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Abstract
Today, data mining and gene expressions are at the forefront of modern data analysis.
Here we introduce a novel probability distribution that is applicable in these fields. This
paper develops the proposed spherical-Dirichlet distribution designed to fit vectors
located at the positive orthant of the hypersphere, as it is often the case for data in
these fields, avoiding unnecessary probability mass. Basic properties of the proposed
distribution, including normalizing constants and moments are developed.
Relationships with other distributions are also explored. Estimators based on classical
inferential statistics, such as method of moments and maximum likelihood estimators
are obtained. Two applications are developed: the first one uses simulated data, and
the second uses a real text mining example. Both examples are fitted using the
proposed spherical-Dirichlet distribution and their results are discussed.

Keywords: Dirichlet distribution, Text mining, Hypersphere, Gene expressions, Positive
orthant

Introduction
In text mining and gene expressions analysis, the collections of texts are represented
in a vector-space model, which implies that texts once standardized, are coded as vec-
tors in a sphere of higher dimensions, also called a hypersphere (Suvrit 2016). Many
researchers currently model these distributions by means of existing probability density
mixtures, however, these approximations waste probability mass in the whole hyper-
sphere, when it is actually only needed at the positive orthant of the hypersphere. This is
mainly because of the non-existence of suitable distributions for that subspace. The new
proposed distribution fills that void, allowing for an efficient modeling of these vectors.

Basic properties
In this section we introduce the proposed spherical-Dirichlet distribution, its moments
and basic properties.

Probability density function and normalizing constant

The spherical-Dirichlet distribution is obtained by transforming the Dirichlet distribution
on the simplex to the corresponding space on the hypersphere. In this section we derive
the density and we compute the normalizing constants. Let y have a Dirichlet distribution
on the simplex as described by Ingram (Olkin and Rubin 1964).
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fDir(y;α) = �(α0)
∏m

i=1 �(αi)

m∏

i=1
yiαi−1 (1)

= �(α0)
∏m

i=1 �(αi)

m−1∏

i=1
yiαi−1

(

1 −
m−1∑

i=1
yi

)(αm−1)

where

αi ∈ �+, α0 =:
m∑

i=1
αi, 0 � yi � 1,

m∑

i=1
yi = 1,

Transforming the Dirichlet distribution from the simplex to the positive orthant of the
hypersphere (Fig. 1)
taking the square root transformation

xi = √yi, yi = xi2,
∂yi
∂xi

= 2xi, for i = 1, ....(m − 1), xm = √ym. (2)

Fig. 1 Transform from the simplex to the positive orthant of the hypersphere. Positive orthant of the
hypersphere
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Computing the Jacobian for all independent variables, it follows that

J =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂y1
∂x1 = 2x1 ∂y1

∂x2 = 0 0 . . .
∂y2
∂x1 = 0 ∂y2

∂x2 = 2x2 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . .

∂ym−1
∂xm−1

= 2xm−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
m−1∏

i=1
2xi = 2m−1

m−1∏

i=1
xi

the proposed transformation from (1) results in

fSDir(x;α) = 2m−1�(α0)
∏m

i=1 �(αi)

m−1∏

i=1
xi2αi−1 · x2αm−2

m

= 2m−1�(α0)
∏m

i=1 �(αi)

m∏

i=1
xi2αi−1 · x−1

m

= 2m−1�(α0)
∏m

i=1 �(αi)

m−1∏

i=1
xi2αi−1

(

1 −
m−1∑

i=1
x2i

)(αm−1)

(3)

where

α0 =:
m∑

i=1
αi, αi ∈ �+, 0 � xi � 1,

m∑

i=1
x2i = 1.

We refer to (3) as the spherical-Dirichlet distribution (SDD) and write x ∼ SDD(αi).
We introduce the parameters αi as the concentration parameters in a similar manner to
the corresponding parameters of the Dirichlet distribution.

Moments

In this section we compute the first and second order moments, mode, standard devi-
ation, variances and covariances and its corresponding covariance matrix. First, we
compute the expected value for one of the variables, for example let us consider the
expected value of x1

E(x1) =
∫

. . .

∫ 2m−1�(α0)
∏m

i=1 �(αi)
x1

( m∏

i=1
xi2αi−1

)

· x−1
m dx1 . . . dxm (4)

=
∫

. . .

