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Abstract
Discrete analogue of a continuous distribution (especially in the univariate domain) is
not new in the literature. The work of discretizing continuous distributions begun with
the paper by Nakagawa and Osaki (1975) to the best of the knowledge of the author.
Since then several authors proposed discrete analogues of known continuous models.
In this paper, we propose and study a discrete analogue of the continuous Pareto (type
IV) distribution, namely the discrete Pareto (type IV) distribution (DPIV, henceforth, in
short) that has three parameters. Its probability mass function can be approximately
symmetric, right-skewed and left-skewed shapes, and the hazard rate function
possesses decreasing and upside-down bathtub shapes. Also, the proposed discrete
distribution can be under-, over- or equi- dispersion. The flexibility of the new discrete
model is illustrated by means of three applications to real life data sets arising out of
various domains affecting our life.

Mathematics Subject Classification (2010): 60E05; 62F10; 62N05

Introduction
The discrete distributions are useful when count phenomenon occurs. The discrete mod-
els are as important as the continuous models. Nowadays, both types of models can
be used in fascinating ways to explore real life data sets available in different fields of
studies. One convincing way is the compounding technique, where the discrete and con-
tinuous models are mixed together for better exploration of phenomenons under study.
The other interesting technique began with the work of (Nakagawa and Osaki 1975),
who first introduced the concept of discretizing a continuous model into discrete one.
There are many situations where it is inappropriate to describe the lifetime of devices
on a continuous scale. For example, a piece of equipment operates in cycles and experi-
menter observes that the number of cycles successfully completed prior to the failure. In
such case, the time to failure is more appropriately represented by the number of times
they are used before they fail, which is a discrete random variable. Salvia and Bollinger
(1982), and Padgett and Spurrier (1985) discussed discrete hazard rate functions (h.r.f.)
and failure rate models by giving illustrations to such situation. Xie et al. (2002) also
defined another discrete h.r.f. h(k) = log[ S(k − 1)/S(k)] for a random variable K, where
S(· · · ) is the reliability function, which gives similar results to those for continuous h.r.f.’s.
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(Bracquemond and Gaudoin 2003) presented a survey on discrete lifetime distributions
and suggested two ways by which discrete distributions can be derived from the continu-
ous ones; (i) to consider a characteristic property of a continuous distribution and to build
the similar property in discrete time, and (ii) to consider discrete lifetime as the integer
part of continuous lifetime. Lai (2013) also appreciated the discretization of a continu-
ous model but stressed that a continuous lifetime random variable may be characterized
either by its cumulative distribution function (c.d.f.), probability density function (p.d.f.)
or h.r.f. which are equivalent in the sense that one can be uniquely determined by the
other.
In reliability theory, classification of lifetime models is defined in terms of their survival

function (s.f.) and other reliability characteristics. For example, the increasing (decreas-
ing) failure rate IFR (DFR) class, increasing (decreasing) failure rate average IFRA (DFRA)
class, the new better (worse) than used NBU (NWU) class, new better (worse) than
used in expectation NBUE (NWUE) class and increasing (decreasing) mean residual
lifetime IMRL (DMRL) class etc. (See Kemp 2004) and the references cited therein).
The discretization of a continuous lifetime distribution retains the same functional form
of the survival function, therefore, many reliability characteristics and properties shall
remain unchanged. Thus, discretization of a continuous lifetime model is an inter-
esting and simple approach to derive a discrete lifetime model corresponding to the
continuous one.
In the last two or three decades, there has been a growing interest in introduc-

ing discretized continuous distributions. For more details the reader is referred to
(Chakraborty 2015) and the references cited therein. In the literature, there are several
different methods of discretizing a continuous probability model. We will consider the
approach which is due to (Nakagawa and Osaki 1975) and (Roy 2003). This is a rather
more general approach for discretizing continuous models, adopted in this paper. The
following proposition may lead to this approach.

