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Abstract

The density deconvolution problem is considered for random variables assumed to
belong to the generalized skew-symmetric (GSS) family of distributions. The approach
is semiparametric in that the symmetric component of the GSS distribution is assumed
known, and the skewing function capturing deviation from the symmetric component
is estimated using a deconvolution kernel approach. This requires the specification of a
bandwidth parameter. The mean integrated square error (MISE) of the GSS
deconvolution estimator is derived, and two bandwidth estimation methods based on
approximating the MISE are also proposed. A generalized method of moments
approach is also developed for estimation of the underlying GSS location and scale
parameters. Simulation study results are presented including a comparing the GSS
approach to the nonparametric deconvolution estimator. For most simulation settings
considered, the GSS estimator is seen to have performance superior to the
nonparametric estimator.

Keywords: Characteristic function, Kernel methods, Measurement error, Method of
moments, Semiparametric estimation

Introduction
The density deconvolution problem arises when it is of interest to estimate the probability
density function (pdf) fx(x) of a random variable X using observations contaminated by
measurement error. Specifically, the observed sample consists of data Wj = Xj + Uj, j =
1, . . . , n, where the Xj are independent and identically distributed (iid) random variables
with pdf fx(x) and the Uj are iid measurement error variables with pdf fu(u). This paper
presents a semiparametric approach for estimating fx(x) that assumes X belongs to the
class of generalized skew-symmetric (GSS) distributions. The GSS deconvolution model
for X specifies a base symmetric distribution, providing the basic structure for the model.
Thereafer, kernel methodology is used to estimate a skewing function that captures the
deviation from the specified symmetric distribution. This semiparametric GSS approach
attempts to capture the best of a parametric and a nonparametric solution and provides a
very flexible approach for modeling fx(x).
The problem of estimating fx(x) from a contaminated sample W1, . . . ,Wn was first

considered by Carroll and Hall (1988) and Stefanski and Carroll (1990) who proposed a
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fully nonparametric solution under the assumption of a fulle known measurement error
distribution fu(u). Since then, much work on the topic has followed. Fan (1991a); Fan
(1991b) considered the theoretical properties of the density deconvolution estimator, and
Fan and Truong (1993) extended the methodology to nonparametric regression. Diggle
and Hall (1993) and Neumann and Hössjer (1997) considered the case of the measure-
ment error distribution being unknown, and assumed that an external sample of error
data was available to estimate the measurement error distribution. Delaigle et al. (2008)
considered how replicate data can be used to estimate the characteristic function of the
measurement error. The nonparametric estimator requires the selection of a bandwidth
parameter. The two-stage plug-in bandwidth of Delaigle and Gijbels (2002) has become
the gold-standard in application; Delaigle and Gijbels (2004) provides an overview of sev-
eral popular bandwidth selection approaches. Delaigle and Hall (2008) considered the use
of simulation-extrapolation (SIMEX) for bandwidth selection in a variety of measurement
error problems.
Two more recent papers considered the deconvolution problem in new and novel

ways. Delaigle and Hall (2014) considered parametrically-assisted nonparametric den-
sity deconvolution, while the groundbreaking work of Delaigle and Hall (2016) made
use of the empirical phase function to estimate the pdf fx(x) with the measure-
ment error having unknown distribution and without the need for replicate data.
The phase function approach imposes the restrictions that X has no symmetric
component and that the characteristic function of U is real-valued and strictly
positive.
The GSS family of distributions that is the basis for estimation in this paper dates back

to Azzalini (1985), the first publication discussing a so-called skew-normal distribution.
There has been a great deal of activity since with the monographs by Genton (2004) and
Azzalini (2013) providing a good overview of the existing literature on the topic. Much of
the GSS research has been theoretical in nature. While this theoretical work is important
for understanding the statistical properties of GSS distributions, the applied value of this
family has not often been realized in the literature. Notable exceptions that have used GSS
distributions in application include the modeling of pharmacokinetic data, see Chu et al.
(2001), the redistribution of soil in tillage, see Van Oost et al. (2003), and the retrospective
analysis of case-control studies, see Guolo (2008). All of these authors considered fully
parametric models. Arellano-Valle et al. (2005) considered a fully parametric measure-
ment error model assuming both X andU follow skew-normal distributions. Lachos et al.
(2010) modeled X using a scale-mixture of skew-normal distributions while assuming U
is a mixture of normals. Furthermore, both Kim et al. (2016) and Wang et al. (2017) con-
sider factor analysis models using skew-symmetric distributions. Most recently, Kahrari
et al. (2019) developed linearmixedmodels using a skew-normal-Cauchy distribution and
Arellano-Valle et al. (2020) considered the measurement error problem using a two-piece
normal distribution to allow for skewness. No other work applying GSS distributions in
the measurement error context was found.
The present paper is structured as follows. In the next section, the GSS deconvolution

estimator is developed and some of its theoretical properties derived. In the subsequent
section, bandwidth estimation methods for the skewing function are considered. There-
afer, a generalized method of moments (GMM) approach for estimating the GSS location
and scale parameters is developed. The penultimate section presents simultion results,
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and the paper concludes with two real-data applications. An Appendix contains both
some technical arguments and additional simulation results.

Generalized skew-symmetric deconvolution
Derivation of the GSS estimator

Consider the problem of estimating the probability density function (pdf) fx(x) associated
with random variable X based on a sample contaminated by additive measurement error,
Wj = Xj + Uj, j = 1, . . . , n. Here, the Xj are the true measurements of interest, and the
Wj and Uj represent, respectively, the contaminated observation and the measurement
error. It is assumed that the Xj are iid fx(x), theUj are iid fu(u), and Xj andUj are mutually
independent for all j. Furthermore, the Uj are assumed to have a symmetric distribution
with mean 0 and variance σ 2

u . As is typical in the deconvolution literature, the distribution
of Uj is assumed fully known. Auxiliary data, when available, would make it possible to
relax this assumption and estimate fu(u); see for example Delaigle et al. (2008).
The deconvolution estimator developed here assumes that fx(x) belongs to the GSS class

of distributions. That is, X = ξ + ωZ with ξ ∈ R and ω > 0 denoting location and scale
parameters, and with Z having pdf

fz(z) = 2f0(z)π(z), z ∈ R (1)

with f0(z) a pdf symmetric around 0 and π(z), hereafter referred to as the skewing func-
tion, satisfying the inequality constraint 0 ≤ π(z) = 1 − π(z) ≤ 1. In fact, any function
satisfying this inequality constraint can be paired with any symmetric pdf f0(z) and will
result in (1) being a valid pdf. The corresponding pdf of X is fx(x) = (2/ω)f0[ (x −
ξ)/ω]π [ (x − ξ)/ω].
The approach considered here is semiparametric in nature. The symmetric pdf f0(z) is