∫ 2m−1�(α0)
∏m

i=1 �(αi)
x12(α1+

1
2 )−1

( m∏

i=2
xi2αi−1

)

· x−1
m dx1 . . . dxm, (5)

where we recognize the expression inside the integral as the kernel of the proposed SDD
with a new first parameter α1 + 1

2 , then we can rewrite immediately this expression as

E(x1) = 2m−1�(α0)
∏m

i=1 �(αi)

�
(
α1 + 1

2
) ∏m

i=2 �(αi)

2m−1�
(
α0 + 1

2
)

= �(α0)

�(α0 + 1
2 )

�
(
α1 + 1

2
)

�(α1)
, (6)

we define μi as,
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μi =:
�

(
αi + 1

2
)

�(αi)
, (7)

the expected value from (6) can be rewritten as,

E(xi) = μi
μ0

. (8)

The general solution for the first moment of a vector x = {x1, ....xm}T with a vector of
parameters α = {α1, .....αm}T can be written as

E(x) = �(α0)

�(α0 + 1
2 )

(
�

(
α1 + 1

2
)

�(α1)
, . . . ,

�
(
αm−1 + 1

2
)

�(αm−1)

)

= 1
μ0

�
(
α + 1

2
)

�(α)
, (9)

let

μ =:
�

(
α + 1

2
)

�(α)
, C =:

||μ||
μ0

, μ̄ =:
μ

||μ|| , μ̄ ∈ �m−1, (10)

then, the expected value for a vector x can also be written as

E(x) = μ

μ0
= ||μ||

μ0
· μ

||μ|| = C · μ̄. (11)

Similarly, we compute the expected value for x21 as

E(x21) =
∫

. . .

∫ 2m−1�(α0)
∏m

i=1 �(αi)
x21

( m∏

i=1
xi2αi−1

)

· x−1
m dx1 . . . dxm (12)

= 2m−1�(α0)
∏m

i=1 �(αi)

∫

. . .

∫

x2(α1+1)−1
1

( m∏

i=2
xi2αi−1

)

· x−1
m dx1 . . . dxm, (13)

again, we can recognize the expression inside the integral as the kernel of the proposed
SDD with a new first parameter α1 + 1, that yields

E(x21) = 2m−1�(α0)
∏m

i=1 �(αi)

�(α1 + 1)
∏m−1

i=2 �(αi)

2m−1�(α0 + 1)

= �(α0)

�(α0 + 1)
�(α1 + 1)

�(α1)
= α1

α0
, (14)

this result can be generalized to

E(x2i ) = αi
α0

. (15)

Moreover, the variance for any variable xi is

V (xi) = αi
α0

− μ2
i

μ2
0
, (16)

and the covariance for x1, x2 can be written as

E(x1·x2) =
∫

. . .

∫ 2m−1�(α0)
∏m

i=1 �(αi)
x1 · x2

( m∏

i=1
xi2αi−1

)

· x−1
m dx1 . . . dxm, (17)
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after some arrangements, we can identify the kernel of the proposed SDD with the first
two parameters as α1 + 1

2 , and α2 + 1
2 , where we can solve the corresponding integral, and

our result takes the form

E(x1·x2) = �
(
α1 + 1

2
)
�

(
α2 + 1

2
)

α0�(α1)�(α2)
= μ1 · μ2

α0
. (18)

In general, for any pair of variables (xi, xj) we can write

E(xi·xj) = δij · αi
α0

+ (1 − δij) · μi · μj

α0
, (19)

where δij is the delta Kronecker, and we can also write the covariance for any pair of
variables (xi, xj) as

COV (xi, xj) =
(

1
α0

− 1
μ2
0

)

μi · μj for i �= j. (20)

We can also write the covariance for any pair of variables (xi, xj) as

COV (xi, xj) = δij ·
(

αi=j

α0
− μ2

i
μ2
0

)

+ (1 − δij) ·
(

1
α0

− 1
μ2
0

)

μi · μj, (21)

that in matrix notation can also be written as

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1
α0

− μ2
1

μ2
0

(
1
α0

− 1
μ2
0

)
μ1 · μ2 . . . . . .

(
1
α0

− 1
μ2
0

)
μ2 · μ1

α2
α0

− μ2
2

μ2
0

. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . αm

α0
− μ2

m
μ2
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

an equivalent expression is

� = 1
α0

⎡

⎢
⎢
⎢
⎣

α1 − μ2
1 0 . . . . . .