Proposition 1 Given a continuous random variable X with survival function SX(x), a
discrete random variable Y can be defined as Y = �x�, where �x� = max{m ∈ Z | m ≤ x},
the floor function. The probability mass function (p.m.f.) P (Y = y) of Y is then given by

P (Y = y) = P (y ≤ X < y + 1)

= P (X ≥ y) − P (X ≥ y + 1)

= SX(y) − SX(y + 1), (1)

where y ∈ Z, and Z is the set of integers. Consequently, a continuous failure-time model
can be used to generate a discrete time model by introducing a grouping on the time axis.
To put it in a simple way, if X is a continuous random variable, then the p.m.f. of its integer
part, that is T = dX = �X�, can be viewed as a discrete concentration of the p.d.f. of X.
Such discretized distributions retain the same functional form of the survival function as
that of the continuous ones and the reliability characteristics also do not change.

The p.d.f. a continuous Pareto (Type IV) distribution (with the location parameter 0,
inequality parameter γ , and the shape parameter α, also known the tail index, for details,
see Arnold (1983) ) is given by



Ghosh Journal of Statistical Distributions and Applications             (2020) 7:3 Page 3 of 17

f (x) = α

γ

( x
σ

) 1
γ

−1
[
1 +

( x
σ

) 1
γ

]−α−1
, x ≥ 0.

The associated c.d.f. and the survival function are, respectively,

F(x) = 1 −
(
1 +

( x
σ

) 1
γ

)−α

,

S(x) =
(
1 +

( x
σ

) 1
γ

)−α

. (2)

Using Eq. (1), the discrete Pareto (IV) (DPIV, henceforth, in short) distribution can be
defined as

g(x) = θ
log

(
1+( x

σ )
1
γ

)

− θ
log

(
1+( x+1

σ

) 1
γ

)

; (3)

x ∈ N
∗; where N∗ = N∪ {0}, θ = exp(−α), and 0 < θ < 1, σ > 0. A random variable

X with the p.m.f. as given in Eq. (3) will be said to have the DPIV distribution.
From (3), the c.d.f. and the survival function of a random variable that follows the DPIV

distribution are given as follows

G(x) = 1 − θ
log

(
1+( x+1

σ

) 1
γ

)

x = 1, 2, · · · , (4)

S(x) = θ
log

(
1+( x+1

σ

) 1
γ

)

x = 1, 2, · · · . (5)

The next result discusses the limiting behavior of the DPIV distribution corresponding
to various parameter choices at the boundary.
Result 1

• limx→∞ g(x) = 0.
• limσ→0,∞ g(x) = 0.
• limγ→0,∞ g(x) = θ log(

x
σ

+1)+1 − θ log
( x+1

σ
+1

)+1.
• limθ→0,1 g(x) = 0.

Some representative plots of the DPIV p.m.f. are provided in Fig. 1, for varying
parameter values.
From the plots in Fig. 1, it appears that the distribution is right skewed. If we wanted

to apply this to some real life application, we would desire the data to also possess this
right skewed characteristic for a better model fit. It is also important to note that the
Pareto (Type IV) distribution is highly sensitive to changes in the α parameter as this is
the shape parameter (also known as the tail index). Furthermore, from Fig. 1, it represents
the fact that for larger values of the parameter α, and γ the mode moves to the right,
indicating that the proposed distribution is quite versatile in nature; while smaller values
of α appear to have a significant effect on the respective probabilities, and of course, on
the values of themoments.We found that mass points weremore evenly distributed when
α ≤ 2, γ = 0.4. As we will see in the “Estimation” section, this sensitivity will become an
issue in estimating the parameters under the maximum likelihood method.
The rest of the paper will be organized in the following way. “Structural properties”

introduces the discrete Pareto (IV) distribution. The maximum likelihood estimation in
DPIV distribution is discussed in detail with simulation studies in “Estimation”. For illus-
trative purposes, three different data sets from various real life scenarios are re-analyzed
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Fig. 1 Plots of DPIV p.m.f. for various parameter values

to show the applicability of the proposed DPIV distribution “Application”. Finally, we
conclude this paper by providing some final remarks in “Concluding remarks” sections.

Structural properties
In this section, we discuss some important structural properties of the DPIV distribution.
At first, we have the following lemma.

Lemma 1 If a random variable Y follows the Pareto distribution with parameters α, γ , σ ,
then X = �Y� follows the DPIV (θ , γ , σ) .

Proof Follows immediately from (3).
Stochastic ordering is an integral tool to judge comparative behaviors of random

variables. Many stochastic orders exist and have various applications. Theorem 1 and
Corollary 1 (below) give some results on the stochastic orderings of the DPIV. The orders
considered here are the stochastic order ≤st , and the expectation order ≤E .