assumed known, but no parametric assumptions aremade regarding the skewing function
π(z). (In fact, if symmetric component f0(z) were not assumed known, pdf fz(z) would
not be identifiable; see Appendix A.1 for details). The base density f0(z) provides the basic
strucuture of the model, and the skewing function π(z) captures the deviation from the
base model. Thus, the approach attempts to capture the best of a parametric and a non-
parametric solution, and the GSS family provides a very flexible approach for modeling
fz(z).
GSS random variables have an invariance property under even transformations that

is central to the development of the deconvolution estimator in the remainder of this
section. Let Z be GSS according to (1) and let Z0 have symmetric pdf f0(z). For any even
function t(z), it holds that t(Z)

d= t(Z0) with d= denoting equality in distribution; see
Proposition 1.4 in Azzalini (2013). Thus, the distribution of t(Z) depends only on f0(z)
and not on π(z). Now, let ψz(t) denote the characteristic function of Z, and let c0(t) =
Re[ψz(t)] and s0(t) = Im[ψz(t)] denote the real and imaginary components of ψz(t).
The real component can be expressed as c0(t) = E [cos(tZ)]. By the property of even
transformation, it follows that c0(t) = E [cos(tZ0)] which is the characteristic function
associated with f0(z).
Now, assume (ξ ,ω) are known, and define W ∗ = (W − ξ)/ω. Furthermore, observe

that W ∗ = Z + ω−1Uand therefore has characteristic function ψw∗(t) = ψz(t/ω)ψu(t)
where ψu(t) is the real-valued characteristic function of U. It follows that
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Re {ψw∗(t)} = c0(t)ψu(t/ω) (2)

and

Im {ψw∗(t)} = s0(t)ψu(t/ω). (3)

The functions c0(t) and ψu(t) in (2) and (3) are known while s0(t) is unknown. Noting
that fz(z) can be expressed as

fz(z) = f0(z) + 1
2π

∫
R

sin(tz)s0(t)dt, (4)

it follows that an estimator of s0(t) can be used to construct an estimator of fz(z). To this
end, for random sampleW1, . . . ,Wn, letW ∗

j = (Wj − ξ)/ω for j = 1, . . . , n, and define

s̃0(t) = 1
ψu(t/ω)

1
n
∑
1≤j≤n

sin
(
tW ∗

j

)
.

This empirical estimator, while unbiased for s0(t), is not suitable for estimating fz(z)when
substituted in (4) as the integral diverges. This is attributable to the tail behavior of s̃0(t).
While s0(t) converges to 0 as |t| → ∞ for any continuous distribution, s̃0(t) corre-
sponds to an empirical measure and diverges as |t| → ∞. This follows upon noting that
the bounded periodic function n−1∑

j sin(tW ∗
j ) is divided by ψu(t/ω), with the latter

decreasing to 0 as |t| increases.
Next, consider the “smoothed” estimator

ŝ0(t) = ψk(ht)
ψu(t/ω)

1
n
∑
1≤j≤n

sin
(
tW ∗

j

)
(5)

where ψk(t) is a non-negative weight function and h is a bandwidth parameter. This esti-
mator has expectation E[ ŝ0(t)]= ψk(ht)s0(t) and therefore is biased for s0(t). However,
it also has some desirable properties. Firstly, it is an odd function, ŝ0(−t) = −ŝ0(t) for all
t ∈ R. Secondly, substitution of (5) into (4) results in the well-defined estimator for fz(z),

f̂z(z) = f0(z) + 1
2π

∫
R

sin(tz)ŝ0(t)dt, (6)

provided ψk(t) is chosen such that |ψk(ht)/ψu(t/ω)| → 0 as |t| → ∞. Choosing ψk(t) to
be 0 outside a bounded interval will trivially satisfy this requirement.
Estimator (6) suffers from the same drawback as the usual nonparametric deconvolu-

tion estimator in that it may be negative in parts. In practice, the negative parts can be
truncated and the resulting function rescaled to integrate to 1. To circumvent this ad-hoc
fix, combine Eqs. (1) and (4) to obtain

π(z) = 1
2

− 1
4π f0(z)

∫
R
sin (tz) s0(t)dt. (7)

Substitution of (5) in (7), along with the identity sin(tz) = (eitz − e−itz) /(2i), gives
π̂(z) = 1

2
+ 1

8f0(z)

{
f̃w∗(z) − f̃w∗(−z)

}
(8)

where f̃w∗(z) = (nhω)−1∑Khω[ (z − W ∗
j )/(hω)] is the well-studied nonparametric

deconvolution density estimator of Carroll and Hall (1988) with deconvolution kernel
Kh(y) = (2π)−1∫

R
e−ityψk(t)/ψu(t/h)dt. The potential for (6) being negative in parts is

reflected in (8) not being range-respecting. Specifically, it is possible to have π̂(z) �∈ [0, 1]
for a set zwith nonzero measure. A range-corrected skewing function estimator is π̃(z) =
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max
[
0,min

{
1, π̂ (z)

}]
. The estimated density function ofX based on the range-corrected

skewing function is

f̃ (x|ξ ,ω) = 1
ω
f0
(
x − ξ

ω

)
π̃

(
x − ξ

ω

)
. (9)

Use of the range-corrected skewing function estimate ensures that (9) is always a valid
pdf. There is no need for any additional truncation of negative values and subsequent
rescaling as would be the case with direct implementation of (6).

Some properties of the estimator

The range-corrected estimator π̃(z) is asymptotically equivalent to π̂(z) in (8) on any
closed subset of R. As such, the latter will be used to evaluate the properties of the
GSS deconvolution estimator. Firstly, note that using the known expected value of the
nonparametric deconvolution estimator f̃w∗(z), it follows from (8) that

E
[
π̂(z)

]− π(z) = ck
4
f ′′
z (z) − f ′′

z (−z)
f0(z)

· h2 + O
(
h3
)

with constant ck depending only on the kernel function ψk(t). Thus, for an appropriately
chosen bandwidth h, π̂(z) is consistent for π(z), and the density estimator f̃ (x|ξ ,ω) in (9)
is also consistent for fx(x).
The mean integrated square error (MISE), derived in Appendix A.2, is

MISE(h) = (2π)−1
∫
R

{
ψ2
k (ht)
n

[
1 − c0(2t)ψu(2t/ω)

2ψ2
u(t/ω)

− s20(t)
]

+ [ψk(ht) − 1]2 s20(t)
}
dt.

(10)

When the distribution Z is symmetric, i.e. π(z) = 1/2 for all z so that s0(t) = 0 for all t,
and letting MISEsym denotes the MISE calculated under symmetry,

MISEsym(h) = (4π)−1
∫
R

ψ2
k (ht)
n

[
1 − c0(2t)ψu(2t/ω)

ψ2
u(t/ω)

]
dt

≤ (2πn)−1
∫
R

ψ2
k (ht)

ψ2
u(t/ω)

dt.