0 α2 − μ2
2 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . αm − μ2

m

⎤

⎥
⎥
⎥
⎦

−
(

1
μ2
0

− 1
α0

)

μμT ,

similarly we let

� = 1
α0

diag(α) − C2μ2
0

α0
diag(μ̄μ̄T ) − C2

(

1 − μ2
0

α0

)

μ̄μ̄T , (22)

where

C = ||μ||
μ0

, μ̄ = μ

||μ|| , μ̄ ∈ �m−1, (23)

that summarizes our results in a succinct form.

Mode and relationship with the mean

The mode for the SDD can be determined by finding the values of αi that maximize this
function, alternatively, we can also maximize the log of this function as it is customary
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and usually an easier procedure. First, taking the natural log of the SDD and adding the
constraint

∑m
i=1 x2i = 1 for the purpose of using Lagrange multipliers we get

lnfSDir(x,α) = ln
(
2m−1�(α0)
∏m

i=1 �(αi)

)

+
m∑

i=1
(2αi − 1) ln xi

− ln xm − λ

( m∑

i=1
x2i − 1

)

, (24)

taking derivatives with respect to xi and setting them to zero we have

∂ lnfSDir
∂xi

= (2αi − 1)
1
xi

− 2xiλ = 0 for i < m, (25)

solving for x2i , it yields

x2i = 2αi − 1
2λ

fori < m, (26)

similarly, taking derivatives with respect to xm

∂ lnfSDir
∂xm

= (2αm − 1)
1
xm

− 1
xm

− 2xmλ = 0 for i = m, (27)

and solving for xm, we have

x2m = αm − 1
λ

for i = m, (28)

substituting these results at the constraint, we can solve for λ as

λ = 1
2
(2α0 − m − 1), (29)

where we can obtain the mode for xi as

(mode)xi =
√

2αi − 1
2α0 − m − 1

for i < m, (30)

and for xm

(mode)xm =
√

2(αm − 1)
2α0 − m − 1

for i = m. (31)

Considering the special case of a symmetric SDD, we set up αi = α for i < m, and
αm = α + 1

2 , both (30) and (31) yield

(mode)xi =
√

2α − 1
m · (2α − 1)

= 1√
m

for α �= 1
2
for i ≤ m, (32)

the mean for a symmetric SDD for αi = α for i < m, and αm = α + 1
2 , yields

E(xi) = μi
μ0

= �
(
α + 1

2
)

�(α)
· �(α0)

�
(
α0 + 1

2
) = �

(
α + 1

2
)

�(α)
· �

(
mα + 1

2
)

�(mα + 1)
, (33)
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where we can see that the mode does not match the expected value for a symmetric SDD,
however, we can still find an asymptotic relationship using the expression developed by
Frame (Frame 1949),

lim
x→∞ f (x) = �(x + a)

�(x)
= xa, (34)

using this approximation it yields

lim
α→∞E(xi) =

(
α

1
2
)

· 1
(mα)

1
2

= 1√
m
, (35)

where

αi = α for i < m, αm = α + 1
2
, and α �= 1

2
,

that in the limit matches the mode at (32).

Relationships of the SDDwith other distributions
In this section we explore the relationships, or lack thereof, between the SDD and other
popular distributions such as the uniform, von Mises and its particular case of the Fisher
Bingham distribution.We consider limiting cases for different values of the concentration
parameters αi.

Limiting case symmetric distribution for large α

Assuming a symmetric SDD with αi = α, for ∀αi we can write

fSDir(x;α) = 2m−1�(mα)

�(α)m

m∏

i=1
xi2α−1 · x−1

m , (36)

subject to the restrictions

0 � xi � 1,
m∑

i=1
x2i = 1, α ∈ �+,

in this case the covariance matrix can be reduced to

� = 1
m

(

1 − μ2
α

α

)

I −
(

μα

μ0

)2
(

1 − μ2
0

mα

)

11T , (37)

where

μα = �
(
α + 1

2
)

�(α)
, μ0 = �

(
α0 + 1

2
)

�(α0)
,

in an attempt to write the SDD as a rotational distribution of the type shown by Mardia
(Mardia and Jupp 2000), the latter expression can be rewritten as

