply let x(i) 
→ x(n)

in their corresponding definitions), implies the stronger L1 convergence:

yi
L1−→ log

[− log(1 − qi)
] + log ξi ≡ y∗

i , and zi
L1−→ log(ξi − θ) ≡ z∗i .

This follows because dominated convergence in probability implies L1 norm
convergence (Lemma 2).

(v) Now note that since

ξi = F−1(qi) ⇐⇒ log
[− log(1 − qi)

] + log ξi = γ log(ξi − θ) − log τ ,

y∗
i and z∗i defined in (iv) satisfy the population regression equation: y∗

i = a + bz∗i .
(vi) We can state the results in (iv)-(v) equivalently as:

εi = yi − (a + bzi)
L1−→y∗

i − (a + bz∗i ) = 0,

and since L1 norm convergence implies the weaker convergence in probability (see
proof of Lemma 2), we have that plimn→∞εi = 0.

(vii) Thus, from (iv)-(vi), we have that for any real numbers λ1 and λ2, (λ1 + λ2zi)εi
L1−→0,

which also implies plimn→∞(λ1 + λ2zi)εi = 0.

To prove the first assertion (that plimn→∞w = 0), invoke the Cramer-Wold device and
Lemma 2 to see that, for any vector of reals λ = (λ1, λ2)T , and using the result in (vii),

plimn→∞λTZTε = plimn→∞
n∑

i=2
(λ1 + λ2zi)εi =

n∑

i=2
plimn→∞(λ1 + λ2zi)εi = 0,

whence plimn→∞ZTε = 0, and therefore

w = 1
n − 1

ZTε =
(

1
n − 1

)(
ZTε

)
= op(1)op(1) = op(1).

To prove the second assertion (thatW is bounded in probability), note that

W = 1
n − 1

ZTZ =
[

1 1
n−1

∑n
i=2 zi

1
n−1

∑n
i=2 zi

1
n−1

∑n
i=2 z2i

]

.

An informal argument will now suffice. In the limit as n → ∞, since the quantiles ξi are
dense in the support of X, we have from (ii), and using the transformation u = F(x), that

plimn→∞
1
n

n∑

i=1
X(i) = lim

n→∞
1
n

n∑

i=1
ξi =

∫ 1

0
F−1(u)du = E(X).

which generalizes immediately to

plimn→∞
1
n

n∑

i=1
g(X(i)) = lim

n→∞
1
n

n∑

i=1
g(ξi) =

∫ 1

0
g(F−1(u))du = Eg(X),

for any integrable function g(·). Heuristically then, the fact that plimn→∞zi = log(ξi − θ)

implies that

plimn→∞
1

n − 1

n∑

i=2
zi = E

(T) log(X − θ), and plimn→∞
1

n − 1

n∑

i=2
z2i = E

(T) log2(X − θ),

(26)

where E
(T) denotes possible resulting truncation in the expectation operator in view of

the fact that the summations begin at i = 2 and may not span the entire support of the
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quantile function (see Remark 3). Now, since each of the sample averages in (26) is Op(1),
we deduce that

plimn→∞

(
1

n − 1

n∑

i=2
zi

)2

=[E(T) log(X − θ)]2 �= E
(T) log2(X − θ) = plimn→∞

1
n − 1

n∑

i=2
z2i .

(27)

whence we conclude thatW is a.s. nonsingular and therefore Op(1).
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