Here the inequality follows upon noting that |1 − c0(2t)ψu(2t/ω)| ≤ 2 for all t. This upper
bound ofMISEsym is proportional to the asymptoticMISE of the nonparametric deconvo-
lution estimator, see equation (2.7) in Stefanski & Carroll (1990). Thus, in the symmetric
case, one would expect the GSS deconvolution estimator to perform no worse than the
nonparametric deconvolution estimator for a correctly specified symmetric component
c0(t). In fact, since this is an upper bound, large gains in efficiency may be possible. Our
simulation results presented in a later section are congruent with this statement.

Bandwidth selection
Implementation of the GSS deconvolution estimator requires a bandwidth paramter h to
be specified. Two methods for selecting this bandwidth are developed in this section. The
first method uses cross-validation (CV) to approximate the integrated square error (ISE),
and the second method approximates the MISE in (10).
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A cross-validation bandwidth

For the GSS deconvolution estimator, the density-based ISE is proportional to the ISE for
the imaginary component s0(t) of the characteristic function,

∫
R

[
f̃z(z) − fz(z)

]2
dz ∝

∫
R

[
ŝ0(t) − s0(t)

]2 dt. (11)

This follows from Parseval’s identity and recalling that the real component c0(t) is known.
Let C(h) denote the expression obtained by expanding the square on the right-hand side
of (11) and keeping only terms involving the estimator ŝ0(t),

C(h) =
∫
R

ŝ20(t)dt − 2
∫
R

ŝ0(t)s0(t)dt. (12)

Now, note that the second integral in (12) can be written as

∫
R

ŝ0(t)s0(t)dt =
n∑

i=1

∫
R

ψk(ht) sin(tW ∗
i )

ψu(t/ω)
s0(t)dt. (13)

Define s̃(i)(t) to be an estimate of s0(t) excluding the ith observation,

s̃(i)(t) = (n − 1)−1∑
j �=i sin(tW ∗

j )

ψu(t/ω)
.

This quantity is unbiased for s0(t) for all i, and s̃(i)(t) is independent ofWi. The CV score
follows by substitution of s̃(i)(t) in (13) for each i in the summand, giving

Ĉ(h)=
∫
R

ψk(ht)
ψ2
u(t/ω)

⎡
⎢⎣ψk(ht)

⎧⎨
⎩
1
n

n∑
j=1

sin(tW ∗
j )

⎫⎬
⎭

2

− 2
n(n − 1)

n∑
i=1

∑
j �=i

sin(tW ∗
i ) sin(tW ∗

j )

⎤
⎥⎦ .

(14)

This result is similar to that of Stefanski and Carroll (1990) in the nonparametic setting,
but here only requires estimating the imaginary component of the characteristic function.
The CV bandwidth is defined to be the value h̃ that minimizes Ĉ(h).

AnMISE bandwidth

Consider the MISE in (10), and note that the only unknown quantity therein is s20(t). Fur-
thermore, observe that E

[
sin(tW ∗

j ) sin(tW ∗
k )
]

= ψ2
u(t/ω)s20(t) whenever j �= k. Thus,

s20(t) can be estimated by

ŝ2(t) = max

⎧⎨
⎩0,

1
n(n − 1)ψ2

u(t/ω)

n∑
j=1

∑
k �=j

sin(tW ∗
j ) sin(tW ∗

k )

⎫⎬
⎭I(|t| ≤ κ), (15)

where I(·) is the indicator function and κ is some positive constant. The constant κ can
be thought of as a smoothing parameter which ensures that the estimator ŝ2(t) behaves
well for large values of |t|. Ideally, κ should be chosen in a data-dependent way and devel-
opment of this approach is ongoing. However, based on extensive simulation work, it has
been found that values κ ∈[ 3, 5] work reasonably well for a wide range of underlying
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GSS distributions considered. Now, taking (10), substituting ŝ2(t) for s20(t), and ignoring
components that do not depend on the bandwidth, gives MISE approximation score

M̂(h) = 1
h

∫
R

{
ψ2
k (t)

nψ2
u[ t/(hω)]

[
1 − ψu[ 2t/(hω)] c0(2t/h)

2

]

+
[
n − 1
n

ψk(t) − 2
]

ψk(t)ŝ2(t/h)
}
dt.

(16)

The MISE-approximation bandwidth is defined to be the value h̃ that minimizes M̂(h).

Location and scale estimation
Generalized method of moments

Up to this point, the location and scale parameters ξ and ω have been treated as known
quantities. This is unrealistic in practice. Estimation of the GSS parameters for a known
symmetric component has been considered in the literature, seeMa et al. (2005); Azzalini
et al. (2010), and Potgieter and Genton (2013). However, none of these authors considered
the presence of measurement error. Here, a Generalized Method of Moments (GMM)
approach accounting for measurement error is developed. Recall that Wj = Xj + Uj =
ξ + ωZj +Uj, j = 1, . . . , n. LetM ≥ 2 be a positive integer and assume that the Zj and the
Uj have at least 2M finite moments. Let Tk denote the (2k)th centered moment,

Tk := Tk(ξ ,ω) = n−1
n∑

j=1

(Wj − ξ

ω

)2k
. (17)

This variable has expectation E [Tk] = E
[(
Z + ω−1U

)2k] and admits expansion

E [Tk] =
k∑

j=0

(
2k
2j

)
ω−2(k−j)E

[
Z2j]E [U2(k−j)

]
. (18)

By the GSS property of even transformations, E[Z2j]= E[Z2j
0 ] for j = 1, . . . ,M with Z0

a random variable with pdf f0(z). Furthermore, the evaluation of the moments of U pose
no problem as this distribution is assumed known. Thus, E[Tk] can easily be evaluated
using (18).
Now, define quadratic formD(ξ ,ω) = nT�

M�−1TM with TM denoting the vector TM =
(T1 − E[T1] , . . . ,TM − E[TM] )� with covariance matrix �. The covariance matrix has
entries �ij = n−1 (E [Ti+j

]− E [Ti] E
[
Tj
])
. The GMM estimators are defined to be the

minimizer of D(ξ ,ω). In evaluating D(ξ ,ω), both the expectations E [Tk], k = 1, . . . ,M
and the covariance matrix � are functions of the parameter ω, but not of ξ .