� =
(

1 − μ2
α

α

) (
1
m
I − μ̄μ̄T

)

+
(

1 − m
μ2

α

μ2
0

)

μ̄μ̄T , (38)

or equivalently
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� = var(x)mμ̄μ̄T +
⎛

⎝
1 − μ2

α

α

m

⎞

⎠
(
I − mμ̄μ̄T

)
, (39)

we can’t determine an equivalence to the von Mises or similar rotationally symmetric
distributions, however, using the expression developed by Frame (Frame 1949), we can
see that in the limiting case for α → ∞ and consequently α0 → ∞ we have

lim
α→∞ μα = lim

α→∞
�

(
α + 1

2
)

�(α)
= α

1
2 ,

and

lim
α→∞ μ0 = lim

α→∞
�

(
mα + 1

2
)

�(mα)
= (mα)

1
2 ,

which in the limit it yields

lim
α→∞ � = lim

α→∞

(

1 − μ2
α

α

) (
1
m
I − μ̄μ̄T

)

+
(

1 − m
μ2

α

μ2
0

)

μ̄μ̄T = 0,

we conclude that for large values of α the covariance matrix tends to zero, consequently,
the SDD tends to be concentrated as a vector with no variation.

Limiting case uniform distribution

We now consider the case where αi = 1
2 , for i < m and αm = 1, the SDD takes the form

fSDir(x;α) = 2m−1�
(m−1

2 + 1
)

∏m−1
i=1 �

( 1
2
)
�(1)

m−1∏

i=1
xi2

1
2−1 · x2(1)−2

m = 2m−1�
(m+1

2
)

π
(m−1

2
) , (40)

which is a constant thickness independent of the values of xi, then the SDD becomes the
uniform distribution over the positive orthant of the hypersphere.

Similarities and differences of the SDDwith the vonMises and Fisher-Binghamdistributions

The von Mises distribution is usually considered the analogue of the normal distribution
in the circle as described by Mardia in (Mardia 1975). The von Mises distribution and its
particular case for the three dimensional sphere, the Fisher-Bingham distribution, both
tend to converge to a multivariate and bivariate normal distribution respectively for large
values of κ as shown by Kent (Kent 1982).
The proposed SDD doesn’t seem to converge to the von Mises distribution or to a mul-

tivariate normal distribution for large values of αi, but rather it tends to be concentrated
as a vector as it was established at the end of the corresponding section for the limiting
cases for the SDD.
Moreover, both the von Mises and the Fisher-Bingham distribution converge to the

uniform distribution for very small values of κ , in a similar way as the SDD becomes the
uniform distribution for the values of the parameters described at the end of the previous
subsection.
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Inference for the spherical-Dirichlet distribution
Wenow consider estimation of the parameters of the SDD.Ourmain interest is to develop
suitable procedures to estimate the set of parameters αi, given a sample of random vectors
located at the positive orthant of the hypersphere. We first derive estimators for αi using
the method of moments (MOM), and next we develop estimators for the same set of
parameters using the method of maximum likelihood estimation (MLE).

Method of moments (MOM)

Using a similar procedure as the one developed by Narayanan (Narayanan 1992) to esti-
mate the parameters of the Dirichlet distribution, suppose we have a random sample with
n random vectors X1,X2, ....Xn such that Xi ∈ �m =

[
Xj|j = 1...,m;Xj > 0,

∑m
j=1 x2j = 1

]

that are i.i.d., then

E(xi) = �
(
αi + 1

2
)

�(αi)
· �(α0)

�
(
α0 + 1

2
) = μi

μ0
for∀i, (41)

and

E
(
x2i

) = αi
α0

for ∀i. (42)

We define the sample moments as

X
′
1j = 1

n

n∑

i=1
xij j = 1, ..,m, (43)

and

X
′
2j = 1

n

n∑

i=1
x2ij j = 1, ..,m. (44)

We have m-1 first order moment equations and m-1 second order moment equations
to solve for m unknowns αi. To avoid linear dependency and for the sake of simplic-
ity we choose one of the first order moments, and m-1 of the second order moment
equations

�
(
α1 + 1

2
)

�(α1)
· �(α0)