Theorem 1 The DPIV (θ , γ , σ) has the following properties.

• Suppose X1 ∼ DPIV (θ , γ , σ1) and X2 ∼ DPIV (θ , γ , σ2). If σ1 < σ2, then X1 ≤st X2.
• Suppose X1 ∼ DPIV (θ , γ1, σ) and X2 ∼ DPIV (θ , γ2, σ). If γ1 > γ2, then X2 ≤st X1.
• Suppose X1 ∼ DPIV (θ1, γ , σ) and X2 ∼ DPIV (θ2, γ , σ). If θ2 > θ1, then X1 ≤st X2.

Proof Follows immediately from the c.d.f. of the DPIV (θ , γ , σ) distribution.
Next, we describe the expectation ordering in the next Corollary which follows from

Theorem 1.

Corollary 1 • Suppose X1 ∼ DPIV (θ , γ , σ1) and X2 ∼ DPIV (θ , γ , σ2). If σ1 < σ2,
then X1 ≤E X2.
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• Suppose X1 ∼ DPIV (θ , γ1, σ) and X2 ∼ DPIV (θ , γ2, σ). If γ1 > γ2, then X2 ≤E X1.
• Suppose X1 ∼ DPIV (θ1, γ , σ) and X2 ∼ DPIV (θ2, γ , σ). If θ2 > θ1, then X1 ≤E X2.

Notice that for the DPIV (θ , γ , σ) distribution
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= θ
2 log
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2 log
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1
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(
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) 1
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)
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log

(
1+( x−1

σ
)
1
γ

)
+log

(
1+( x+1

σ

) 1
γ

)

+ θ
log

(
1+( x−1

σ
)
1
γ

)
+log

(
1+( x+1

σ

) 1
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)

. (6)

For θ > 0, σ > 0, γ > 0, the distribution is infinitely divisible since the expression in
Eq. (6) can be negative and g(0) �= 0, g(1) �= 0, see Warde and Katti (1971) for details.
Then, in this case the distribution has its mode at zero. Furthermore, the infinitely divis-
ible distribution plays an important role in many areas of statistics, for example, in
stochastic processes and in actuarial statistics. When a distribution G is infinitely divis-
ible, then for any integer y ≥ 2, there exists a distribution Gy such that G is the y-fold
convolution of G, namely, G = G∗x

x . Also, when a distribution is infinitely divisible an
upper bound for the variance can be obtained when θ > 0, σ > 0, γ > 0 (see Johnson
and Kotz (1982), page 75), which is given by

Var(X) ≤ g(1)
g(0)

.

The following results hold for the p.m.f. of the DPIV distribution in Eq. (1) which are
listed as follows:

• For all k = 0, 1, · · · , and for anym ≥ 1,
(
k + m
m

)
g(x + m)g(0) ≥ g(k)g(m),

for further details, see Steutel and Van Harn (2004), page 51, Proposition 8.4.
• For all x = 0, 1, · · · , g(x) ≤ exp(−1). See Steutel and Van Harn (2004), page 56,

Proposition 9.2.
• The distribution is strictly log-concave and strongly unimodal, see theorem 3 in

Keilson and Gerber (1971).
• The cumulants of an infinitely divisible distribution on the set of non- negative

integers (as far as they exist) are non-negative, see Steutel and Van Harn (2004), page
47, Corollary 7.2. This will imply that the skewness of the new distribution is positive,
since the third cumulant equals the third central moment.

Increasing and decreasing failure rate

The purpose of this section is to find a relationship between the parameters of this model
in order to study the failure rates. From the beginning of this section, we have that the

failure rate, r(x) is given by : r(x) = P(x)
S(x) = 1 − θφ(x);φ(x) = log

(
1+( 1+x

σ

) 1
γ

1+( x
σ )

1
γ

)
. Next,

on setting r(1) = r(2), we get σ =
⎡
⎣

(
4−21+

1
γ

)

2
2
γ −3

1
γ

⎤
⎦

−γ

. If γ is an integer, the failure rate

is indeterministic. Therefore, this parametric relationship yields information about the
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failure rate if γ < 2. Note that from (4), r(x) is decreasing if θφ(x) is increasing. Since
0 ≤ θ ≤ 1, θφ(x) will be increasing if φ(x) is increasing. Furthermore, we observe the
following:

• If 1
γ

< 1, then φ(x) is increasing, and with θ increasing (equivalently α decreasing),
r(x) is decreasing. This proves the fact that it has a DFR in such a scenario.