Selection frommultiple GMM solutions

One difficulty encountered with the GMMapproach is that the statisticD(ξ ,ω) frequently
has multiple minima, and the global minimum does not always corresponds to the “cor-
rect” solution. This equivalent problem also occurs in the non-measurement error setting
and is an artifact of the skewing function being unknown; see Section 7.2.2 in Azzalini
(2013) for an overview and illustration. Solutions considered there range from selecting
the model with the smallest squared integral of the second derivative of the estimated
skewing function, to selecting a solution based on matching model-based and empirical
skewness coefficients.
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Now, assume that D(ξ ,ω) has J local minima occurring at (ξ̂j, ω̂j), j = 1, . . . , J . Further-
more, let f̃j(x|ξ̂j, ω̂j) denote the GSS density deconvolution estimator in (9) obtained using
solution (ξ̂j, ω̂j). Thus, J different GSS deconvolution estimators are calculated. Using the
jth estimated density, define the kth model-implied moment,

μ̃j,k =
∫
R

xk f̃j(x|ξ̂j, ω̂j)dx, (19)

and model-implied characteristic function,

φ̃j(t) =
∫
R

exp(itx)f̃j(x|ξ̂j, ω̂j)dx. (20)

Based on these quantities, two different selection methods are now proposed. Through-
out, it will be assumed that measurement error U has distribution symmetric
about 0.
Skewness matching: In model W = X + U , the skewness of X can be estimated by

γ̂x = [σ̂ 2
w/(σ̂ 2

w − σ 2
u )3/2

]
γ̂w where σ̂ 2

w and γ̂w denote the sample variance and skewness of
iid random variables W1, . . . ,Wn. Now, for the jth solution pair (ξ̂j, ω̂j), the GSS model-
implied skewness is given by γ̂j =

(
μ̃j,3 − 3μ̃j,2μ̃j,1 + 2μ̃3

j,1

)
/
(
μ̃j,2 − μ̃2

j,1

)
with μ̃j,k as

defined in (19). The selected solution is the one with implied skewness closest to the
empirical skewness. Specifically, letting dj = |γ̂x − γ̂j|, j = 1, . . . , J , the selected solution
is (ξ̂j∗ , ω̂j∗) with j∗ = argmin1≤j≤J dj.
Phase function matching: The phase function, a normalized version of the characteris-

tic function, is a recent tool employed in density deconvolution – see Delaigle and Hall
(2016) and Nghiem and Potgieter (2018) for further details. Let ρw(t) and ρx(t), denote
the phase functions of X and W = X + U . For U having strictly positive characteristic
function, these phase functions are equal, ρw(t) = ρx(t) for all t. The empirical estimate
of the phase function of X is ρ̂x(t) = ψ̂w(t)/|ψ̂w(t)| with ψ̂w(t) the empirical character-
istic function of W, and |z| = (zz̄)1/2 and z̄ denoting the complex norm and cojucate
of z. For the jth GMM solution (ξ̂j, ω̂j), the model-implied phase function is given by
ρ̃j(t) = φ̃j(t)/|φ̃j(t)| with φ̃j(t) as defined in (20). Now, letting w(t) denote a non-negative
weight function symmetric around 0, define distance metric Rj = ∫

R
|ρ̂x(t) − ρ̃j(t)|w(t)dt

for j = 1, . . . , J . The selection solution is (ξ̂j∗ , ω̂j∗) with j∗ = argmin1≤j≤J Rj. That is,
the selected solution has minimum phase function distance. In this paper, weight func-
tion w(t) =[ 1 − (t/t∗)2]3 I(|t| ≤ t∗) will be used with t∗ the smallest t > 0 such that
|ψ̂w(t)| ≤ n−1/4 as per Delaigle and Hall (2016).

Simulation studies
The performance of the GSS deconvolution estimator was evaluated using extensive
simulations. Letting φ(z) and �(z) denote the standard normal density and distribu-
tion functions, data X1, . . . ,Xn were generated from GSS distributions with symmetric
component f0(z) = φ(z) and using three different skewing functions, π0(z) = 1/2,
π1(z) = �(9.9625z) and π2(z) = �(z3 − 2z). The location and scale parameters were
taken to be ξ = 0 and ω = 1. Figure 1 illustrates the three resulting pdfs fx(x) =
(2/ω)φ[ (x − ξ)/ω]πk[ (x − ξ)/ω], k = 0, 1, 2. Note that the skewing function π0(z)
does not introduce any deviation from symmetry and corresponds to simulating from a
normal distribution. Additionally, the skewing function π1(z) results in a positive skew
distribution, while π2(z) results in a bimodal distribution.
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Fig. 1 Skew-symmetric densities used in simulation study

Two measurement error distributions were considered with U1, . . . ,Un being either
Normal or Laplace with mean 0 and variance chosen to have noise-to-signal ratio NSR =
σ 2
u/σ 2

x either 0.2 or 0.5. Samples Wj = Xj + Uj, j = 1, . . . , n, with n ∈ {50, 100, 200, 500}
were generated from each of the possible simulation configurations described.

Comparison of oracle estimators

The first simulation study presented compares the proposed GSS estimator to the estab-
lished nonparametric estimator of Carroll and Hall (1988), and assumes the existence of
an oracle that selects the “best” possible bandwidth for each of the estimators. Specifi-
cally, for a sampleW1, . . . ,Wn, let f̃gss(x|h) and f̃np(x|h) denote, respectively, the GSS and
nonparametric estimators with bandwidth h. The ISE is defined as

ISEm(h) =
∫
R

[
f̃m(x|h) − fx(x)

]2
dx

where m ∈ {gss, np}. Then, the “best” bandwidth is the value that minimizes the ISE
between the estimated and true densities. Furthermore, when GMM results in more than
one solution for the GSS location and scale parameters, the oracle also selects the solution
that result in smallest ISE. In practice, no oracle exists to do these selections. Even so,
comparing the estimators under such idealized conditions speaks to the best possible
performance of these methods.
For each simulation configuration, N = 1000 samples were generated. Due to the occa-

sional occurrence of very large outliers in ISE, the median ISE (rather than mean ISE) is
reported. The first and third quartiles of ISE are also reported. Results for n ∈ {200, 500}
are summarized in Table 1, and for n ∈ {50, 100} are presented in Table 6 in Appendix A.5.
Inspection of Table 1 shows how well the GSS estimator can perform relative to the

nonparametric estimator. In the symmetric case with skewing function π0(z), the reduc-
tion in median ISE is most dramatic and exceeds 50% in all cases. For skewing functions
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Table 1Median of 100 × ISE, as well as first and third quartiles [Q1,Q3] for the oracle GSS and
nonparametric (NP) deconvolution estimators

n = 200 n = 500

π (NSR,U) GSS NP GSS NP

π0 (0.2,N) 0.131 0.442 0.070 0.282

[0.055, 0.263] [0.256, 0.709] [0.032, 0.148] [0.186, 0.418]

(0.5,N) 0.199 0.817 0.122 0.596

[0.084, 0.405] [0.532, 1.228] [0.048, 0.296] [0.409, 0.845]

(0.2, L) 0.113 0.273 0.058 0.147

[0.053, 0.241] [0.140, 0.476] [0.027, 0.117] [0.079, 0.236]

(0.5, L) 0.148 0.327 0.076 0.169

[0.074, 0.323] [0.165, 0.603] [0.040, 0.158] [0.086, 0.308]