�
(
α0 + 1

2
) = 1

n

n∑

i=1
xi1 = X

′
11, (45)

then, the remainingm-1 second order moment equations are

αi
α0

= 1
n

n∑

i=1
x2ij = X

′
2j j = 2, ..., (m − 1). (46)

There is no closed form solution for αi in solving simultaneously (45) and (46), so we
must solve numerically to obtain the corresponding method of moments estimators for
αi. Results fromMOM can be used as initial values for theMLE that usually exhibit better
statistical properties.
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Maximum likelihood estimation (MLE)

Suppose that we have a random sample of vectors on the positive orthant of the hyper-
sphere, X1,X2, ....Xn, where Xi ∈ �m from an SDD with pdf defined at (3). Then, the
log-likelihood is

ln L(α) = ln
n∏

i=1

2m−1�
(∑m

j=1 αj
)

∏m
j=1 �(αj)

m∏

j=1
xij2αj−1 · x−1

im . (47)

The parameters for an SDD can be estimated bymaximizing the log-likelihood function
of the data, in a similar procedure as the one used by Minka for the Dirichlet distribution
described at (Minka 2000). We can group all the constant terms as K, and we can rewrite
all the products and sums as

ln L(α) = K + n ln�

⎛

⎝
m∑

j=1
αj

⎞

⎠ − n
m∑

j=1
ln�(αj) +

n∑

i=1

m∑

j=1
(2αj − 1) ln xij −

n∑

i=1
ln xim,

= K + n

⎛

⎝ln�

⎛

⎝
m∑

j=1
αj

⎞

⎠−
m∑

j=1
ln�(αj)+

m∑

j=1
(2αj−1)

1
n

n∑

i=1
ln xij − 1

n

n∑

i=1
ln xim

⎞

⎠ ,

where the function that needs to be optimized after removing unnecessary constants is

F(α) = ln�

⎛

⎝
m∑

j=1
αj

⎞

⎠ −
m∑

j=1
ln�(αj) +

m∑

j=1
(2αj − 1)

(
1
n

n∑

i=1
ln xij

)

− 1
n

n∑

i=1
ln xim.

The gradient of the objective function can be obtained by differentiating the log-
likelihood ln F(α) with respect to αk as

∇(F)k = ∂F
∂αk

= 


⎛

⎝
m∑

j=1
αj

⎞

⎠ − 
(αk) + 2
(
1
n

n∑

i=1
ln xik

)

, (48)

where 
 =: d ln�(x)
dx is the digamma function. The optimization is subject to the con-

straints αi � 0. The SDD is amember of the exponential family and therefore it is a convex
function, and the observed sufficient statistic is equal to the expected sufficient statistic,
where the latter is

E (xk) = 1
2

(αk) − 1

2



⎛

⎝
m∑

j=1
αj

⎞

⎠ , (49)

and the observed sufficient statistic is

1
n

n∑

i=1
ln xij, (50)

that leads to the following iterative procedure


(αnew
k ) = 


⎛

⎝
m∑

j=1
αold
j

⎞

⎠ + 2
(
1
n

n∑

i=1
ln xik

)

. (51)
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Although the proposed procedure does not guarantee in general reaching a global maxi-
mum, updating successively (51) provides reasonable results, and convergence is typically
fast.

Applications to data
Let’s now consider estimation of the parameters of the SDD.We first developed an exam-
ple using simulated data generated from the proposed SDD with parameters we assumed
to be unknown for the purpose of this estimation. Next, a second example was developed
using a text mining example, with data obtained from a publicly available data set. Both
examples were solved usingMOM andMLE, applying the proposed techniques described
at the corresponding sections for the method of moments and maximum likelihood
estimation, and results obtained from both methods were compared.

Simulation example

Four different simulations were performed each with 1,000 randomly generated values
from an SDD in a three-dimensional hypersphere, with known values of the parameters
α1,α2 and α3. Plots for the corresponding values of these parameters are shown at Figs. 2
and 3. Inferences to estimate the values of these parameters, assumed to be unknown,
were performed using the MOM and MLE procedures developed in the correspond-
ing sections. Graphs for the SDD corresponding to the proposed four different sets of
parameters are shown at the following figures:

Fig. 2 SDDs 1 and 2 with known values of alpha for simulation examples
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Fig. 3 SDDs 3 and 4 with known values of alpha for simulation examples

First, an estimation was performed using MOM and iterating between (45) and (46).
These values were updated in each cycle until convergence was achieved within a pre-
set tolerance limit. The estimated values of the parameters using MOM were used as
the initial values for the iterative process using MLE. For the latter method expression
(51) is updated successively until the values of the parameters were stable within a pre-
set tolerance level. Results for the estimation of both methods and the true values of the
parameters are shown at Table 1.
Note the close agreement between theMLEs andMOMs at the results shown at Table 1.