• If 1
γ

> 1, then φ(x) is decreasing, and with θ decreasing (equivalently α increasing),
r(x) is increasing. This proves the fact that it has a IFR in such a scenario.

According to (Kemp 2004), page 3074 one can say the following relationships for
discrete distributions which are applicable to the DPIV distribution Eq. (3) given below.
IFR/DFR =⇒ IFRA/DFRA =⇒ NBU/NWU =⇒ NBUE/NWUE =⇒ DMRL/IMRL.

Moments and generating functions

The rth moment of a random variable X with the p.m.f. in Eq. (1) will be for any r ∈ Z
+:

E
(
Xr) =

∞∑
x=0

xrp(x)

=
∞∑
x=1

(
xr − (x − 1)r

)
S(x)

≤ r
∞∑
x=1

xr−1θ
log

(
1+( x+1

σ

) 1
γ

)

≤ r
∞∑
x=1

xr−1
( x

σ

)−α
γ , using θ = exp(−α)

≤ r
∞∑
x=1

σ
α
γ

(
1

x1−r+ α
γ

)

= rσ
α
γ

∞∑
x=1

(
1

x1−r+ α
γ

)
.

Then, E (Xr) will be convergent if α
γ

> r, i.e., exp(−γ × r) > θ , where θ = exp(−α).
Consequently, we can write the following theorem:

Theorem 2 E (Xr) exists if and only if exp(−γ × r) > θ .

Proof Immediately follows from the previous discussion.

Probability generating function and factorial moments

The relationship between the probabilities and the associated factorial moments (see
Johnson et al. (2005), page 59)

P (X = x) =
∑
r≥0

(−1)r
μ′
[x+r]
x! r!

,

which is due to (Frechet 1940; 1943). Again, one may write
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∑
i≥x

P (X = i) =
∑
j≥x

(−1)x+j
(
j − 1
x − 1

)
μ′
[j]

j!
,

which is due to (Laurent 1965).

Theorem 3 Characterization via minimization

Let X′
i s, i = 1, 2, 3, ... be non-negative independent and identically distributed (i.i.d.) inte-

ger valued random variables with X(1) = min1≤i≤n Xi. Then, X(1) ∼ DPIV (θn, σ , γ ) iff
Xi ∼ DPIV (θ , σ , γ ).

Proof Sufficiency part:

Let Xi ∼ DPIV (θ , σ , γ ). Then, S(X) = θ
log

(
1+( x+1

σ

) 1
γ

)

, x = 1, 2, 3, ... Consider ∀x(1) =
1, 2, ...:

S
(
X(1)

) = P
(
X(1) ≥ x(1)

)

= {
P(X(1) ≥ x(1))

}n

= θ
n log

{
1+ 1+x(1)

σ

}
.

Hence X(1) ∼ DPIV (θn, σ , γ ) .
Necessary part:

Let S
(
X(1)

) = θ
n log

{
1+ 1+x(1)

σ

}
; x1 = 1, ....

We know that

S(X) = P(X1 ≥ x)

= (
P

(
X(1) ≥ x

))n

= θ log
(
1 +

(
1 + x(1)

σ

) 1
γ

)
.

Hence the proof.

Theorem 4 Let X′
i s, i = 1, 2, 3, ... be non-negative independent integer valued ran-

dom variables with X(1) = min
1≤i≤n

Xi. Then, X(1) ∼ DPIV (δ, σ , γ ) if and only if Xi ∼
DPIV (θi, σ , γ ), where δ = ∏n

i=1 θi.

Proof It is similar to that of Theorem 3 and hence omitted.

Theorem 5 If Y ∼ DPIV (θ , σ , γ ) , then

P (Y > x)(
1 + ( 1+x

σ

) 1
γ

) → 1,

as x → ∞.

Proof Let x → ∞, and also let t = t(x) be the unique integer such that t(x) ≤ x ≤
t(x) + 1. As a consequence, we have S (t(x)) ≥ P (Y > x) ≥ S (t(x) + 1) . Therefore,
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⎡
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) 1
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)
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)

⎤
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α

≥ P (Y > x)[(
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σ

) 1
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)]−α
≥

⎡
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σ
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α

.