π1 (0.2,N) 1.690 2.453 1.400 1.875

[1.271, 2.188] [1.855, 3.173] [1.031, 1.775] [1.434, 2.419]

(0.5,N) 2.277 4.079 2.034 3.514

[1.729, 2.956] [3.116, 5.275] [1.547, 2.645] [2.716, 4.352]

(0.2, L) 1.200 1.701 0.712 1.096

[0.832, 1.658] [1.223, 2.258] [0.422, 1.112] [0.818, 1.463]

(0.5, L) 1.542 2.353 1.025 1.615

[1.054, 2.162] [1.671, 3.176] [0.652, 1.469] [1.206, 2.105]

π2 (0.2,N) 1.410 1.768 1.004 1.289

[0.918, 2.082] [1.251, 2.465] [0.689, 1.406] [0.971, 1.719]

(0.5,N) 3.068 3.896 2.483 3.153

[1.976, 4.542] [2.731, 5.241] [1.602, 3.504] [2.302, 4.174]

(0.2, L) 0.638 0.754 0.315 0.434

[0.358, 1.060] [0.494, 1.250] [0.190, 0.515] [0.272, 0.650]

(0.5, L) 1.413 1.310 0.667 0.707

[0.728, 2.472] [0.763, 2.112] [0.381, 1.199] [0.439, 1.114]

π1(z) and π2(z), the reduction in median ISE is also seen to be as large as 40%. There is
one instance where median ISE of the nonparametric estimator is smaller than that of the
GSS estimator – skewing function π2(z)with NSR = 0.5, Laplacemeasurement error, and
sample size n = 200. (The same holds true for sample sizes n = 50 and 100 in Table 6.)
However, the equivalent scenario with sample size n = 500 has the GSS estimator with
smaller median ISE. This possibly indicates the effect of estimating the location and scale
parameters in smaller samples and when large amounts of heavier-tailed-than-normal
measurement error is present. Overall, the GSS deconvolution estimator performs very
well. Thus, the additional structure being imposed through the a priori specification of
the symmetric pdf f0(z) can result in a large decrease in ISE.

Bandwidth estimation

The next simulation study investigated the two proposed bandwidth estimation
approaches. Specifically, the CV and MISE bandwidths as well as the two-stage plug-in
(PI) bandwidth of Delaigle and Gijbels (2002), originally developed for nonparametric
deconvolution, were implemented. For each simulated sample, the ISE was calculated.
When necessary, GMM solution selection with phase-function matching was used. The
nonparametric deconvolution estimator with PI bandwidth was also calculated; corre-
sponding results are included for reference purposes. The median ISE values for the
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Table 2Median of 100 × ISE for the GSS deconvolution estimators with CV, MISE, and PI
bandwidths, and the nonparametric (NP) estimator with PI bandwidth. Sample size n = 200

π (NSR,U) CV MISE PI NP

π0 (0.2,N) 0.409 0.370 0.294 0.535

(0.5,N) 0.652 0.701 0.492 1.039

(0.2, L) 0.409 0.407 0.299 0.433

(0.5, L) 0.574 0.630 0.435 0.653

π1 (0.2,N) 2.217 2.116 2.399 2.709

(0.5,N) 3.193 3.032 3.983 4.601

(0.2, L) 1.645 1.494 1.712 1.998

(0.5, L) 2.299 2.116 2.274 2.848

π2 (0.2,N) 2.138 1.593 1.755 1.956

(0.5,N) 4.648 4.175 3.785 4.375

(0.2, L) 1.359 1.230 0.894 1.044

(0.5, L) 2.872 2.633 2.786 1.752

methods are summarized in Tables 2 and 3 for sample sizes n ∈ {200, 500}, and in Tables 7
and 8 in Appendix A.5 for sample sizes n ∈ {50, 100}.
In Tables 2 and 3, it is seen that there isn’t a consisent “best” bandwidth method. For

skewing functions π0 (the symmetric case) and π2, the PI bandwidth generally has small-
est median ISE. In these same scenarios, MISE frequently (but by no means consistently)
outperforms CV. For π1(z) the MISE bandwidth performs best. In all simulation settings,
there is a GSS bandwidth method that results in better performance than the nonpara-
metric estimator. These same conclusions broadly hold for sample sizes n ∈ {50, 100} in
Appendix A.5.
The results presented above were restricted to phase-function matching for the GMM

estimators, as it was found to generally have better performance that skewness match-
ing. For details of the simulation comparing the two GMM matching methods, see
Appendix A.3.

Table 3Median of 100 × ISE for the GSS deconvolution estimators with CV, MISE, and PI
bandwidths, and the nonparametric (NP) estimator with PI bandwidth. Sample size n = 500

π (NSR,U) CV MISE PI NP

π0 (0.2,N) 0.190 0.180 0.160 0.334

(0.5,N) 0.356 0.382 0.297 0.728

(0.2, L) 0.186 0.202 0.152 0.233

(0.5, L) 0.295 0.350 0.226 0.401

π1 (0.2,N) 1.885 1.788 2.027 2.064

(0.5,N) 2.781 2.640 3.350 3.810

(0.2, L) 0.897 0.784 0.991 1.271

(0.5, L) 1.264 1.039 1.304 1.929

π2 (0.2,N) 1.492 1.158 1.173 1.401

(0.5,N) 3.746 3.147 2.967 3.456

(0.2, L) 0.845 0.873 0.471 0.636

(0.5, L) 1.752 1.640 1.376 1.048
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GMM estimation

One other simulation study was performed, and considered the choice ofM (the number
of evenmoment to use) when evaluating the GMMestimators of (ξ ,ω). These simulations
results are presented in Appendix A.4. In summary, the larger valueM = 5 was generally
seen to outperform M = 2 for π1(z) and π2(z). In the symmetric π0(z) case, M = 2
performed slightly better than M = 5. In all instances, root mean square error (RMSE)
was used as criterion.