Text mining example

A text mining example was developed using a publicly available data set assembled
by Lang (Lang). An example of email messages regarding several interest groups are
available, the “auto” topic was selected and summarized using standard data mining
techniques. A collection of randomly selected sample of 160 documents (emails) were
extracted and summarized as vectors at the positive orthant of the hypersphere. Common
terms such as “from” or “subject” were excluded as they did not provide any discriminant
power and could potentially bias the analysis. Vocabulary reduction for synonymous and
stemming were performed, and the ten most common terms were extracted by obtaining
their raw frequencies. The frequencies for these terms were expressed as the components
of vectors in a ten-dimensional space. A small fraction of the data set can be seen at
Table 2.
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Table 1 Simulation results

Method # Iterations α1 = 2 α2 = 2 α3 = 2 %Error

MOM 176 2.0557 2.0983 2.0764 3.84

MLE 51 2.0412 2.0798 2.0479 2.81

Method # Iterations α1 = 5 α2 = 15 α3 = 2 %Error

MOM 589 5.0351 14.7148 1.9684 1.40

MLE 147 5.1932 15.1998 2.0496 2.56

Method # Iterations α1 = 0.5 α2 = 0.5 α3 = 2 %Error

MOM 28 0.4964 0.4639 1.9212 3.96

MLE 23 0.4903 0.4821 1.9503 2.67

Method # Iterations α1 = 2 α2 = 2 α3 = 10 %Error

MOM 385 1.9349 2.0153 10.1145 1.72

MLE 85 1.9745 2.0713 10.3528 2.79

An appropriate transformation for these vectors was applied to reduce extreme values
and eliminate zeros. The transformation used here was xtransf = ln(1.10 + x). These
vectors were standardized to a unit length at the positive quadrant of the hypersphere and
they were fitted using the proposed multivariate SDD for ten dimensions. The estimation
for the corresponding αi’s for the proposed distribution was done using both MOM and
MLE, and their corresponding estimated values are shown Table 3
The number of iterations needed to fit the SDD for theMOMprocedure within a preset

tolerance level were 271 iterations. The final results of the MOM estimators were used as
the initial values for the MLE procedure, and a new model was fitted using 19 additional
iterations. Although the MLE procedure in general does not guarantee finding a global
maximum, the proposed method provided reasonable results and the convergence was
fast enough.

Conclusions
The proposed SDD constitutes a superior alternative to other competing methods for
fitting unit vectors at the positive orthant of the hypersphere. The SDD avoids wast-
ing probability mass or using distribution mixtures that are not suitable for the positive
orthant of the hypersphere. Inference results for MOM andMLE were in close agreement
for simulated data, and reasonably close for the real text mining example. The simulated
data were randomly generated from the proposed SDD while the text mining data were
obtained from a real text mining problem. The SDD is flexible and shows a rich variety of
shapes suitable to fit a wide range of data, in a similar way that the beta distribution does
for a one-dimensional space. Under an appropriate transformation it can also accom-
modate zeros for some coordinates of the hyper-vectors. Future research may be aimed
to enhance the capability of handling zero-value components, avoiding further need of
transforming data.

Table 2 Terms frequency

Doc ID ntoken auto write articl engin don good time drive road

103092 0 2 1 1 0 0 0 0 0 0

101671 7 0 2 2 0 2 2 0 0 0

...... ... ... ... ... ... ... ... ... ... ...

101582 6 8 3 2 0 0 0 0 0 0

103050 0 3 1 0 0 0 0 0 0 0
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Table 3 Text mining results

Parameter MOM MLE

α1 0.7799 1.1787

α2 0.6545 1.0013

α3 0.2151 0.4755

α4 0.1790 0.4276

α5 0.1182 0.2825

α6 0.1268 0.3224

α7 0.0923 0.2857

α8 0.1054 0.3004

α9 0.0833 0.2796

α10 0.0591 0.2481
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