Next, note that since x
t(x) → 1, the sequence in the middle is bounded by two sequences

which converges to 1 as x → ∞. Hence, the proof.

Estimation
For a random sample of size n drawn from the p.m.f. in Eq. (3), the log-likelihood function
is given by

� =
n∑

i=1
log

⎡
⎢⎣θ

log
(
1+

(
xi
σ

) 1
γ

)

− θ
log

(
1+

(
xi+1

σ

) 1
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)⎤
⎥⎦ . (7)

The corresponding maximum likelihood equations are (by taking partial derivatives of
� w.r.t. θ , σ and γ respectively)
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(8)
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×
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∂�
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×
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) 1
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.

(10)

Themaximum likelihood estimates of θ , σ and γ can be obtained by setting Eqs. (8)-(10)
equal to zero and solving simultaneously using bivariate Newton-Raphson method. The
asymptotic variance-covariancematrix of theMLEs of parameters θ , σ and γ are obtained
by inverting the Fisher’s information matrix with elements which are negative expected
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values of second order derivatives of the log-likelihood function (�). Using the general
theory of MLEs, (see Appendix A) the asymptotic distribution of

(
θ̂ , σ̂ , γ̂

)
is a trivariate

normal with mean (θ , σ , γ ) and variance-covariance matrix is given by
⎡
⎢⎢⎢⎣

E
(
− ∂2�

∂θ2

)
E

(
− ∂2�

∂θ∂σ

)
E
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− ∂2�
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E
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)
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)
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)

E
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(
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)
E

(
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)

⎤
⎥⎥⎥⎦

−1

.

The exact expressions for various expectations above are cumbersome. However, in
practice we would estimate above matrix by the inverse of observed Fisher’s information
matrix using the following approximations

E
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∂θ2

)
≈ − ∂2�

∂θ2
|
θ=θ̂ ,σ=σ̂ ,γ=γ̂

E
(
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)
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∂σ 2 |
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E
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)
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E
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)
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|
θ=θ̂ ,σ=σ̂ ,γ=γ̂

E
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|
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|
θ=θ̂ ,σ=σ̂ ,γ=γ̂

.

(11)

The expressions are provided in Appendix B. For simulation study, we consider the
following choices of the parameters (for a random sample of sizes n = 50, 100, 200)
respectively. A thorough simulation study was performed by generating 2000 samples of
various sizes from DPIV (θ , γ , σ) .

• Choice 1: θ = 0.2, γ = 0.2, σ = 2.
• Choice 2: θ = 0.4, γ = 0.7, σ = 2.5.
• Choice 3: θ = 0.7, γ = 1.5, σ = 3.
• Choice 4: θ = 0.9, γ = 1, σ = 1.7.
• Choice 5: θ = 0.5, γ = 0.5, σ = 1.
• Choice 6: θ = 0.8, γ = 0.7, σ = 1.2.
• Choice 7: θ = 0.1, γ = 2, σ = 2.5.

The parameter estimates with their associated 95% confidence intervals are provided in
Tables 1, 2, 3, 4, 5, 6 and 7.
Comment on the simulation study: From Tables 1, 2, 3, 4, 5, 6 and 7, we observe

that the convergence of N-R method is slightly strong for smaller values of θ , γ , and σ

as θ , γ , and σ are close to the corresponding actual values in expectation. The associated

Table 1 Maximum likelihood estimates of the parameters (Choice 1)

n θ̂ γ̂ σ̂

50 0.158 (0.1014, 1.2823) 0.146 (0.1027, 0.8933) 1.894 (1.3722, 3.2426)

100 0.179 (0.1321, 1.0874) 0.168 (0.145, 0.7826) 1.932 (0.7865, 3.0105)

200 0.192 (0.1526, 0.9586) 0.182 (0.1628 , 0.4532) 1.943 (0.1235, 2.2703)
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Table 2 Maximum likelihood estimates of the parameters (Choice 2)

n θ̂ γ̂ σ̂

50 0.285 (0.178, 1.6263) 0.5834 (0.2366, 1.5376) 1.958 (1.2315, 3.2428)

100 0.347 (0.2239, 1.0873) 0.632 (0.3285, 1.1745) 2.223(1.7856, 3.0127)