Data applications
Coal abrasiveness index data

Data from an industrial application, first considered by Lombard (2005), are analyzed
here. The data were obtained by taking batches of coal, splitting them in two, and ran-
domly allocating each of the half-batches to one of two methods used to measure the
abrasiveness index (AI) of coal, a measure of the quality of coal. The observed data con-
sist of 98 pairs (w1i,w2i) assumed to be from a population with W1i = Xi + U1i and
W2i = μ + σ(Xi + U2i). Here, Xi denotes the true AI of the ith batch, U1i and Ui2 denote
measurement error, and constantsμ and σ account for the two AI measurement methods
being on different scales. Of interest is estimating fx(x), the true density of AI. However,
the data (w1i,w2i) first need to be combined in a sensible way.
To this end, let μw,k and σ 2

w,k denote the mean and variance of theWki, k = 1, 2, and let
μx and σ 2

x denote the mean and variance of the Xi. Note that μw,1 = μx, μw,2 = μ + σμx,
σ 2
w,1 = σ 2

x +σ 2
u , and σ 2

w,2 = σ 2 (σ 2
x + σ 2

u
)
. By replacing the populationmoments with their

sample counterparts, estimators σ̂ = sw,2/sw,1 = 0.679 and μ̂ = w̄2 − σ̂ w̄1 = 59.503 are
obtained. Here, (w̄1, sw,1) denote the sample mean and standard deviation of the observed
w1-data with similar definitions holding for the w2-quantities. Now, the paired obser-
vations are combined as wi = 0.5w1i + 0.5

(
w2i − μ̂

)
/σ̂ . At the population level this

corresponds toWi ≈ Xi+0.5 (U1i + U2i) := Xi+εi. An estimate of themeasurement error
variance σ 2

ε is obtained by calculating σ̂ 2
u = (2n)−1∑[

W1i −
(
W2i − μ̂

)
/σ̂
]2 = 174.6

and noting that σ̂ 2
ε = 174.6/2 = 87.3. This corresponds to theWi having noise-to-signal

ratio NSR = 16.35%.
The GSS deconvolution estimator for fx(x) is now calculated assuming a normal

symmetric component, f0(z) = φ(z), along with a Laplace distribution for the mea-
surement error ε. (The equivalent estimator assuming normal measurement was also
calculated and is nearly identical in shape.) GMM with M = 5 gives solution pairs
(ξ̂1, ω̂1) = (192.88, 29.90) and (ξ̂2, ω̂2) = (230.41, 32.43). For each of these, the corre-
sponding skewing function estimate π̃j(z) and phase function distance Rj was calculated,
the latter using weight function w(t) =[ 1 − (t/t∗)2]3 for t ∈[−t∗, t∗] and t∗ = 0.06.
Here, R1 = 0.023 < 0.046 = R2 and therefore solution (ξ̂1, ω̂1) with estimated skew-
ing function π̃1(z) was selected. Skewness matching resulted in selection of the same
solution. Figure 2 shows a kernel density estimator of fw(w), the density of the contam-
inated Wi, as well as the GSS deconvolution estimator of fx(x) with MISE bandwidth
h̃ = 0.102.
This application illustrates one of the less appealing aspects of the GSS approach

sometimes encountered in smaller samples. Note the sharp “edge” in the GSS estima-
tor around x = 225. This is an artefact of the hard truncation applied when calculating
the range-respecting skewing function estimate π̃(z). The resulting density estimate is
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Fig. 2 Abrasiveness Index Density Estimation

not differentiable at this point. This is equivalent to non-differentiable points in the
nonparametric deconvolution estimator when it is truncated to be positive.

Systolic blood pressure data

The data here are a subset of n = 1615 male participants in the Framingham Heart
Study, see for example Carroll et al. (2006) for more detail. The data consist of sys-
tolic blood pressure measurements from two patient exams (the second and third exams
in the study). At each exam, two replicate measurements were obtained giving data
(SBP21, SBP22, SBP31, SBP32). Let P1 = (SBP21 + SBP22)/2 and P2 = (SBP31 + SBP32)/2
denote the average systolic blood pressure observed at each of the exams, and cal-
culate transformed variables Wj = log(Pj − 50), j = 1, 2, as suggested by Carroll
et al. (2006). This is done to adjust large skewness present in the data. The mea-
surement W = (W1 + W2)/2 = X + U is a surrogate for the true long-term
average systolic blood pressure X (on the transformed logarithmic scale). Using the
replicates (W1,W2), estimate standard deviations σ̂x = 0.1976 and σ̂u = 0.0802 are
obtained.
The GSS deconvolution estimator assuming a Laplace distribution for the measure-

ment error U and using a normal reference density f0(z) = φ(z) was computed. GMM
with M = 5 resulted in only one solution, (ξ̂ , ω̂) = (4.429, 0.210), and therefore no
selection was needed. Figure 3 displays both the GSS deconvolution estimator and the
nonparametric deconvolution estimator, both with PI bandwidths.
The nonparametric deconvolution estimator has previously been applied to the Fram-

ingham Heart Study. It is therefore reassuring that the GSS estimator is not dissimilar in
appearance.
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Fig. 3 Density deconvolution estimators of log(SBP-50)

Conclusion
In this paper, the density deconvolution problem is considered for variables belonging to
the family of generalized skew-symmetric (GSS) distributions. Implementation requires
both the estimation of location and scale parameters (ξ ,ω), and the estimation of a
skewing function π(z). Estimation methods are proposed for both of these quantities,
and extensive simulation studies are performed. In simulation studies performed, the
GSS deconvolution estimator is generally seen to result in large improvements over the
nonparametric deconvolution estimator (using median ISE as criterion).
There are still several questions related to GSS deconvolution that can be

considered. Firstly, the estimator requires the specification of a known symmetric com-
ponent f0(z). While this is done to ensure model identifiability, it would be possible to
consider several candidate symmetric densities and choose the “best” among these. The
related goodness-of-fit testing problem for a specified symmetric component can also be
explored. Secondly, it should be noted that the contaminated W also has a GSS distri-
bution. An alternative modeling approach could therefore estimate the pdf of W directly
and then recover the pdf of X. Lastly, it was observed in the simulation study that the non-
parametric deconvolution kernel in a few isolated instances had superior performance to
the GSS estimator under selection, while GSS had better under oracle conditions for the
same simulation configurations. This suggests that further refinement of the bandwidth
calculation and solution selection proceduremay be possible, and related work is ongoing.

Appendix
A.1 Generalized skew-symmetric representation

Here, it is established that any continuous random variable has a non-unique representa-
tion as a GSS distribution. This motivates, in part, the need to assume a parametric form
for pdf f0(z) when doing estimation. Let Y be a continuous random variable with pdf fy(y)
and let ξ be a real number. Furthermore, let B be a Bernoulli(p = 0.5) random variable,
and define new random variables Dξ = |Y − ξ | and T = BDξ − (1 − B)Dξ . The random
variable T is symmetric about 0 and has pdf ft(t) = (1/2)

[
fy(ξ + t) + fy(ξ − t)

]
. Next,

define

πt(t) = 1
2
fy(ξ + t)
ft(t)

= fy(ξ + t)
fy(ξ + t) + fy(ξ − t)
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and note that πt(t) satisfies 0 ≤ πt(t) = 1 − πt(−t) ≤ 1. By construction, it follows that
fy(y) can be expressed as fy(y) = 2ft(y− ξ)πt(y− ξ). Assuming that Y has finite variance,
the variance of T is given by ω2

ξ = ∫
R
t2ft(t)dt. Then, letting fξ (t) = ft(t/ωξ )/ωξ and

πξ (t) = πt(t/ωξ ), it is possible to write

fy(y) = 2
ωξ

fξ
(
y − ξ

ωξ

)
πξ

(
y − ξ

ωξ

)
.