200 0.381 (0.2783, 0.9734) 0.671 (0.4029, 0.9822) 2.430 (1.9852, 2.9733)

Table 3 Maximum likelihood estimates of the parameters (Choice 3)

n θ̂ γ̂ σ̂

50 0.622 (0.3041, 1.2895) 1.3768 (0.2563, 2.7617) 2.689 (1.2542, 3.5624)

100 0.638 (0.4134, 1.0872) 1.4261 (0.7286, 2.0157) 2.734 (1.5804, 3.2381)

200 0.657 (0.5029, 0.9326) 1.4792 (0.8252, 1.7556) 2.8631 (1.6953, 3.0317)

Table 4 Maximum likelihood estimates of the parameters (Choice 4)

n θ̂ γ̂ σ̂

50 0.802 (0.3089, 1.3702) 0.0793 (0.0215, 0.9851) 1.527 (0.9821, 2.2362)

100 0.837 (0.4219, 1.1857) 0.089 (0.0426, 0.6329) 1.594 (1.1026, 2.0139)

200 0.876 (0.5392, 1.0722) 0.0927 (0.0658, 0.5843) 1.6488 (1.2301, 1.9842)

Table 5Maximum likelihood estimates of the parameters (Choice 5)

n θ̂ γ̂ σ̂

50 0.396 (0.1172, 0.8324) 0.412 (0.1236, 0.8907) 0.864 (0.3215, 1.3849)

100 0.432 (0.2396, 0.7842) 0.428 (0.2169, 0.8136) 0.893 (0.4107, 1.3262)

200 0.465 (0.3176, 0.7021) 0.448 (0.2895, 0.6536) 0.923 (0.4868, 1.1709)

Table 6 Maximum likelihood estimates of the parameters (Choice 6)

n θ̂ γ̂ σ̂

50 0.721 (0.3162, 1.1859) 0.613 (0.2814, 1.3753) 0.985 (0.7832, 2.2465)

100 0.745 (0.4431, 1.2807) 0.627 (0.3413, 1.2527) 1.013 (0.8556, 2.0167)

200 0.763 (0.5192, 0.8623) 0.663 (0.4836, 0.9162) 1.032 (0.9387, 1.8946)

Table 7 Maximum likelihood estimates of the parameters (Choice 7)

n θ̂ γ̂ σ̂

50 0.0289 (0.0036, 0.2968) 1.428 (1.1023, 3.0681) 2.136 (1.3418, 3.3969)

100 0.043 (0.0096, 0.2215) 1.573 (1.1859, 2.8766) 2.268 (1.4322, 3.1851)

200 0.068 (0.0172, 0.1817) 1.874 (1.2368, 2.4579) 2.418 (1.5732, 3.0156)
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confidence intervals (in the parenthesis) cover the actual values of θ , γ , and σ quite sat-
isfactorily. From the estimated value of θ , i.e., θ̂ one can obtain an estimate of α by using
invariance property of the MLE. Also, notice that there exists an appreciable amount of
error when the sample size is very small (values of the estimates for n = 50 in Tables
1, 2, 3, 4, 5, 6 and 7. Since, α appears in powers of Xi’s (from the original model, before
reparametrization) it is expected to have more fluctuations in N-R method, resulting in
weak convergence of the method which results in an unstable estimated values in some
sense. Furthermore, as mentioned in the “Introduction” section, for a choice of α ≤ 2
(equivalently θ = exp(−α) ≤ 0.1353, the estimated value of θ is not good. A full scale
simulation study with all possible such combination of values of each of the parameters of
DPIV distribution under the Bayesian paradigm is required which will be a subject matter
of a separate article. One may consider the method of moments estimation to examine if
such an anomaly can be removed or at least, in principle be reduced to a desired accuracy
level.

Application
Data set 1

In this section we re-analyze the data which is used by Krishna and Pundir (2009). The
data set comprises the recordings of (Phyo 1973) of the total number of carious teeth
among the four deciduous molars in a sample of 100 children 10 and 11 years old. Sym-
metry between right and left molars is presumed and only the right molars are considered
with a time unit of two years. The data are given in Table 8. The p-values of χ2-statistic are
0.000024, 0.2614, 0.5438, 0.4169, 0.1339 and 0.6238 for Poisson, geometric, DBD, DPareto,
GBPareto(discrete) and DPIV distributions, respectively. This reveals that Poisson and
Geometric distributions are not good fit at all, whereas GBPareto (discrete), DBD and
DPareto are good fit with DPIV being the best one.
We compute the expected frequencies (Ei) for fitting Poisson, Geometric, DBD,

DPareto, GBPareto, DPIV distributions and pool the frequencies for 3 or more in order
to apply χ2-test for goodness of fit. For the calculation of expected frequencies we use
ML estimates in each case. The estimated value of the parameter is given in parenthesis
in column one of Table 9.

Data set 2

A second application of the distributions is for modeling discrete data in which the fre-
quencies at successive values increase. In general, most real discrete data are unimodal,
multimodal or with decreasing frequencies. However, for this data set a reverse pattern
can be observed. As an illustration, we consider data on duckweed fronds for plants grow-
ing in pure water observed weekly (for details, see Hand et al. (1993)) presented in Table
10. We fit this data to DPIV(θ , γ , σ) (equivalently, DPIV), Poisson, Geometric, and
to the generalized Poisson distribution (GPD) with p.m.f. (see, for details, Consul

(1989)) given by

Table 8 Data set on total number of carious teeth among the four deciduous molars

Total number of carious teeth (x) 0 1 2 3 4 Total

Frequency 64 17 10 6 3 100



Ghosh Journal of Statistical Distributions and Applications             (2020) 7:3 Page 12 of 17

Table 9 Table for goodness of fit

Total number of carious teeth (x) 0 1 2 ≥ 3 Total p-value

Observed Frequency (Oi) 64 17 10 9 100

Poisson(0.67)

Ei 51.2 34.3 11.5 3 100
(Oi−Ei)2

Ei
3.2 8.7 0.2 12 24.1 0.000024

Geometric(0.5988)

Ei 59.9 24 9.6 6.5 100
(Oi−Ei)2

Ei
0.28 2.74 0.02 0.96 4.0 0.2614

DBD (1.292,0.2108)

Ei 66 19.4 6.7 7.9 100
(Oi−Ei)2

Ei
0.05 0.3 1.61 0.15 2.14 0.5438

DPareto (0.1935)

Ei 68 15.6 6.2 10.2 100
(Oi−Ei)2

Ei
0.24 0.13 2.33 0.14 2.84 0.4169

GBPareto (1.2742, 1.5783, 2.0132 )

Ei 61 18 6 15 100
(Oi−Ei)2

Ei
0.1525 0.0609 0.9756 4.3902 5.5793 0.1339

DPIV(0.735, 1.282, 0.679)

Ei 59 16.4 16.4 8.2 100
(Oi−Ei)2

Ei
0.4237 0.0219 2.4975 0.0780 3.02129 0.3884

Table 10 The number of duckweed fronds for plants growing in pure water observed weekly

x-value (Week) Observed GPD (E) DPIV(E) Poisson(E) Geometric(E)

0 20 30.27 18.20 2.95 317.56

1 30 35.73 32.12 19.81 276.45

2 52 56.47 51.24 66.62 240.66

3 77 73.48 87.62 149.34 209.51

4 135 130.49 138.67 251.04 182.38

5 211 198.56 197.15 337.62 158.77

Table 11 The estimated parameters and goodness of fit for the duckweed fronds for plants growing
data

Model Parameters χ2 χ2 p-value

DPIV θ̂ = 0.6539 2.6865 0.611579

γ̂ = 1.1822

σ̂ = 2.0175

GPD λ̂ = 1.2847 5.86103 0.2097

θ̂ = 2.8652

Poisson λ̂ = 6.7242 9.9348 < 0.00001

Geometric p̂ = 0.12946 52.54 < 0.00001
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Table 12 The number of outbreaks of strike in the coal-mining industry in UK

x-value (Week) Observed GPD(E) DPIV(E) Poisson(E) Geometric(E)

0 46 50.01 44.22 57.74 78.25

1 76 65.77 79.12 57.38 38.99

2 24 32.23 22.10 28.51 19.44

3 9 7.23 8.24 9.44 9.68

≥ 4 1 0.76 2.32 2.34 4.83

P(θ , λ) =
{

θ(θ + λx)x−1e−(θ+λx)/x! x = 0, 1, 2, . . .
0 for x > m if λ < 0,

where θ > 0, max(−1,−θ/m) ≤ λ ≤ 1 and m(≥ 4) is the largest positive integer for
which θ + mλ ≥ 0 when λ < 0.
From the above table (Table 11) it appears that clearly, the DPIV distribution provides

the best fit.