This representation does not depend on a specific value for ξ and, as such, holds for every
ξ . However, each value of ξ is associated with a different symmetric component fξ (z)
and skewing function πξ (z). As such, there is a family of distributions fξ (z) symmetric
about 0 and with unit variance such that the random variable Y can be expressed as a
GSS distribution with symmetric component belonging to this family. The work in this
paper is motivated by the assumption that it is possible to correctly specify one symmetric
distribution in the family fξ (z).

A.2 MISE derivation

To derive an expression for the mean integrated square error (MISE), considering the
estimator ŝ0(t) defined in (5). Recall that E

[
ŝ0(t)

] = ψk(ht)s0(t). Additionally, it has
covariance structure

Cov
[
ŝ0(t1), ŝ0(t2)

] = ψk(ht1)ψk(ht2)
n

×
[
c0(t1 − t2)ψu[ (t1 − t2)/ω]−c0(t1 + t2)ψu[ (t1 + t2)/ω)]

2ψu(t1/ω)ψu(t2/ω)
− s0(t1)s0(t2)

]
.

The integrated squared error (ISE) of the GSS estimator can now be expressed in terms
of ŝ0(t),

ISE =
∫
R

[
f̃z(z) − fz(z)

]2
dz

= 1
2π

∫
R

∣∣∣ψ̂z(t) − ψz(t)
∣∣∣2 dt

= 1
2π

∫
R

[
ŝ0(t) − s0(t)

]2 dt
where the first equality is an application of Parseval’s identity, and the second follows upon
noting that the estimated characteristic function ψ̂z(t) and true characteristic function
ψz(t) have common real component c0(t) which therefore cancels out, leaving only the
estimated and true imaginary components. Also note that ISE is a function of the band-
width h through ŝ0(t). Now, MISE = E[ ISE] can be evaluated using the expectation and
covariance functions associated with ŝ0(t), in the latter setting t1 = t2 = t. Eq. 10 follows.

A.3 GMM estimators simulation

The performance of GMM estimation of (ξ ,ω) was evaluated in a simulation study.
Data were simulated as described in the main paper. For each simulated dataset, the
estimators minimizing D(ξ ,ω) were obtained for both M = 2 and M = 5 even
moments. While the sixth, eight and tenth sample moments used for the M = 5
setting arguably contain additional information, there is a great deal of added variabil-
ity introduced when estimating these higher order moments. This simulation explored
the benefits, if any, of doing so. In simulated samples where multiple solutions (ξ̂j, ω̂j),
j = 1, . . . , J were obtained, the existence of an oracle able to choose the solution
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Table 4 RMSE for GMM estimators, N = Normal, L = Laplace

M = 2 M = 5

π n (NSR,U) RMSE(ξ̂ ) RMSE(ω̂) RMSE(ξ̂ ) RMSE(ω̂)

π0 200 (0.2,N) 0.400 0.116 0.404 0.127

(0.5,N) 0.454 0.140 0.452 0.153

(0.2, L) 0.409 0.120 0.414 0.133

(0.5, L) 0.494 0.157 0.483 0.168

500 (0.2,N) 0.370 0.094 0.383 0.105

(0.5,N) 0.415 0.113 0.431 0.128

(0.2, L) 0.377 0.097 0.389 0.109

(0.5, L) 0.453 0.133 0.453 0.136

π1 200 (0.2,N) 0.131 0.112 0.092 0.091

(0.5,N) 0.177 0.138 0.151 0.121

(0.2, L) 0.139 0.117 0.092 0.093

(0.5, L) 0.195 0.154 0.152 0.124

500 (0.2,N) 0.080 0.069 0.055 0.057

(0.5,N) 0.103 0.084 0.079 0.071

(0.2, L) 0.083 0.072 0.055 0.058

(0.5, L) 0.118 0.097 0.079 0.073

π2 200 (0.2,N) 0.133 0.055 0.096 0.058

(0.5,N) 0.234 0.071 0.185 0.068

(0.2, L) 0.153 0.058 0.093 0.059

(0.5, L) 0.334 0.109 0.194 0.088

500 (0.2,N) 0.081 0.034 0.059 0.037

(0.5,N) 0.135 0.037 0.112 0.039

(0.2, L) 0.093 0.035 0.057 0.037

(0.5, L) 0.219 0.061 0.124 0.054

closest to the true value (0, 1) (as measured using Euclidean distance) was assumed.
A total of N = 1000 samples were generated for each simulation configuration.
Root mean square error (RMSE) was used as criterion, and the results are shown in
Table 4.
In the setting with X normal, i.e. using π0(z), using M = 5 moments results in

a small increase in RMSE compared to the case M = 2. The average increase in
RMSE for ξ is 1.2% and for ω is 9.5% across the settings considered. On the other
hand, the simulation results for skewing functions π1(z) and π2(z) look very differ-
ent. Here, the RMSE for ξ decreases for both skewing functions, and the RMSE for ω

decreases for skewing function π2(z). Also, the average RMSE of ω for π2(z) remains
unchanged across the simulation settings considered. One possible reason for the increase
in RMSE in the symmetric case is that the underlying distribution is normal and
therefore higher-order moments do not contain any “extra” information about the dis-
tribution. On the other hand, for π1(z) and π2(z) there is a substantive departure
from normality and the higher-order sample moments, despite their large variabil-
ity, do contain useful information about the underlying distribution. As the increase
in RMSE in the symmetric case is relatively small compared to the decrease in the
asymmetric cases, the paper uses the GMM estimators with M = 5 in all other
simulations.
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Table 5Median of 100 × ISE for GSS estimator with MISE bandwidth

n = 200 n = 500

π (NSR,U) MIN SKW PHS RND NP MIN SKW PHS RND NP

π0 (0.2,N) 0.278 0.460 0.370 0.455 0.535 0.143 0.234 0.180 0.215 0.334

(0.5,N) 0.559 0.943 0.701 1.015 1.039 0.320 0.503 0.382 0.529 0.728

(0.2, L) 0.343 0.411 0.407 0.469 0.433 0.173 0.196 0.202 0.216 0.233

(0.5, L) 0.533 0.629 0.630 0.701 0.653 0.286 0.317 0.350 0.384 0.401

π1 (0.2,N) 1.923 2.407 2.116 2.322 2.709 1.545 1.832 1.788 1.812 2.064

(0.5,N) 2.829 3.730 3.032 3.744 4.601 2.474 3.166 2.640 3.052 3.810

(0.2, L) 1.309 1.637 1.494 1.721 1.998 0.671 1.016 0.784 1.234 1.271

(0.5, L) 1.789 2.216 2.116 2.524 2.848 0.992 1.431 1.039 1.671 1.929

π2 (0.2,N) 1.593 1.612 1.593 4.513 1.956 1.158 1.158 1.158 5.050 1.401

(0.5,N) 4.115 4.175 4.175 7.120 4.375 3.147 3.147 3.147 6.273 3.456

(0.2, L) 1.229 1.230 1.230 4.098 1.044 0.873 0.873 0.873 4.401 0.636

(0.5, L) 2.520 2.529 2.633 4.838 1.752 1.631 1.631 1.640 3.925 1.048

A.4 Solution selection simulation

The simulation results comparing the performance of the skewness matching and phase
function distance solution selection mechanisms follow here. Data were generated as
described in the “Simulation studies” section of the main paper. For each simulated sam-
ple, all GMM solutions (ξ̂j, ω̂j), j = 1, . . . , J were obtained. Solution selection was then
implemented for both skewness matching and phase function matching. These tech-
niques require a bandwidht to be selected. The simulation implemented CV, MISE, and
PI bandwidth selection. However, the conclusions with regards to selection methods
were very similar for these and therefore only MISE bandwidth results are included here.
To contextualize these results from selection, results corresponding to an oracle able
to choose the solution with smallest ISE are also reported, as well as a blind selection
approach randomly selecting one of the GMM solutions.
The simulation results are summarized in Table 5. In this table, the median ISE of skew-

ness matching and phase function distance are given in the columns SKW and PHS. The
column MIN contains the median ISE for the oracle selecting the solution with smallest
ISE, while RND contains themedian ISE of randomly selecting one of the GMMsolutions.
Finally, the median ISE of the nonparametric deconvolution estimator with PI bandwidth
is given in column NP for reference purposes.
Inspection of Table 5 shows that estimation under both the skewness and phase func-

tion matching generally performs better than the fully nonparametric estimator, with the
exception being the combination of skewing function π2(z) and Laplace measurement
error. However, as the GSS estimator outperformed the nonparametric estimator under
an oracle bandwidth as seen in Table 1 of the main paper, this does suggest that further
improvement of the GSS estimator may still be possible by refining parameter estimation
and bandwidth selection – this is ongoing work. Further inspection of Table 5 shows that
estimation under both the skewness and phase function matching performs better than
random selection, with the exception that random selection outperforms the skewness
matching for π1(z) and normal measurement error. While there are a few instances where
skewness matching outperformed phase function matching, the latter generally has very
good performance and comes close to the best possible performance of the minimum ISE
under oracle selection.
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Table 6Median of 100 × ISE, as well as first and third quartiles [Q1,Q3] for the oracle GSS and
nonparametric (NP) deconvolution estimators, sample sizes n = 50, 100

n = 50 n = 100

π (NSR,U) GSS NP GSS NP

π0 (0.2,N) 0.315 0.865 0.199 0.591

[0.126, 0.712] [0.473, 1.489] [0.086, 0.400] [0.351, 0.975]
(0.5,N) 0.431 1.400 0.288 1.040

[0.177, 0.899] [0.802, 2.254] [0.115, 0.594] [0.626, 1.621]
(0.2, L) 0.322 0.687 0.203 0.445

[0.141, 0.715] [0.350, 1.243] [0.086, 0.425] [0.222, 0.795]
(0.5, L) 0.421 0.835 0.255 0.548

[0.185, 1.019] [0.401, 1.635] [0.114, 0.592] [0.245, 0.991]

π1 (0.2,N) 2.290 3.830 1.984 3.094

[1.622, 3.180] [2.713, 5.300] [1.383, 2.680] [2.249, 4.064]
(0.5,N) 2.830 5.576 2.512 4.803

[2.059, 3.932] [4.037, 7.598] [1.817, 3.504] [3.510, 6.312]
(0.2, L) 2.088 3.370 1.608 2.389

[1.435, 2.880] [2.303, 4.641] [1.142, 2.273] [1.678, 3.297]
(0.5, L) 2.410 4.077 1.977 3.138

[1.742, 3.391] [2.864, 5.798] [1.405, 2.755] [2.248, 4.427]

π2 (0.2,N) 2.658 3.031 1.900 2.305

[1.464, 4.274] [1.737, 4.675] [1.138, 2.873] [1.500, 3.287]
(0.5,N) 4.482 5.360 3.924 4.682

[2.566, 6.831] [3.193, 7.536] [2.344, 5.602] [2.954, 6.372]
(0.2, L) 1.968 2.101 1.132 1.264

[1.052, 3.412] [1.228, 3.458] [0.606, 1.878] [0.785, 1.995]
(0.5, L) 3.333 3.121 2.498 2.080

[1.880, 5.838] [1.862, 5.038] [1.276, 4.039] [1.172, 3.255]

A.5 supplemental simulation results

This subsection contains two sets of supplemental simulation results. The first of these,
found in Table 6, pertains to a comparison of oracle estimators for sample sizes n =
{50, 100}. The second of these, found in Tables 7 and 8, pertains to comparing bandwidth
estimation methods for sample sizes n = {50, 100}. The conclusions that can be drawn
from these results are consistent with those discussed in the “Simulation studies” section
of the main paper, and are included here for completeness.

Table 7Median of 100 × ISE for the GSS deconvolution estimators with CV, MISE, and PI
bandwidths, and the nonparametric (NP) estimator with PI bandwidth. Sample size n = 50

π (NSR,U) CV MISE PI NP

π0 (0.2,N) 1.415 1.291 0.875 1.230

(0.5,N) 2.068 1.974 1.194 1.896

(0.2, L) 1.333 1.298 0.984 1.195

(0.5, L) 1.836 1.817 1.313 1.815

π1 (0.2,N) 3.416 3.214 3.927 4.503

(0.5,N) 4.732 4.952 7.256 6.536

(0.2, L) 3.517 3.348 4.277 4.176

(0.5, L) 4.244 4.171 7.529 5.418

π2 (0.2,N) 4.267 3.537 3.691 3.574

(0.5,N) 7.220 7.256 6.177 6.051

(0.2, L) 3.464 3.255 3.070 2.783

(0.5, L) 6.004 5.776 5.949 4.058
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Table 8Median of 100 × ISE for the GSS deconvolution estimators with CV, MISE, and PI
bandwidths, and the nonparametric (NP) estimator with PI bandwidth. Sample size n = 100

π (NSR,U) CV MISE PI NP

π0 (0.2,N) 0.727 0.630 0.526 0.810

(0.5,N) 1.162 1.154 0.771 1.452

(0.2, L) 0.761 0.736 0.576 0.792

(0.5, L) 0.978 1.011 0.755 1.110

π1 (0.2,N) 2.946 2.726 3.191 3.553

(0.5,N) 3.887 3.896 5.940 5.443

(0.2, L) 2.695 2.556 3.220 2.898

(0.5, L) 3.382 3.356 5.613 4.050

π2 (0.2,N) 2.916 2.360 2.410 2.612

(0.5,N) 5.987 5.751 4.918 5.330

(0.2, L) 2.190 1.843 1.663 1.732

(0.5, L) 4.407 4.143 4.856 2.769

Abbreviations
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