Data set 3

In this Section, the discrete gamma-Lomax distribution is applied to a data set that is
taken from (Consul 1989). The data set represents the observed frequencies of the num-
ber of outbreaks of strike in the coal-mining industry in the U.K. during 1948−1959. The
data are depicted in Table 12 along with the expected frequencies corresponding to DPIV,
Poisson, Geometric, and the Generalized Poisson distribution utilized by Consul (1989)
as given in earlier “Data set 2” section. Consul (1989) applied the Generalized Poisson
distribution (GPD) to this data set to examine the efficacy of the GPD model.
From the above table (Table 13) it appears that clearly, the DPIV distribution provides

the best fit.

Concluding remarks
In this paper, we have proposed a new discrete analogue of the continuous Pareto (IV)
distribution (DPIV distribution in short with three parameters) and derived some of
its interesting distributional properties. The DPIV distribution offers good flexibilities
in terms of shapes for the probability mass functions and hazard rate functions. The
“Application” shows that the DPIV can be useful in fitting data which are positively
skewed as well as to other data sets with slightly different shapes.The estimation of
the model parameters are discussed in the classical set up under the method of maxi-
mum likelihood. From the “Application” sections, it appears that the DPIV distribution
provides a better alternative to the existing discrete Pareto probability models.

Table 13 The estimated parameters and goodness of fit for the outbreaks of strike in the
coal-mining industry in UK data

Model Parameters χ2 χ2 p-value

DPIV θ̂ = 0.7892 1.179 0.7580

γ̂ = 1.4623

σ̂ = 2.3245

GPD λ̂ = −0.1450 4.5234 0.0334

θ̂ = 1.1377

Poisson λ̂ = 0.9935 9.9348 0.0191

Geometric p̂ = 0.5016 52.54 < 0.00001
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Appendix
Appendix A

In this section we provide some justification on the consistency of the maximum
likelihood estimators which are given as follows: Consistency of MLEs: Under cer-
tain regularity conditions, Lehman and Casella (1998) in Theorem 3.10 page 449 has
proved that MLE δ̂ is a consistent estimator of the parameter δ. Several conditions
can be checked accordingly in our case. First condition states that the parameter
space � = (θ ∈ (0, 1), σ ∈ (0,∞), γ ∈ (0,∞)) is a subset on the real line. The
support of the random variable X is independent of the parameters. Next, the sec-
ond condition E

(
∂ log f

∂δ

)
= 0 can be verified easily. The third condition that the

Fisher’s information I(δ) = E
(
− ∂2 log f

∂δ2

)
is positive definite which can be verified

easily. The final condition to verify is that
∣∣∣ ∂3 log f

∂δ3

∣∣∣ ≤ M(x) with E (M(X)) < ∞.

In this case, we consider M(x) =
[

1
f (x;δ)

(
1+ δ

σ

)k × ∂3 log f
∂δ3

]2

. For a carefully selected

large k, we verified numerically (on using Mathematica software) that for all � =
(θ ∈ (0, 1), σ ∈ (0,∞), γ ∈ (0,∞)) and x = 1, 2, · · ·

∣∣∣ ∂3 log f
∂δ3

∣∣∣ ≤ M(x). Furthermore,

observe that E (M(X)) =
[(
1 + δ

σ

)k]−1
Var

(
∂3 log f

∂δ3

)
, because

∑
x∈N∗

∂3 log f
∂δ3

= 0. Then,

Var
(

∂3 log f
∂δ3

)
is finite whenever E(X) and Var(X) are finite. Therefore, all the regularity

conditions are satisfied, one may say the MLE of δ given by δ̂ is a consistent estimator of δ
and in our case δ̂ ∼ N3

(
δ, [I(δ)]−1) .

Appendix B

In this section, we provide the elements of the observed Fisher Information matrix which
are as follows:
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in expectation; IMRL (DMRL): Increasing (decreasing) mean residual lifetime; s.f.: survival function; p.m.f.: probability mass
function; h.r.f.: hazard rate function
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